

The gravitational side of the Dark Matter problem

European Research Council

Constantinos Skordis (Institute of Physics, Prague & University of Cyprus) Paris, 29 May 2017

(FP7/2007-2013) / ERC Consolidator Grant Agreement n. 617656

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

- General Relativity and beyond
- IR modifications of gravity: requirements
- Modified Newtonian Dynamics and variants
- Other Dark Matter motivated gravitational theories
- Outlook

The only

- local,
- diffeomorphism invariant action,
- which leads to 2nd order field equations
- and which depends only on a metric

is a linear combination of the Einstein-Hilbert action with a cosmological constant up to a total derivative.

GR:
$$S = \frac{1}{16\pi G} \int d^4x \left[R - 2\Lambda \right] + S_m[g, \psi^A]$$

Tests of Newton's inverse square law

Constantinos Skordis, Institute of Physics, Prague

Testing GR with astrophysical systems

Parameterized Post-Newtonian (PPN) expansion

(C. Will, Liv. Reviews. Rel.)

Perturbation order: $v^2 \sim U \sim \rho$

$$g_{00} = -1 + 2U - 2\beta U^2 - 2\xi \Phi_W + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi) \Phi_1 + 2(3\gamma - 2\beta + 1 + \zeta_2 + \xi) \Phi_2 + 2(1 + \zeta_3 \Phi_3 + 2(3\gamma + 3\zeta_4) \Phi_4 - (\zeta_1 - 2\xi) \mathcal{A} - (\alpha_1 - \alpha_2 - \alpha_3) w^2 \Psi - \alpha_2 w^i w^j U_{ij} + (2\alpha_3 - \alpha_1) w^i V_i$$

$$g_{0i} = -\frac{1}{2} \left(3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi \right) V_i - \frac{1}{2} \left(1 + \alpha_2 - \zeta_1 + 2\xi \right) W_i \\ -\frac{1}{2} \left(\alpha_1 - 2\alpha_2 \right) w^i U$$

$$g_{ij} = (1+2\gamma U)\delta_{ij}$$

10 Parameters

Parameter	What it measures relative to GR	Value in GR	Value in semi- conservative theories	Value in fully conservative theories
γ	How much space-curva- ture produced by unit rest mass?	1	γ	γ
β	How much "nonlinearity" in the superposition law for gravity?	1	β	β
ξ	Preferred-location effects?	0	ε	ε
α1	Preferred-frame effects?	0	α_1	0
α_2		0	α_2	0
α_3		0	0	0
α ₃	Violation of conservation	0	0	0
ζ1	of total momentum?	0	0	0
ζ_2		0	0	0
ζ3		0	0	0
C 4		0	0	0

10 Potentials

$$U(\vec{x}) = \int d^3x' \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|}$$

$$\Phi_1 = \int d^3x \frac{\rho v^2}{|\vec{x} - \vec{x}'|}$$
etc

Key assumption: asymptotic flatness

Constantinos Skordis, Institute of Physics, Prague

Constraints on PPN parameters

Solar system	$\gamma - 1$ space	2.3×10^{-5}	Bertotti et al (2003), Cassini tracking
		$(-0.3 \pm 2.5) \times 10^{-5}$	Verma et al (2013), Messenger tracking
	eta-1 non-linearity	$(0.2 \pm 2.5) \times 10^{-5}$	Verma et al (2013), Messenger tracking
	$ \xi $ preferred location	$< 10^{-3}$	Earth tides
	$lpha_1$ preferred frame	$(-0.7 \pm 1.8) \times 10^{-4}$	Müller et al (2008), lunar ranging
	$ lpha_2 $ preferred frame	$< 2.4 \times 10^{-7}$	Nordtvedt (1987), solar alignment with the ecliptic
Binary pulsars	$ \xi $	$< 3.9 \times 10^{-9}$	Shao & Wex (2013), millisecond pulsars
	$lpha_1$	$-0.4^{+3.7}_{-3.1} \times 10^{-5}$	Shao & Wex (2012), pulsar-WD binaries
	$ lpha_2 $	$< 1.6 \times 10^{-9}$	Shao et al (2013), millisecond pulsars

Conservative theories: $\alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0$

Dicke 1960-1965

WEP: Weak Equivalence Principle

The trajectory of a freely falling "test" body is independent of its internal structure and composition.

