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Original Motivation: 
increase self-annihilation signals
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Figure 8: Local density enhancement in DDDM, as a function of disk scale height zd, in a square region
around the GC fixing ✏ = 0.05 that DDDM is 5% of the total DM density. Red: region within b ⇢
(�1

�, 1�), l ⇢ (�1

�, 1�). Green: region within b ⇢ (�0.1�, 0.1�), l ⇢ (�0.1�, 0.1�) (current Fermi-LAT
angular resolution). Black: region within b ⇢ (�0.01

�, 0.01

�
), l ⇢ (�0.01

�, 0.01

�
).

Figure 9: Sky maps of the photon flux shape in arbitrary units for different DM profiles. Upper: Normal
DM with an Einasto profile. Middle: DDDM in a disk aligned with our disk. Lower: DDDM in a disk
misaligned with our disk by 18�. The DDDM images have disk scale height zd = 100 pc.

Throughout this discussion we have assumed that the DDDM disk and the ordinary dark matter
are centered on the same location. The Fermi 130 GeV line is arguably off center [76,77], which has
provoked some debate, with numerical simulations showing that dark matter may be displaced from
the galactic center [106] and others arguing that tidal disruption prohibits such a displacement [107].
It would be interesting to explore the similar question of whether the DDDM disk and the baryonic
disk can be centered on different locations.
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misaligned with our disk by 18�. The DDDM images have disk scale height zd = 100 pc.

Throughout this discussion we have assumed that the DDDM disk and the ordinary dark matter
are centered on the same location. The Fermi 130 GeV line is arguably off center [76,77], which has
provoked some debate, with numerical simulations showing that dark matter may be displaced from
the galactic center [106] and others arguing that tidal disruption prohibits such a displacement [107].
It would be interesting to explore the similar question of whether the DDDM disk and the baryonic
disk can be centered on different locations.
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Dissipative Dark Matter
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Fan, Katz, Randall, Reece: 1303.1521 
Double Disk Dark Matter

Dark Matter is made out of two sectors

~95%: CDM ~5% Dissipative : 

The usual story…



Making it Dissipative
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Both X and C are charged under an unbroken U(1): 
Dark Photon
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Since they have opposite charges, they form a 
hydrogen-like bound state:
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There is also a dark CMB (dCMB) with its own 
temperature



Dissipation
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Cooling Down
Since the Dark Photon is massless, C and X can 
dissipate, i.e. cool. The cooling rate can be fast:

J. Fan et al. / Physics of the Dark Universe 2 (2013) 139–156 145 
For DM charged under an unbroken U(1) D , there is indeed an en- 

hancement, the Sommerfeld enhancement, 
S = 2 παD Q 2 D /v 

1 − e −2 παD Q 2 D /v , (20) 
where v is the DM velocity. However for αD Q 2 D ≤ 0 . 1 and v ≈ 10 −3 , 
S ≤ 1000. If one fixes the DM thermal relic Ωh 2 to be 0.11, αD Q 2 D ≈
3 × 10 −3 , S ≈ 20. Thus Sommerfeld enhancement itself is not sufficient 
enough to get the desired annihilation cross section. 

In what follows, we will see that enhanced density from DDDM 
could be sufficient to generate such a large boost factor. Of course the 
precise value for the boost will depend on the precise parameters of 
the dark matter candidate (and some as-yet-unknown astrophysics) 
as we discuss below. 
5. Cooling 

The enhanced signals we discuss arise as the result of the interact- 
ing component of dark matter collapsing into a disk. We now consider 
when and how this can occur. This is equivalent to the question of 
when cooling is sufficiently quick to allow for collapse, so we now 
investigate the question of how interacting dark matter can cool. 

The cooling has many features in common with ordinary baryonic 
matter. DDDM first adiabatically cools through the expansion of the 
universe. As with baryons during the formation of a galaxy, the in- 
teracting dark matter will already be present (in the primordial over- 
dense region that seeds an early galaxy halo or in progenitor halos that 
merge into a larger galaxy) and will also accrete onto the galaxy from 
the intergalactic medium. After virialization through shock heating, 
baryons cool from different processes: atomic and molecular inter- 
actions, Compton cooling, and bremsstrahlung radiation. All of these 
require light electrons in order to have a sufficiently rapid rate. 

