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Introduction and motivation

In most SUSY SO(10) matter fields of 1 generation typically live in

16 = Q+ uc + ec︸ ︷︷ ︸
10

+ dc + L︸ ︷︷ ︸
5̄

+ νc︸︷︷︸
1

The (almost) always present Yukawa

WY ukawa = 16 10H Y10 16

not enough for fitting masses (and no mixing).
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Models differ mainly by the Higgs sector and additional Yukawa

structure:

• small Higgs representations: 16H , 45H . . ., non-renormalizable

Yukawa

δWY ukawa = 16

(
10H 45H
M

Y ′120 +
16H

2

M
Y ′126 + . . .

)
16

• large Higgs representation: 10H , 126H , 210H . . . , renormalizable

Yukawa

δWY ukawa = 16 (126H Y126 + . . .) 16
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My personal (biased) point of view is that models with large

representations are more appealing because

• able to predict automatic R-parity conservation at low energies:

R = (−1)3(B−L) , (B − L)(〈126H〉) = 2

while

(B − L)(〈16H〉) = 1

• the whole model can be made renormalizable and thus simpler,

minimal
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The minimal such model is susy SO(10) with

3× 16 + 10H + 126H + 126H + 210H

W = m126126H126H +m2102102
H + λ2103

H + η126H210H126H

+ m10102
H + α10H210H126H + ᾱ10H210H126H

+
3∑

a,b=1

16a
(
10HY

ab
10 + 126HY

ab
126

)
16b

• 〈210H , 126H , 126H〉 ∼ O(MGUT )

• MSSM Higgses in doublets of 10H , 126H , 126H , 210H

• Doublet-triplet by explicit fine-tuning
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Assuming a split susy scenario with MS ∼ 1014 GeV and

Mλ ∼ 105 GeV the model could fit the data except for

• θ13 (at the time there was only an upper limit)

• Higgs mass (at the time has not been measured yet)
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I believe that both issues can be resolved:

• by including θ13 in the fit instead of just assuming an upper

bound

• by allowing more general soft susy terms

After all with proper soft susy terms a much more difficult case of

minimal SU(5) has been made to work (without neutrinos)

If this is not enough, one could add for example an extra 54H
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Rest of phenomenology consistent:

• proton decay only d = 6 and close to exp limit (to be found in

next round of detectors):

BR(p→ π+ν̄) = 49%

BR(p→ π0e+) = 44%

• no dangerous FCNC (split susy)

• LSP candidate for dark matter

But all these should be checked again in the new solution
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Fans of small representation have a strong objection though:

The minimal large representation supersymmetric renormalizable

model has the following chiral superfields

3× 16 + (10H + 126H + 126H + 210H)

and thus the 1-loop β function is

β1 ≡ 3T (G)−
∑
i

T (Ri) = 3× 8− (3× 2 + 1 + 35 + 35 + 56)= −109

i.e. large and negative and so a Landau pole appears in the SO(10)

gauge coupling g
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µ
dg

dµ
= − β1

16π2
g3 → g2(µ) = − 8π2

β1 log (Λ/µ)

Λ = Landau pole ∼< 10MGUT (g(Λ) =∞)

Can we save somehow these theories? they seem UV sick. Various

possibilities:

• incorporate this SO(10) theory into a larger gauge group (for

example E6): does not work, on the contrary, it makes the

problem worse (β1(E6) = −159);

• make gravity with a lower effective MPlanck, this also predicted

because of large number of degrees of freedom present; but it is

a kind of sweeping the problem under the carpet: magic gravity

will somehow solve all problems, but we have no control over it;

• try to make sense of the field theory with asymptotic safety.
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Asymptotic safety

We got a Landau pole at 1-loop

What about higher loops?

µ
dg

dµ
= −

(
β1

16π2
g3 +

β2

(16π2)2
g5 + . . .

)
This important only if

g2

16π2 ∼> O(1)

destroying perturbativity.

The only hope is that non-perturbatively the Landau pole is

avoided and the gauge coupling (and eventually other couplings)

flow to a finite (but large, non-perturbative) value.
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Hard to work with non-perturbativity.

However if a solution of the Landau pole exists, then the theory in

the UV is asymptotically conformal (no running). We lost

perturbativity but gained the conformal symmetry

This we will use (in connection with supersymmetry)
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Constraints on conformal field theories

Imagine we have a field theory in d = 4

Trace anomaly of stress-energy tensor Tµν :

Tµµ = − a

16π2
E4 +

c

16π2
Weyl2 + . . .

where

Weyl2 ≡ RαβγδRαβγδ − 2RαβRαβ +
1

3
R2

E4 ≡ RαβγδRαβγδ − 4RαβRαβ +R2

are quadratic diffeomorphism invariants.