EEP: Einstein Equivalence Principle

- WEP is valid
- The outcome of any local **non-gravitational** experiment is independent of the velocity of the freely-falling reference frame in which it is presented.
- The outcome of any local **non-gravitational** experiment is independent of where and when in the Universe it is performed.

C. Will, Liv. Rev. Rel.

Experimental tests of WEP

TESTS OF THE

Microscope (launched Apr 2016), exp. sensitivity $\sim 10^{-15}$

Standard lore

Newton:
$$\Phi = -\frac{GM}{r}$$

Newton:
$$\Phi = -\frac{1}{r}$$

GR: $\Phi = -\frac{GM}{r} + \left(\frac{GM}{r}\right)^2 + \ldots + C_n \left(\frac{GM}{r}\right)^n + \ldots$

Quantum gravity:
$$\Phi = -\frac{GM}{r} + \left(\frac{GM}{r}\right)^2 + \frac{31G^2M\hbar}{15r^3} + \dots$$

Bjerrum-Bohr, Donoghue, Holstein (2003)

$r \rightarrow \infty \implies$ Asymptotic Minkowski

Understanding tests of gravity

T. Baker, D. Psaltis and C.S., Astrophys. J. 802, 63 (2015)

Quantifying gravitational fields

$$g_{\mu\nu} \approx \bar{g}_{\mu\nu} + h_{\mu\nu} \longrightarrow$$
 "field proxy" $\epsilon = \frac{\Phi}{c^2} \sim \frac{GM}{c^2 r}$

$$R^{\alpha}_{\ \beta\mu\nu}$$
 \longrightarrow "curvature proxy" $\xi = \sqrt{R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}} \sim \frac{GM}{c^2r^3}$

Gravity and the Dark Sector

Galaxies: Gravity must be stronger in the IR

Galaxies: rotation curves do not decay with increasing distance

Clusters: stronger gravitational lensing

Cosmology: Gravity must be stronger in the IR

 $H_{obs} > H_{baryon}$

$$\Phi_{obs} > \Phi_{baryon}$$

CMB: weaker driven oscillations, weaker early Integrated Sachs-Wolfe

Constantinos Skordis, Institute of Physics, Prague

GR cosmology without DM

Requirements for IR corrections to GR

- Gravity must become stronger than GR in the IR
- Lovelock: new degrees of freedom

Potential pitfalls

Galaxies

Milgrom (1983) $a_0 \sim 1.2 \times 10^{-10} m/s^2$

Modified Newtonian Dynamics (MOND)

Milgrom (1983)

circular orbits
$$a = \frac{v^2}{r}$$

Newton:
$$a = |\nabla \Phi| = \frac{GM}{r^2} \Rightarrow v \propto r^{-1/2}$$

Potential obeys: $\nabla^2 \Phi = 4\pi G \rho$

MOND:
$$\frac{a^2}{a_0} = |\nabla \Phi| = \frac{GM}{r^2} \Rightarrow v \propto constant$$

Violation of conservation laws

Constantinos Skordis, Institute of Physics, Prague

Prediction: Baryonic Tully-Fisher

Tully & Fisher, 1977 McGaugh 2004

MOND
$$v^4 = Ga_0 M_b$$

Slope
$$\sim 4$$

Correct normalisation $\frac{1}{Ga_0}$

No dependence on surface brightness

Scatter around the fit is too small.

