

## LCDM and MDAR in the light of cusp-core transformation. Is there a need for alternative DM models?

Arianna Di Cintio

Collaborators: C. B. Brook, A. V. Macciò, A. A. Dutton, I. Santos-Santos, A. Pontzen, F. Governato, M.Tremmel, J. Zavala, A. Knebe, N. Libeskind, G. S. Stinson, H. Katz, F.Lelli



- The  $\Lambda$ CDM small scale crisis
- Possible Solution: CDM +baryonic physics
- Cusp-cores and MDAR (RAR)
- Alternative DM models

## **Galaxy Formation in one slide**



Cradit:NASA-WMAP science team

## **Composition of the Universe**



## Studying galaxy formation requires numerical simulations



Credit: A.Kravtsov, A. Klypin

## Structure formation depends on DM type

**LCDM is the standard cosmological model** of structure formation , based on weakly Interacting massive particles (WIMPS), a.k.a. Cold dark matter (CDM)



## The LCDM small scale crisis

Missing satellite problem

Diversity of RC in dwarf galaxies

Mass discrepancy acceleration relation

Cusp-core discrepancy → rotation curves of galaxies

Large size of Ultra-Diffuse galaxies

**Velocity function of galaxies** 

**Kinematic of satellite galaxies (TBTF problem)** 

## The LCDM small scale crisis



## **CUSP-CORE** discrepancy

#### Springel+05

Oh+11



Simulations find 'CUSPY' profiles Inner slope  $\gamma \ge 1$  NFW Observations show 'CORED' profiles Inner slope  $\gamma < 1$ 

# **Possible Solution** $\rightarrow$ baryonic physics

Hydrodynamical simulations of galaxies including DM + GAS + STARS

## MaGICC/NIHAO project

(Stinson13,Brook12,Stinson13,Di Cintio17,Wang+15,Brook+12b, Maccio'+12, Penzo+14, Herpich+14, Kannan+14, Obreja+14 etc)

Star Formation and Feedback (Stinson et al. 2006 for details) with GASOLINE (Wadlsey et al 04)

- •A local Schmidt Law is assumed
- O and Fe yields from SN I & II
- Kroupa IMF
- Mass/metals loss from stellar winds included.
- •Star Particles formed from cold, dense gas
- •Uniform, time-dependent cosmic UV bg from Haardt & Madau

## Supernovae Feedback with Blastwave model

## MaGICC/NIHAO Hydro simulations

## Making Galaxies In a Cosmological Context The MaGICC project

Stinson+13, Brook+12 GASOLINE N-body + SPH code Wadsley 04 SN feedback with blastwave formalism Stinson+06 Early-stellar feedback from massive stars



Credit: Dominguez-Tenreiro, Obreja+13

# Feedback from Sne and massive stars

Stinson+06,+13



Brook +12

#### 0.4 Gyr Credit:Greg Stinson

## **Core creation mechanism**



## Inner slope dependence on $M_{\star}/M_{halo}$



Peak in core formation for galaxies of M\*~10^8.5 Msun

Dark matter profiles determined by two opposite effects: energy from Sne vs underlying gravitational potential of the DM halo

# **Peak in CORE formation efficiency**

$$\frac{E_{SN}}{W} = \frac{M^*(<1Kpc) \times f_{SN}/\bar{m} \times 10^{51}erg \times \epsilon}{-4\pi G \int_0^{rvir} \rho(r)M(r)rdr}$$
Energy balance between SNe energy and potential energy of NFW halo.  
Flattest profiles expected at M<sub>\*</sub>~10<sup>8.5</sup> M

Brook & Di Cintio2015a

see also Peñarrubia+12

## **Result confirmed with other sims/feedback**



## A double power law profile

$$\rho(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)^{\gamma} \left[1 + \left(\frac{r}{r_s}\right)^{\alpha}\right]^{(\beta - \gamma)/\alpha}}$$

 $\gamma$  inner slope  $\beta$  outer slope

 $\alpha$  sharpness of transition Constrained via M\*/M<sub>halo</sub>





## Mass dependent DM profile



## Fit full RCs with NFW and DC14 profile

Katz, Lelli, Mc Gaugh, Di Cintio, Brook, Schombert 2017



## **Recover M\*-M**<sub>halo</sub>, c-M, RCs for the DC14 profile

Katz, Lelli, Mc Gaugh, Di Cintio, Brook, Schombert 2017



## Diversity of RC shapes explained by cores

![](_page_21_Figure_1.jpeg)

For DM cores not be "real', there must be some conspiracy for which observational errors mimic the presence of a DM core exactly in the range where we expect DM cores from theoretical models.

## Diversity of RC shapes explained by cores

Santos-Santos, Di Cintio et al 2017 submitted

![](_page_22_Figure_2.jpeg)

## The mass discrepancy acceleration relation in a $\Lambda$ CDM context

Arianna Di Cintio<sup>1</sup>\* & Federico Lelli<sup>2</sup>

<sup>1</sup>Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark <sup>2</sup>Astronomy Department, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA

Accepted 2015 November 19. Received 2015 November 19; in original form 2015 October 23

Take a distribution of haloes.