Lyon ’17 13



Borut Bajc

Our set-up is a d = 4 supersymmetric theory

• free in the IR

• with hypothetical UV interacting fixed point= asymptotically

safe theory

IR

free

UV

safe
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If this true in the UV the theory is an interacting CFT

One can prove that:

1. aUV > aIR

2. cUV > 0

3. 1
6 ≤

aUV

cUV
≤ 1

2

4. no gauge invariant operator with R < 2/3
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1. is the famous a-theorem (4d version of the 2d c-theorem):

in a theory with spontaneously broken conformal symmetry the

dilaton is the Numbu-Goldstone boson; calculate dilaton-dilaton

scattering:

amplitude ∝ ∆a

f4
s2

unitarity → ∆a ≡ aUV − aIR > 0

because of it

• RG flow is irreversible

• a provides a measure for # of d.o.f.
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2. follows from

〈Tµν(x)Tαβ(0)〉 = c Πµναβ(∂)
1

x4

→ c > 0
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3. is the ”conformal collider bound”, follows from positivity of

measured energy, in any conformal theory

1

9
≤ a

c
≤ 31

54

in supersymmetry this reduces to

1

6
≤ a

c
≤ 1

2
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4. is due to unitarity: in any conformal field theory the dimension

of a gauge invariant primary (no derivatives) operator O is

D(O) ≥ 1

From superconformal algebra

R =
2

3
D

→ R > 2/3
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Calculation of central charges

In a generic field theory a and c can be calculated perturbatively.

In our case this not useful because fixed point non-perturbative

Fortunately in supersymmetry central charges can be got exactly
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(Ri, ni) . . . (R− charge,# d.o.f.) of chiral field i

|G| . . . dimension of gauge group G = # of gauge fields

a = 2|G|+
∑
i

nia1(Ri) , a1(R) = 3(R− 1)3 − (R− 1)

c = 4|G|︸︷︷︸
gaugino

+
∑
i

nic1(Ri)︸ ︷︷ ︸
chiral fields

, c1(R) = 9(R− 1)3 − 5(R− 1)
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These exact relations are due to the fact that

Tµν and jµR are different components of the same supermultiplet

→ relations between Tµµ and ∂µj
µ
R :

Tµµ = −a E4 + c Weyl2 + . . .

∂µj
µ
R = [Tr U(1)R]︸ ︷︷ ︸

∝
∑

i ni(Ri−1)

RαβγδR̃
αβγδ +

[
Tr U(1)3

R

]︸ ︷︷ ︸
∝

∑
i ni(Ri−1)3

FRµν F̃
µν
R

U(1)R symmetry unavoidable in supersymmetric fixed points

(conformal theories): R charge part of the superconformal algebra
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Since

R(chiral superfield) =
2

3
D(chiral superfield)

for a free theory (D(φfree) = 1)

R(φfree) = 2/3

Gaugino has by definition always

R(gaugino) = 1
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If we know the R-charges, we know the central charges a, c

How do we get the R-charges Ri?

In SCFT the β functions must vanish:

• NSVZ β function is proportional to

T (G) +
∑
i

T (ri)(Ri − 1) = 0

T . . .Dynkin index

• β function for superpotential coupling λa of

W = λa
∏
i

φqiai

is proportional to ∑
i

qiaRi − 2 = 0

Lyon ’17 24



Borut Bajc

Three possibilities:

1. # of constraints above bigger than number of chiral fields

→ no SCFT

2. # of constraints above equal to number of chiral fields

→ the solution to above equations unique and represents a

possible candidate for CFT; to check consistency with

inequalities mentioned above

3. # of constraints above smaller than number of chiral fields

→ one uses the above equations to express some R-charges

with the others; then applies the a-maximization to calculate

the remaining R-charges:
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a-maximization:

∂a

∂Ri
= 0

This gives same number of equations than unknowns Ri.

