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Outline 
  

•  The ΛCDM small scale crisis 

•  Possible Solution: CDM +baryonic physics 

•  Cusp-cores and MDAR (RAR) 

•  Alternative DM models 
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Cradit:NASA-WMAP science team 

 Galaxy Formation in one slide  
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DM 

Λ 

Composition of the Universe 
 
By fitting the observed 
   CMB power spectrum 
       we can find the best  
           theoretical  model 
              that  describes it 

Dark Energy 

Dark Matter 

Ordinary Matter 

 
Planck Satellite (ESA) 
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Credit: A.Kravtsov, A. Klypin 

Studying galaxy formation requires  
          numerical simulations 

Simplest  
Simulation 
includes  
Dark Matter 
only! 
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LCDM is the standard cosmological model of  structure formation , based on  weakly  
Interacting  massive particles (WIMPS), a.k.a.  Cold  dark  matter (CDM) 

Structure formation depends on DM type 

(Slow moving) m~ GeV-
TeV  Small structures form 
first, then merge 

(Fast moving) m~ keV 
Small structures are  
erased 
 

Credit: Ben Moore 30/05/2017 
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The LCDM small scale crisis 
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Velocity function of galaxies 

Missing satellite problem 

Cusp-core discrepancy è rotation curves of galaxies  

Kinematic of satellite galaxies (TBTF problem) 

Diversity of RC in dwarf galaxies 

Mass discrepancy acceleration relation 

Large size of Ultra-Diffuse galaxies 
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The LCDM small scale crisis 
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Velocity function of galaxies 

Missing satellite problem 

Cusp-core discrepancy è rotation curves of galaxies  

Kinematic of satellite galaxies (TBTF problem) 

Diversity of RC in dwarf galaxies 

Mass discrepancy acceleration relation 
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Observations show ‘CORED’ profiles 
Inner  slope γ < 1 

 

Oh+11 
Springel+05 

Simulations find ‘CUSPY’ profiles 
Inner  slope γ ≥ 1  NFW 
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CUSP-CORE discrepancy 
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Hydrodynamical simulations of  galaxies including DM + GAS + STARS  

       MaGICC/NIHAO  project 
 
(Stinson13,Brook12,Stinson13,Di Cintio17,Wang+15,Brook+12b, Maccio’+12, Penzo+14, 
Herpich+14, Kannan+14, Obreja+14 etc) 

Possible Solutionà baryonic physics    
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       MaGICC/NIHAO Hydro simulations 

Stinson+13, Brook+12 
GASOLINE N-body + SPH code Wadsley 04 
SN feedback with blastwave formalism Stinson+06 
Early-stellar feedback from massive stars 
 

Credit: Dominguez-Tenreiro, Obreja+13 

MaGICC 

Credit: Sawala +10 
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Brook +12 

Stinson+06,+13 
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Feedback from Sne and massive stars 
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Credit:Greg Stinson 
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See also 
Navarro +96, 
Mashchenko +08, 
Read & Gilmore 05 
Governato+12, 
PG 12 

Credit: Pontzen & Governato 14 
 

Di Cintio +14a 
 

/  Paris 

Core creation mechanism 
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PG 14 Nature 



Inner slope dependence on M⋆/Mhalo 

Dark matter profiles determined by two opposite effects: energy from Sne vs 
underlying gravitational potential  of  the DM halo 

Di Cintio+14a /  Paris 30/05/2017 

Peak in core 
formation for  
galaxies of 
M*~10^8.5 
Msun 



Peak in CORE formation efficiency 

Energy balance between SNe energy and 
potential energy of  NFW halo.  
Flattest profiles expected at M*~10 8.5 M ⊙ 
 

Brook & Di Cintio2015a see also Peñarrubia+12 
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Tollet+15 

Chan+15 
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NIHAO galaxies, Maccio’ et al 

FIRE galaxies, Hopkins et al  

Result confirmed with other sims/feedback 
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MORIA galaxies, Verbeke et al  



A double power law profile 

γ inner slope 
β outer slope 

α sharpness of  transition 
Constrained via M*/Mhalo 

Cores! slowly rising RCs 
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 Mass dependent DM profile  

1																									10																							100	 1																									10																							100	
Radius   (kpc)                                   Radius (kpc)   

M*=7.2e5Msun M*=2.5e8Msun 

M*=6.3e9Msun M*=2.4e10Msun 

α = 1.00
β = 3.00
γ = 1.04

α = 2.91
β = 2.50
γ = 0.29

α = 1.00
β = 3.10
γ = 1.00

α = 2.24
β = 2.64
γ = 0.69
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Fit full RCs with NFW and DC14 profile 
Katz,	Lelli,	Mc	Gaugh,	Di	Cintio,	Brook,	Schombert		2017	
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SPARC dataset 
Lelli+16 
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Recover M*-Mhalo, c-M, RCs  
for the DC14 profile 
Katz,	Lelli,	Mc	Gaugh,	Di	Cintio,	Brook,	Schombert		2017	
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Mhalo Mhalo 

C
 



Diversity of RC shapes explained by cores 
Santos-Santos,	Di	Cintio	et	al	2017	submitted	
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For DM cores not be “real’, there must be some conspiracy for which observational errors mimic the presence 
of a DM core exactly in the range where we expect DM cores from theoretical models.  
 