Aquadratic Lagrangian Gravity

Bekenstein & Milgrom (1984)

Potential obeys:
$$\nabla \cdot \left(\frac{|\nabla \Phi_N|}{a_0} \nabla \Phi_N \right) = 4\pi G \rho$$

Derivable from a Lagrangian: Conservation laws obeyed

Constantinos Skordis, Institute of Physics, Prague

Transition radius

Constantinos Skordis, Institute of Physics, Prague

Requirements for IR corrections to GR

- Gravity must become stronger than GR in the IR
- Lovelock: new degrees of freedom
- MOND: acceleration scale dictates potential

Constantinos Skordis, Institute of Physics, Prague

Coincidences

• Relation to Hubble constant $a_0 \sim \frac{1}{6} c H_0$

• Characteristic length $R_M = \sqrt{\frac{GM}{a_0}} \sim 0.29 \sqrt{R_s R_h}$

Universe:
$$M = \frac{4}{3}\pi R_h^3 \rho$$
$$\rho = \frac{3H_0^2}{8\pi G}$$
$$R_M \sim 0.29R_h \sim 1300Mpc$$
 DE?

Connecting MOND to Newton

• AQUAL equation $\nabla \cdot \left[\mu \left(\frac{|\nabla \Phi|}{a_0} \right) \nabla \Phi \right] = 4\pi G \rho$

$$\begin{array}{ll} \mbox{Interpolating} \\ \mbox{function} \end{array} \left(\begin{array}{cc} \mu \left(x \right) \rightarrow 1 & x >> 1 & \mbox{Newton} \\ \mu \left(x \right) \rightarrow x & x << 1 & \mbox{MOND} \end{array} \right)$$

e.g.
$$\mu = \frac{x}{1+x} \qquad \mu = \frac{x}{\sqrt{1+x^2}}$$

Non-analytic

• Screening mechanisms

Galileon k-mouflage Babichev, Deffayet, Esposito-Farese (2011)

Types of MOND theories: AQUAL

Type-1
$$\Phi = \Phi_P + \phi$$
New scalar field $\nabla^2 \Phi_P = 4\pi G \rho$ Original AQUAL theory $\nabla \cdot \left[\mu_I \left(\frac{|\nabla \phi|}{a_0} \right) \nabla \phi \right] = 4\pi G \rho$

Type-2
$$\nabla^2 \phi = \nabla \cdot \left[\mu_{II} \left(\frac{|\nabla \Phi_P|}{a_0} \right) \nabla \Phi_P \right]$$
Quasi-linear MONDType-3 $\nabla \cdot \left[\mu_{III} \left(\frac{|\nabla \Phi|}{a_0} \right) \nabla \Phi \right] = 4\pi G \rho$ No known example

No known examples

Type-S: use of screening mechanism

Relativistic AQUAL

Bekenstein & Milgrom (1984)

Ruled out: light insensitive to scalar

Constantinos Skordis, Institute of Physics, Prague

Tensor-Vector-Scalar (TeVeS) theory

- Type-1 MOND in weak-field limit
- Lensing as if DM was present
- Large acceleration limit not GR but Einstein-Aether

TeVeS and caustics

TeVeS cosmology

Scalar tracks dominant matter with equation of state $\,w$

Typically $\Omega_{\phi} < 10^{-3}$

Cosmological perturbations CS, Mota, Ferreira, Boehm (2005) CS (2005) $g_{00} = -a^2(1+2\Psi)$ $g_{ij} = a^2(1-2\Phi)\gamma_{ij}$ Metric $\phi = \bar{\phi} + \delta\phi$ Scalar extra d.o.f $\delta\phi$ lphaVector $A_{\mu} = \left(1 + \Psi + \delta\phi, \vec{\nabla}_{i}\alpha\right)$

Observables

Large scale structure

Power spectrum
$$\langle \delta(\vec{k})\delta(\vec{k}')\rangle = (2\pi)^3 P(k)\delta^3(\vec{k}-\vec{k}')$$

Large scale structure in TeVeS

(Skordis, Mota, Ferreira, Boehm, 2005)

(Dodelson & Liguori, 2006)

Growing mode in TeVeS

Scalar field perturbations irrelevant

(Dodelson & Liguori, 2006)