Equations are quadratic so there can be several real solutions. One

should choose the one with

∂2a

∂Ri∂Rj
all negative eigenvalues
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SUSY UV safety at large Nf

Imagine we have a gauge group G with

n1 generations of r1

n2 generations of r2

One type of representation only will not work. NSVZ:

TG + n1T1(R1 − 1) = 0 → R1 = 1− TG
n1T1

< 1

In the IR R1 = 2/3 and aIR > aUV (a-theorem violated)

Lyon ’17 27



Borut Bajc

with 2 different representations in principle possible: R2 calculated

from NSVZ, R1 from a-maximization. If we want to satisfy the

a-theorem one of the two needs to have R > 5/3.

We can vary G, r1, r2, n1, n2.

Not possible to get acceptable solutions for any choice of r1, r2.

We need that

1. ∆a > 0

2. c > 0

3. 1/6 ≤ (a/c) ≤ 1/2

4. no GIO with R < 2/3

To be concrete consider two examples.
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SO(10) at large Nf

Scan over all possible r1 and r2 > r1 among

10, 16, 45, 54, 120, 126, 144, 210

There are solutions satisfying all checks only if

(r1, r2) = (10, 126) or (16, 126)
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The number of generations involved are naively very large, at least

few hundreds (n10 ≥ 554 and n16 ≥ 418)

Analogous to the non-supersymmetric example (see talk Antipin

tomorrow)

416 417 418 419 420
n16

-0.4

-0.2

0.2

0.4

0.6

Δa

n126max(n16)

(n126max(n16)+n126min(n16))/2

n126min(n16)
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This is because for n16 < 418 → R(164) < 2/3

GIO becomes free

416 417 418 419 420
n16

0.1665

0.1666

0.1667

0.1668

0.1669

R16

n126max(n16)

(n126max(n16)+n126min(n16))/2

n126min(n16)

But in this case formula for ∆a changes so in principle lower

number of generations can be possible
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Number of such solutions is ∞ (not bounded from above )

For n16 →∞ the solution exists providing

1

7

√
3

38
<
n126

n16
<

2(
√

301− 11)

315

In numbers

0.0401394 <
n126

n16
< 0.0403133

This is a large Nf1/Nc︸ ︷︷ ︸
n126/10

and Nf2/Nc︸ ︷︷ ︸
n16/10

case with bounded Nf1/Nf2
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SU(5) at large Nf

We can easily repeat the above exercise; taking as possible

representations any two among

5, 10, 15, 24, 35, 40, 45, 50, 70, 70′, 75

it is easy to show that only these pairs have solutions:

(r1, r2) = (5, 35), (5, 40), (5, 70), (5, 70′), (5, 75), (10, 70′), (24, 70′)
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The difference with respect to SO(10) is that we need special care

to cancel gauge anomalies.

We allow to have also complex conjugate representations. Some

examples with all constraints satisfied:

r1 n1 n1̄ R1 = R1̄ r2 n2 n2̄ R2 = R2̄ ∆a cUV (a/c)UV

5 15 147 0.43695 35 0 3 1.96684 2.15 1422. 0.178

5 61 119 0.36651 70 2 0 2.06152 6.38 1652. 0.173

5 9 165 0.54917 70’ 0 1 1.81481 0.75 1395. 0.185

5 90 90 0.35869 75 2 - 2.05436 0.99 1637. 0.172

10 51 51 0.43853 70’ 1 1 1.96316 13.70 1786. 0.179

Both chiral and vectorlike solutions.
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Non-zero superpotential

The first supersymmetric UV fixed point found by Martin, Wells:

2 adjoints X, Y plus Nf × (Q+ Q̃) with

W = y1Q̃XQ+ y2Tr X
3

Automatically R(Q) = R(Q̃) = R(X) = 2/3 and

TG + TX (R(X)− 1) + TY (R(Y )− 1) + 2NfTQ (R(Q)− 1) = 0

→ ∆a > 0 if Nf > 4Nc
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The idea here is to make the superpotential terms determine

R-charges of all fields except 1, the last one being determined by

the vanishing NSVZ.

In Martin-Wells example, all fields (X, Q, Q̃) have R = 2/3

except one (Y ) which has R > 5/3.

Possible to generalize. For example take Nc/Nf = 0.46, Nc →∞,

and

W = y1Q̃X
4Q+ y2Tr X

6

leads to UV fixed point with all constraints satisfied.