The same mechanisms will be required for DDDM: cooling occurs 
sufficiently rapidly only when a light particle is present that also 
interacts under the dark U(1) (or more generally, whatever force is 
relevant). Therefore at the time of the initial accretion, part of the 
DDDM might be bound into atomic-like states of heavy and light dark 
matter. As discussed in the previous section, for instance, the simplest 
model is an asymmetric population of X and C , which like ordinary 
hydrogen can form bound states in the early universe with some 
residual ionization (as calculated carefully in [ 7 ]). A relic population 
of X and X may also survive, so the initial conditions will involve 
a mix of dark atoms and dark ions. However, as we will now see 
that shock heating will destroy any initially bound atoms, we can 
consider cooling in this section without determining the exact fraction 
of bound states in the very early universe. 

As dark atoms fall into the overdense region, their gravitational 
potential energy converts to kinetic energy. Initially they are quite 
cold, but when falling into the galactic center, particles slow down as 
they encounter other infalling particles, forming a shock wave which 
expands outward, containing pressure-supported gas inside [ 92 , 93 ]. 
This shock-heating process converts the kinetic energy of the DDDM 
gas to thermal energy at the virial temperature, 
T vir = G  N Mµ

5 R vir ≈ 8 . 6 keV M 
M gal 

DM µ

100 GeV 110 kpc 
R vir . (21) 

where M stands for the mass of the virial cluster and µ= ρ/ n is 
the average mass of a particle in the DDDM gas. We have taken a 
fiducial value for the mass of dark matter in the Milky Way galaxy, 
M gal 

DM = 10 12 M ⊙. This is reasonable since the initial density pertur- 
bation induces gravitational collapse in the dominant dark matter 
component for which neither baryons nor the subdominant interact- 
ing dark matter should be very relevant. Note that for a virial cluster 
of the same mass and radius, DDDM will be much hotter than bary- 
onic matter, with a temperature enhanced by ∼m X / m p . The binding 

energy of the ground state of the dark atom is 
B XC ≡ α2 

D m C 
2 , (22) 

less than or of order the binding energy of ordinary hydrogen, so 
we expect T vir ≫ B XC . At these temperatures the DDDM in the virial 
cluster will be completely ionized, even if it had recombined into dark 
atoms or dark molecules before virialization. Hence we can start off 
thinking of free X and C particles. 

The same cooling processes that apply to baryons potentially ap- 
ply to DDDM. An ionized dark plasma in the virial cluster can be 
cooled through bremsstrahlung and Compton scattering off back- 
ground dark photons. Compton scattering is more efficient at larger 
redshift, when the dark photon background was hotter. Based on the 
results of Section 3.1 , we take the dark photon temperature to be 
T D ≈ 0.5 T CMB . (This is the temperature of the dark cosmic background 
photons, which is to be distinguished from the temperature of X and 
C particles in the galaxy, T vir .) The timescale of the bremsstrahlung 
cooling is 
t b re m ≈ 3 

16 n X + n C 
n X n C m C T vir 

α3 
D 

≈ 10 4 yr √ 
T vir 
K cm −3 

n C 
(

αE M 
αD 

)3 ( m C 
m e 

) 3 
2 
, (23) 

where in the second line, we assume n X = n C for simplicity. At the 
end of the section, we will relax this assumption. This time should be 
compared to the age of the universe in order to show that the cluster 
efficiently cools down. The timescale for cooling through Compton 
scattering is 
t C o mpto n ≈ 135 

64 π3 n X + n C 
n C m 3 C 

α2 
D (T 0 D ( 1 + z ) )4 

≈ 4 × 10 12 yr n X + n C 
n C 

(
αE M 
αD 

)2 ( 
2 K 

T 0 D ( 1 + z ) 
) 4 (

m C 
m e 

)3 
, (24) 

where T 0 D is the current dark CMB temperature and z is the redshift. In 
Fig. 4 at left, we show contours in the plane of m C and redshift along 
which the bremsstrahlung and Compton cooling rates are equal, for 
different choices of αD . Because the Milky Way galaxy was starting 
to form before z = 2, Compton cooling of DDDM would be impor- 
tant within the Milky Way at early times. Compton scattering could 
also be important for smaller αD and m C . We illustrate this in the 
right-hand plot of Fig. 4 , which shows the contours in the ( m C , αD ) 
plane along which the two rates are equal and along which the faster 
rate equals the age of the universe. As the dark photon background 
cooled, bremsstrahlung would have become increasingly important. 
We use the generic term t cool for whichever time scale is shorter: 
t cool = min ( t brem , t Compton ). 