Vector field perturbations: $A_{\mu} = \left(1 + \Psi + \delta \phi, \vec{\nabla}_i \alpha\right)$

$$\ddot{\alpha} + \frac{4}{\tau}\dot{\alpha} + \frac{2(1-\epsilon)}{\tau^2} = S[\Phi, \Psi]$$
where $\epsilon \sim 12 \ln\left[\frac{a}{5 \times 10^{-5}}\right] \frac{1}{\mu_0 K}$

Soln:
$$\alpha \propto \tau^n \quad \Longrightarrow \quad n = \frac{1}{2} \left[-3 \pm \sqrt{1 + 8\epsilon} \right]$$

$$n>0$$
 for $\mu_0 K<100$

Perturbed Einstein eq. (ignore scalar)

$$2\vec{\nabla}^2\Phi = 3\frac{\dot{a}^2}{a^2}\Delta_b^{(com)} - e^{-4\phi_i}K\vec{\nabla}^2\left[\dot{\alpha} + \frac{\dot{a}}{a}\alpha - \Psi\right]$$

Cosmic Microwave Background

(Skordis, Mota, Ferreira, Boehm, 2005)

see CMB talk tomorrow

Constantinos Skordis, Institute of Physics, Prague

Zlosnik, Ferreira & Starkman (2006)

Express scalar field in terms of matter frame metric and vector field (use the disformal transformation)

$$e^{-2\phi} = -\tilde{g}^{ab}A_aA_b = -A^2$$

Eliminate both Einstein frame metric and scalar field from the action

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R + K^{\mu\nu\alpha\beta} \nabla_{\mu} A_{\alpha} \nabla_{\nu} A_{\beta} \right) + S_m[g]$$

$$K^{\mu\nu\alpha\beta}\sim \frac{1}{A^2} \quad {\rm or} \quad \frac{1}{A^4} \quad {\rm etc}$$

Constantinos Skordis, Institute of Physics, Prague

Generalized Einstein-Aether

Remove 1 dof

Zlosnik, Ferreira & Starkman (2006,2007)

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[R + \mathcal{F}(K) - 2\lambda \left(A^{\mu} A_{\mu} + 1 \right) \right] + S_m[g]$$

$$K = K^{\mu\nu\alpha\beta} \nabla_{\mu} A_{\nu} \nabla_{\alpha} A_{\beta}$$

- Similar phenomenology to TeVeS (e.g. MOND, LSS)
- F: may also provide for acceleration
- CMB, stability issues unknown

TeVeS
$$ds^2 = -\left(\frac{r}{r_0}\right)^{2c} \left(1 + \frac{(2+c)\Phi_1}{r} + \dots\right) dt^2 + \left(\frac{r}{r_0}\right)^{-2c} \left(1 - \frac{(2+c)\Phi_1}{r} + \dots\right) dL^2$$
 $c = \sqrt{GMa_0}$

- •Non-singular: all curvature invariants vanish at infinity
- Deficit solid angle: 1 c, like a Barriola-Vilenkin global monopole
- •Total confinement:
 - -Escape velocity is the speed of light
 - -Photons can only reach infinity at the expense of loosing all their energy

No particle, massless or massive, may escape to infinity with non-zero energy

Screening mechanisms

Kinetic screening

Realization of the Vainshtein mechanism in a number of theories

Derivatives of ϕ become large near massive sources

$$\begin{split} L_{\chi} \sim -\frac{1}{2} (\tilde{\nabla}\chi)^2 - K[\chi,\tilde{\nabla}\chi] \quad L_{NL}[\chi,\tilde{\nabla}\chi,\tilde{\nabla}\tilde{\nabla}\chi] \\ & \text{standard} & \longleftarrow & \text{non-linear} \\ & \text{relative} \\ & \text{strength} \end{split}$$

Galileons in 4D.