Assign a stellar mass using abundance matching relations. Assume 2 density profiles for DM haloes : NFW and DC14 Mhalo M\* ρ(r)

 $\log_{10}(c_{200}) = 0.905 - 0.101 \log_{10}(M_{200} / [10^{12} h^{-1} M_{\odot}])$ 

 $\log_{10}(M_{\rm HI}/M^{\star}) = -0.43\log_{10}(M^{\star}) + 3.75$ 

$$\mathrm{R_{eff}} = 0.13 \mathrm{(M^{\star})^{0.14}} (1.0 + \frac{\mathrm{M^{\star}}}{14.03 \times 10^{10} \mathrm{M_{\odot}}})^{0.77}$$

$$M_{\rm bulge}/M^{\star} = (\log_{10}(M^{\star}) - 9.5)/4.2$$

C MHI Reff Mbulge

# Include scatter in the Various relations

## Obtain a very good Match of observed And modeled galaxies

# Let's now compute the MDAR

![](_page_24_Figure_3.jpeg)

Di Cintio & Lelli 15

$$V_{\rm obs}^2(r)/V_{\rm bar}^2(r)=M_{\rm tot}(r)/M_{\rm bar}(r)$$

$$g_{\text{bar}}=V_{\text{bar}}^2(r)/r$$

$$V_{
m disk}^2(r) = rac{{
m GM}_{
m disk}}{{
m R}_{
m disk}} 2y^2 [{
m I}_0(y){
m K}_0(y) - {
m I}_1(y){
m K}_1(y)]$$

 $V_{tot}^{2}(\mathbf{r}) = V_{disk,g}^{2}(\mathbf{r}) + V_{disk,\star}^{2}(\mathbf{r}) + V_{bulge}^{2}(\mathbf{r}) + V_{DM}^{2}(\mathbf{r}) \quad (6)$ where V<sub>DM</sub> has been multiplied by a factor  $\sqrt{1 - f_b} = \sqrt{0.842}$ 

![](_page_25_Figure_4.jpeg)

### Di Cintio & Lelli 15

![](_page_26_Figure_0.jpeg)

## By rank ordering DM haloes (abundance matching technique), we get the correct BTFR for free -> success of LCDM model

![](_page_27_Figure_1.jpeg)

### Di Cintio & Lelli 15

# Result derived with semi-empirical model, was already found in Hydro simulations that produce DM cores!

![](_page_28_Figure_1.jpeg)

MaGICC galaxies, produce cores at a mass range M\*~10^8-9Msun => Well described by DC14 profile

![](_page_28_Figure_3.jpeg)

## CLUES galaxies, They all have a NFW profile

Santos-Santos+15

Result derived with semi-empirical model, was already found in Hydro simulations that produce DM cores!

![](_page_29_Figure_1.jpeg)

### Santos-Santos+15

Can we explain the MDAR(i.e. the acceleration profiles of Galaxies) without DM cores?...not really.. gtot CAN be  $< 10^{-11}$ 

![](_page_30_Figure_1.jpeg)

30/05/2017 / Paris

R[kpc]

# Can we explain the the acceleration profiles of Galaxies with DM cores? Much better!

![](_page_31_Figure_1.jpeg)

# Can we explain the the acceleration profiles of Galaxies with DM cores? Much better!

![](_page_32_Figure_1.jpeg)

## Thoughts on MDAR (RAR):

- We can reproduce its normalization and slope in LCDM simulations -> just by assuming a M\*-Mhalo and a Rdisk-M\* relation
- We need to form DM cores in order to recover the MDAR of (some) dwarf galaxy, and their acceleration profile
- The scatter is not well defined at low g: there may still be observational bias, and the scatter could increase significantly at low accelerations (once we include UGDs, for instance)

# Alternative DM models: WDM

### TBTF in Warm Dark Matter

Schneider +15

![](_page_34_Figure_3.jpeg)

To solve the TBTF problem with WDM we need to create cores of ~Kpc size, which requires a thermal candidate with a mass below 0.1 keV, ruled out by all large scale structure constraints (see Schneider+15, Maccio'+15)

# Alternative DM: WDM+baryons

Central DM density more affected by baryonic physics than WDM physics→ Same Vcirc distribution in CDM and WDM that solves TBTF

![](_page_35_Figure_2.jpeg)

# Alternative DM: SIDM+baryons

$$\rho v \sim 1/(t\sigma)$$

SF and resulting feedback dominates over SI: dm inner slope, SFH, star and gas content are indistinguishable between CDM and SIDM+baryons

![](_page_36_Figure_3.jpeg)

## **SIDM+baryons in massive galaxies**

 $\sigma/m=10 \text{ cm}^2/g => \text{ density profile in MW like galaxies is shallower than NFW}$ 

![](_page_37_Figure_2.jpeg)

## **Observational Predictions on HI content..**

The largest isolated UDGs should contain more HI gas, have a larger baryon fraction and a more extended and *bursty* SFH than less extended dwarfs of similar M\*

UDGs could be the *dark galaxies* of the ALFALFA survey

## Di Cintio +17a

![](_page_38_Figure_4.jpeg)

## .. confirmed by latest data

![](_page_39_Figure_1.jpeg)

![](_page_40_Picture_0.jpeg)

- Baryonic feedback SNae driven gas outflows can modify both the DM and the stellar distribution within galaxies : DM core creation is most efficient in the range M\*~10^7-9 Msun
- Mass-dependent DM cores in LCDM can self-consistently explain:

## Rotation Curve of galaxies MDAR relation

Emergence of Ultra-Diffuse Galaxies Recover M\*-Mhalo relation Velocity Function in the Local Volume Scatter in RC shapes of dwarf galaxies Tully-Fisher and BTF relation Kinematic of MW-M31 Satellites (TBTF problem)

• How does this picture change if the underlying DM model is different (WDM, SIDM) ? Importance of include baryonic physics!

# Thank you!

**Grazie!**