In order to verify that bremsstrahlung or Compton scattering leads 
to cooling, we first make some consistency checks. The emitted dark 
photons must escape from the galaxy and carry away energy with- 
out being reabsorbed. The primary process by which a dark photon 
would interact is through scattering with a light C particle, so we can 
approximate the photon ’ s mean free path by 
ℓ = 1 

σT n C = 3 m 2 C 
8 πα2 

D n C ≈ 1 . 5 × 10 8 kpc , (25) 
where we have used the Thomson cross section for γ D –C scattering 
with αD = α, m C = m e , and m X = 100 GeV while assuming equal X and 
C number densities at ϵ = 0.05 and a virial radius of 110 kpc, namely 
n X = n C ≈ 3 . 3 × 10 −6 cm −3 ( 100 GeV 

m X 
)

. (26) 
The long mean free path shows that photons readily escape the galaxy 
at early times. Furthermore, because ℓ ∼ 10 6 R vir , photons will con- 
tinue to escape even if the initial DDDM distribution collapses by a 
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Cooling Down
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Figure 5: Cooling in the (mC ,↵D) plane. The purple shaded region is the allowed region that cools
adiabatically within the age of the universe. The light blue region cools, but with heavy and light particles
out of equilibrium. We take redshift z = 2 and TD = T

CMB

/2. The two plots on the left are for mX = 100

GeV; on the right, mX = 1 GeV. The upper plots are for a 110 kpc radius virial cluster; the lower plots,
a 20 kpc NFW virial cluster. The solid purple curves show where the cooling time equals the age of the
universe; they have a kink where Compton-dominated cooling (lower left) transitions to bremsstrahlung-
dominated cooling (upper right). The dashed blue curve delineates fast equipartition of heavy and light
particles. Below the dashed black curve, small ↵D leads to a thermal relic X, ¯X density in excess of the Oort
limit. To the upper right of the dashed green curve, BXC is high enough that dark atoms are not ionized
and bremsstrahlung and Compton cooling do not apply (but atomic processes might lead to cooling).
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Cooling Eventually Stops
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The Compton scattering and Bremsstrahlung 
effectively turn off when the gas recombines into 

neutral atoms:
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Saha Equation
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The Dark Disk
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• The scale radius of the disk is given by 
the angular momentum stored in the disk 
and so should be similar to the scale 
radius of the baryons.

• As the gas cools down, it forms a disk just 
like the baryons. The scale height of the 
disk is given by the velocity dispersion of 
the dark matter.



Gravitational Instabilities
The Toomre stability criterion determines the scales 
on which the density perturbations grow or oscillate:

13

harder to split. On the other hand, if this patch
becomes much bigger than the size of gravitational
instabilities we can separate the behavior into evolu-
tion of each gravitational instability and further in-
teraction of these instabilities. We will describe these
gravitational instabilities, clumps, in section 2.3. Ide-
ally a full simulation would model the gravitational
instabilities and the tidal disruption and determine
the characteristic scales for us. Our intention in this
paper is only to show that PIDM leads to a much
larger fraction of dark matter than the usual CDM
scenario.

A typical initial state has significantly more
baryons. About 10�20% of these would be bound ini-
tially because their initial velocity is smaller than the
escape velocity from the entire cloud. However, since
baryons have much higher spatial overlap with them-
selves than with the PIDM, a lot of these baryons
gain enough energy to become free. The PIDM par-
ticles on the other hand, start o↵ with lower velocity
and are furthermore less likely to interact with the
higher velocity baryons and hence do not evaporate
as much. Based on these simulations, we find this to
be the case, with the final dark matter mass often
exceeding that in the baryons by at least a factor of
10.