 $\text{Cubic:} \quad L_{NL}^{(3)} = \tilde{\Box} \chi$

quartic: $L_{NL}^{(4)} = (\tilde{\Box}\chi)^2 - \tilde{\nabla}^{\mu}\tilde{\nabla}_{\nu}\chi\tilde{\nabla}^{\nu}\tilde{\nabla}_{\mu}\chi$

quintic: $L_{NL}^{(5)} = (\tilde{\Box}\chi)L_{NL}^{(4)} - 2(\tilde{\Box}\chi)\tilde{\nabla}^{\mu}\tilde{\nabla}_{\nu}\chi\tilde{\nabla}^{\nu}\tilde{\nabla}_{\mu}\chi + 2\tilde{\nabla}^{\rho}\tilde{\nabla}_{\nu}\chi\tilde{\nabla}^{\nu}\tilde{\nabla}_{\mu}\chi\tilde{\nabla}^{\mu}\tilde{\nabla}_{\rho}\chi$

$$KL_{NL} >> X = -\frac{1}{2}(\nabla \phi)^2 \implies \text{screening}$$

Constantinos Skordis, Institute of Physics, Prague

gTeVeS: TeVeS with Galileon k-mouflage

Babichev, Deffayet, Esposito-Farese (2011)

Spherical symmetry:
$$\frac{d\phi}{dr} = \left(\sqrt{\frac{8k_{\text{gal}}}{r^2} + \frac{r^2}{G_N M a_0} + \left(\frac{\epsilon_{\text{c}} r^2}{2G_N M}\right)^2} + \frac{\epsilon_{\text{c}} r^2}{2G_N M}\right)^{-1}$$

$$r_{V} = (8k_{\text{gal}}GMa_{0})^{1/4} \qquad r_{M} = \frac{2}{\epsilon_{c}}\sqrt{\frac{GM}{a_{0}}}$$

$$GR \qquad MOND \qquad Newton$$
(strongly-coupled galileon)
$$\phi \sim \frac{1}{\sqrt{k_{\text{gal}}}}r^{2} \qquad \phi \sim \sqrt{GMa_{0}}\ln r \qquad \phi \sim -\frac{GM}{\epsilon_{c}r}$$

Constantinos Skordis, Institute of Physics, Prague

FRW cosmology: proximity to $\Lambda\!CDM$

Cosmological evolution

T. Zlosnik & C.S., ArXiV:1702.00683

Parametrised Post-Newtonian-Vainshteinian formalism

A. Avilez, A. Padilla, P. Saffin and C.S., JCAP (2015)

New dof give corrections to the PPN potentials, but...two scales -> two regimes

Primary order: \mathcal{U} (as in PPN)

Secondary order: lpha

The (only) combination of the Schwarzschild radius and the Vainshtein radius which is independent of the source mass

- powers outside

+ powers inside

Constantinos Skordis, Institute of Physics, Prague

Cubic Galileon and the Vainshtein mechanism

$$S[g,\phi] = S_{BD} + \frac{M_p}{8\Lambda} \int d^4x \sqrt{-g} \frac{(\nabla\phi)^2}{\phi^3} \Box \phi + S_m(g)$$

(part of Horndeski)

Strong coupling scale

Galileon parameter
$$\alpha = \frac{M_p}{\Lambda^3}$$

Vainshtein radius $r_V = \frac{1}{\Lambda} \left(\frac{M}{M_p}\right)^{1/3}$ $A = \frac{r_V^3}{r_s}$

cosmological regime $\alpha \to 0$ local regime $\alpha \to \infty$

Vainshtein mechanism for Cubic Galileon

Vainshtein corrections to Newton

Constantinos Skordis, Institute of Physics, Prague

Modified gravity bubbles in the Solar System

Bekenstein & Magueijo (2006)

Newtonian Saddle Point: tidal stress vanishes MONDian Saddle Point: $S_{ij} = \frac{\partial^2 \phi}{\partial_i \partial_i} \propto \frac{1}{\sqrt{r}}$

size of MONDian bubble $\sim 400 km$

Lisa Pathfinder

- 2 test masses in near perfect gravitational free fall
- picometer sensitivity
- Primary mission: test technology for GW detection
- Secondary mission (proposed): test modified gravity (Trenkel et al.)