We will see later on a phenomenologically interesting example of

this type.
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SO(10) with W=0

Easy to analyze, to get a flavor of the procedure

a = 2|G|+
∑
i

|ri|a1(Ri) + λG

(
T (G) +

∑
i

T (ri)(Ri − 1)

)
︸ ︷︷ ︸

NSV Z

|G| . . . dimension of gauge group (= 45 in SO(10))

|ri| . . . dimension of representation ri

i . . . runs over chiral superfields

λG . . . Lagrange multiplier for vanishing of NSVZ β-function
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Maximizing a we get

∂a

∂Ri
= |ri|

(
9(Ri − 1)2 − 1

)
+ λGT (ri) = 0

→ Ri(λG) = 1− εi
3

√
1− T (ri)

|ri|
λG εi = ±1

One can imagine that λG is changing along the flow (a function of

the gauge coupling g2):

λG = 0 λG = λ∗G

IR UV

µ = 0 µ =∞
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• In the IR λG = 0, all εi = +1 and so Ri = 2/3 (free!)

• For small λG the theory is perturbative and one finds the

1-loop relation

λG =
g2

2π2
+O(g4)

• one can repeat the calculation up to 3-loops getting agreement

for the scheme independent part of the perturbative calculation

of the anomalous dimensions

• if there is a UV CFT, it happens at some λ∗G such that NSVZ

vanishes:

T (G) +
∑
i

T (ri) (Ri(λ
∗
G)− 1) = 0
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This last step is possible only if
√

positive number :

1− T (ri)

|ri|
λ∗G ≥ 0

i.e. if

λ∗G ≤ λmaxG ≡ mini
(
|ri|
T (ri)

)
The minimal SO(10) model has 10 + 2× 126 + 210 + 3× 16

λmaxG ≡ mini
(
|ri|
T (ri)

)
=
|126|
T (126)

=
126

35
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On the other side a possible fixed point with all εi = +1 will not

satisfy the ∆a > 0 theorem.

Rε=+1 ≤ 1

But for these values a1(Rε=+1) < a1(2/3) and so aUV < aIR.

1

3

2

3
1

4

3
5

3

R

-
2

9

2

9

a

At least one chiral field must have Ri > 5/3 → εi = −1
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The only possibility is

1. with λG running from 0 reach λmaxG without satisfying NSVZ

with all εi = +1 at any point 0 ≤ λG ≤ λmaxG

2. at λG = λmaxG we can change sign of ε126 and/or ε126

3. returning back with λG towards 0 finding a point λ∗G where

NSVZ vanishes with these new ε’s.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
λG

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ri

R16(+)

R10(+)

R210(+)

R126(+)

R126(-)
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0.5 1.0 1.5 2.0 2.5 3.0 3.5
λG

-30

-20

-10

NSVZ

In our case with all εi = +1 we get

βNSV Z(0) < 0

βNSV Z(λmaxG ) > 0

and thus a zero is somewhere in between but with aUV < aIR.
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0.5 1.0 1.5 2.0 2.5 3.0 3.5
λG

-80

-60

-40

-20

Δa

→ no consistent UV fixed points in minimal SO(10) with W = 0
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SO(10) with W 6= 0

We tried various trilinear terms in the superpotential

The only solution we found was with the superpotential

W = y1 2103 + y2 210 126 126 + y3 210 126 10 + y4 210 126 10

+
∑

a,b=2,3

16a 16b
(
y5,ab 10 + y6,ab 126

)
i.e. all the most general trilinear couplings except that 161 never

appearing in W

The constraints (all β-functions vanishing) fix

R(161) =
113

6
and all other R = 2/3.
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Comments:

• the solution found describes one massless generation

• there are more Lagrange multipliers than equations of motion:

our solution is a manifold of fixed points

• if some gauge invariant operators have R < 2/3 the correct

interpretation is that these composites become free (with

R = 2/3) but the expressions for the central charges must be

changed in a known way:
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anew = aold +
∑

R(O)<2/3

(a1(2/3)− a1(R(O)))

We tried to look in some of these cases but with no success (no

consistent UV fixed point found)

• we avoided such cases when Ri < 0; although in principle such

cases can be studied, the calculation is complicated (finding

out all the gauge invariant operators of the chiral ring)
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Conclusion

• In GUTs problem of Landau pole due to supersymmetry (no

such problem in non-susy below Planck scale)

• But supersymmetry can help analyzing the non-perturbative

problem: inequalities on central charges a, c used

• Theory: two types of supersymmetric asymptotically safe

theories presented

1. large Nf

2. Martin-Wells’ type

• Phenomenology: in minimal renormalizable SO(10) GUT a

quasi-realistic possibility for a UV safe theory found: one

generation of matter fields decoupled from the superpotential
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