Diversity of RC shapes explained by cores 
Santos-Santos,	Di	Cintio	et	al	2017	submitted	

	

/  Paris 30/05/2017 

For DM cores not be “real’, there must be some conspiracy for which observational errors mimic the presence 
of a DM core exactly in the range where we expect DM cores from theoretical models.  
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Take a distribution of haloes.                                                        Mhalo           
Assign a stellar mass using abundance matching relations.        M* 
Assume 2 density profiles for DM haloes : NFW and DC14         ρ(r)

 
C 
MHI 
Reff 
Mbulge 
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Include scatter in the  
Various relations 
 
 
 
Obtain a very good  
Match of observed  
And modeled  galaxies 
 
 
 
Let’s now compute  
the MDAR 

Di Cintio & Lelli 15 
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NFW can not explain this region of 
 the observed MDAR => CORED 
galaxies 

Di Cintio & Lelli 15 
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By rank ordering DM haloes (abundance matching technique), 
                        we get the correct BTFR for free -> success of 

LCDM model 
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Result derived with semi-empirical model, was already found in  
Hydro simulations that produce DM cores! 
 

MaGICC galaxies, produce cores 
at a mass range M*~10^8-9Msun 
=> Well described by DC14 profile 

CLUES galaxies, They all have a 
NFW profile 

Santos-Santos+15 
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Result derived with semi-empirical model, was already found in  
Hydro simulations that produce DM cores! 
 

Santos-Santos+15 
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Can we explain the MDAR(i.e. the acceleration profiles of Galaxies)   
without DM cores?...not really.. gtot CAN be < 10-11 

 
 
 
 
 

Navarro+17 

NFW model 
+ SPARC data 
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Santos-Santos+15 

Can we explain the the acceleration profiles of Galaxies   with DM cores? 
Much better! 
 
 
 
 
 

DC14 model 
+ SPARC data 
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Santos-Santos+15 

Can we explain the the acceleration profiles of Galaxies   with DM cores? 
Much better! 
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DC14 model  
+ IC2574 
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Thoughts on MDAR (RAR): 
 
 
"  We can reproduce its normalization and slope in LCDM 

simulations -> just by assuming a M*-Mhalo and a Rdisk-M*  
    relation 

"  We need to form DM cores in order to recover the MDAR of  
    (some) dwarf galaxy, and their acceleration profile 

"  The scatter is not well defined at low g: there may still be 
observational bias, and the scatter could increase significantly at 
low accelerations (once we include UGDs, for instance) 

/  Paris 



Alternative DM models: WDM 

Schneider +15 

To solve  the TBTF problem with WDM we need to 
create cores of  ~Kpc size, which requires a thermal 
candidate with a mass below 0.1 keV, ruled out by 
all large scale structure constraints (see 
Schneider+15, Maccio’+15) 
 
 
 

TBTF in Warm Dark Matter 
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Alternative DM: WDM+baryons 

Central DM density more affected by baryonic physics than WDM physics! 
Same Vcirc distribution in CDM and WDM that solves TBTF 
 

Governato +15 

M*=106-7Msun 
Mhalo=1010Msun  
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Alternative DM: SIDM+baryons 

SF and resulting feedback dominates over SI: dm inner slope, SFH, star and 
gas content are indistinguishable between CDM and SIDM+baryons 

Bastidas-Fry, Governato +15 
/  Paris 

σ=2cm2/g 
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SIDM+baryons in massive galaxies 

DC+17 

σ/m=10 cm2/g => density profile in MW like galaxies is shallower than NFW  



Observational Predictions on HI content.. 
 

The largest isolated 
UDGs should contain 
more HI gas, have a 
larger baryon fraction 
and a more extended 
and bursty SFH than 
less extended dwarfs of 
similar M⋆  
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 UDGs could be the 
dark galaxies of the 
ALFALFA survey 

Di Cintio +17a 
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..confirmed by latest data 
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Leisman+17 

ALFALFA  Dark Galaxies -> Isolated HI 
sources bearing UDGs 

Papastergis+17 

Effelsberg RT 
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•  Baryonic feedback – SNae driven gas outflows - can modify both 
the DM and the stellar distribution within galaxies : DM core 
creation is most efficient in the range M*~10^7-9 Msun 

•  Mass-dependent DM cores in LCDM can self-consistently explain: 

Rotation Curve of galaxies 
MDAR  relation 
 
Emergence of Ultra-Diffuse Galaxies  
Recover M*-Mhalo relation 
Velocity Function in the Local Volume 
Scatter in RC shapes of dwarf galaxies 
Tully-Fisher and BTF relation 
Kinematic of MW-M31 Satellites (TBTF problem) 

•  How does this picture change if the underlying DM model is 
different (WDM, SIDM) ? Importance of include baryonic physics! 
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Conclusions 



Thank you! 

 

Grazie! 
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