MOND signal expected at 25σ

Non-detection will rule out type I (e.g. TeVeS) and most type II MONDs

Requirements for IR corrections to GR

- Gravity must become stronger than GR in the IR
- Lovelock: new degrees of freedom
- MOND: acceleration scale dictates potential
- Lorentz Violation: Lensing, cosmology, MOND Lagrangian
- Screening

Constantinos Skordis, Institute of Physics, Prague

Sponteneous metri-zation

(Bañados 2007)

First-order GR

$$\left. \begin{array}{l} T^{a} = de^{a} + \omega_{bc}^{a} e^{c} \\ \epsilon_{abcd} R^{ab} e^{c} = 0 \\ \epsilon_{abcd} T^{a} e^{b} = 0 \end{array} \right\} \qquad \begin{array}{l} \text{Trivially solved by} \\ e^{a} = 0 \end{array}$$

- Unbroken state of GR Witten 1988
- Topology change Horowitz 1990
- Sponteneous symmetry breaking Giddings 1991

completely unconstrained

(and thus random!)

Spins in an external magnetic field

(Bañados 2007)

Can we modify GR so that ω_{ab}^c does not become random when e^a is removed?

Constantinos Skordis, Institute of Physics, Prague

Parametric vanishing of the metric

$$g_{\mu\nu}[\alpha^I] \to 0$$
 as $\alpha^I \to 0$

"metric-less connection"
$$C^c_{ab} = \lim_{g \to 0} \Gamma^c_{ab}$$

Curvature of
$$C_{ab}^c$$
 $R_{ab}^{(0)} = \partial_{[c}C_{a]b}^c - C_{c[d}^d C_{b]a}^c = \lim_{g \to 0} R_{ab}$
$$G_{ab}^{(0)} = \lim_{g \to 0; T \to 0} G_{ab}$$

Modified Einstein equations:

$$G_{ab} = 8\pi G T_{ab} + G_{ab}^{(0)}$$

Static-spherical symmetry

$$ds^{2} = -A^{2}(r)dt^{2} + B^{2}(r)dr^{2} + C^{2}(r)d\Omega^{2}$$

Take limits:

 $A o 0 \quad \Rightarrow \frac{1}{B} \frac{dA}{dr} \to 0 \qquad \frac{1}{A} \frac{dA}{dr} \to \text{ finite}$ $R_{tt}^{(0)} = 0 \qquad R_{rr}^{(0)} = q(r) \qquad R_{\theta\theta}^{(0)} = 1$

Solve Einstein equations :

$$G_{tt} = 0 \qquad G_{rr} = q(r) \qquad G_{\theta\theta} = 1$$

$$g_{00} \approx -1 + 2\Phi = -1 + \frac{2Gm}{r} + C_0 \ln r$$

$$f_{\text{MOND potential!}}$$

Cosmology

$$ds^{2} = -N^{2}dt^{2} + a^{2}d\vec{x}^{2}$$

$$a \to 0$$

$$N \to 0 \qquad \Rightarrow \quad \frac{\dot{a}}{N} \to 0 \qquad \text{but} \quad \frac{\dot{a}}{a} \qquad \frac{\dot{N}}{N} \quad \text{finite}$$

$$R_{tt}^{(0)} = q(t) \qquad R_{ij}^{(0)} = 0$$
Solve Einstein equations:
$$3H^{2} = q = \frac{C_{0}}{a^{3}}$$
Dark matter!

Eddington-Born-Infeld gravity

Perturbations

(M. Banados, P. Ferreira, C.S. 2009)

k (h Mpc⁻¹) Constantinos Skordis, Institute of Physics, Prague

Outlook

- General Relativity strongly constrained in large-curvature regime.
 Not so at low-curvatures: Dark Sector
- Relativistic Modified Newtonian Dynamics and variants: Structure formation OK. CMB still unclear (and not expected to work).
- Relativistic MOND: screening mechanisms + Lorentz violation.
- Other Dark Matter motivated gravitational theories interesting

but do not explain MOND relations.