2.2 Progenitor Galaxies

Since the smaller progenitor galaxy (SPG) is more
likely to get tidally disrupted, we assume that the
patch that eventually forms the tidal dwarfs comes
from the SPG. In order to characterize this patch we
need to know the SPG’s surface density, its local den-
sity at the disrupted region and hence its scale radius,
the local orbital velocity that tells us both the stabi-
lizing angular momentum and which also contributes
to the total kinetic energy in the patch, as well as the
dispersion velocities for both the PIDM and for the
baryons. The dispersion velocity of the PIDM follows
from the model, as shown in section 1.1. The remain-
ing parameters can be estimated by rescaling the val-
ues from the Milky Way galaxy to the mass of the
smaller of the progenitors estimated by [5]. Hammer
et al. argue that Andromeda is a result of a merger
of two galaxies with mass ratio of about three, which
makes the SPG’s mass about M

Andromeda

/4. We use
the Tully-Fisher relationship L / v

4 and assume that
the mass to light ratio is similar to rescale the Milky
Way properties in order to determine the SPG prop-
erties similarly to what was done in [12].

By rescaling the mass and velocity according to the

Tully-Fisher relationship, we find the best estimate
for radial disk scale to be half that of the Milky Way,
or r

d

= 1.5kpc. Using the surface density at the
Sun’s location to normalize and applying the above
scale length yields at the center of the SPG ⌃

0

=
860M�/pc2 (which corresponds to 60M�/pc2 in the
solar neighborhood). The rotation curve flattens out
at R = 2kpc and reaches the asymptotic velocity v

0

⇠
165km/s.

Since the mass of Andromeda is uncertain, we also
redo our analysis assuming Andromeda is larger by a
factor of 1.5. In that case the mass of the SPG is that
of Milky Way rescaled by a factor of 1.5/4 = 0.375.
This means the SPG radial scale is r

d

= 1.84kpc and
the orbital velocity in the flat rotation curve goes to
v

0

⇠ 183km/s.

2.3 Clumps

As we argued in section 2.1, each patch consists of
one or more gravitational instabilities, clumps. Both
baryons and PIDM are subject to gravitational in-
stabilities that may cause clumping in the original
smooth distribution of matter within the disks. In
a uniform three dimensional distribution the crite-
rion for existence of gravitational instabilities is the
Jeans mass. The Toomre criterion is the analog of
the Jeans mass in a two dimensional system with an-
gular momentum, such as disks. The Toomre crite-
rion is a good indicator of the onset of instabilities
as it describes the time evolution of an amplitude of
a small density perturbation with a particular wave-
length. When !(k), the oscillation frequency of the
amplitude of a density perturbation with wavelength
k, gains a non-zero imaginary component, these den-
sity perturbations grow (and quickly violate the lin-
ear assumption used to derive this expression). The
expression for !(k) is simple:
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2 = !(k)2 < 0, (3)

where  =
p
2⌦ is the epicyclic frequency of the disk

(
p
2 corresponds to a flat rotation curve), � is the ve-

locity dispersion of the matter in the disk and ⌃(R)
is the local surface density of the disk. Notice that
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2 stabilizes the disk and so does large �

2. In
the first case, the disk is angular momentum sup-
ported and in the latter it is pressure supported. On
the other hand, the term proportional to G⌃ lowers
!

2 and induces instabilities, just as we would expect.
If the disk is unstable (!2(k) < 0 for some k) there

4

harder to split. On the other hand, if this patch
becomes much bigger than the size of gravitational
instabilities we can separate the behavior into evolu-
tion of each gravitational instability and further in-
teraction of these instabilities. We will describe these
gravitational instabilities, clumps, in section 2.3. Ide-
ally a full simulation would model the gravitational
instabilities and the tidal disruption and determine
the characteristic scales for us. Our intention in this
paper is only to show that PIDM leads to a much
larger fraction of dark matter than the usual CDM
scenario.

A typical initial state has significantly more
baryons. About 10�20% of these would be bound ini-
tially because their initial velocity is smaller than the
escape velocity from the entire cloud. However, since
baryons have much higher spatial overlap with them-
selves than with the PIDM, a lot of these baryons
gain enough energy to become free. The PIDM par-
ticles on the other hand, start o↵ with lower velocity
and are furthermore less likely to interact with the
higher velocity baryons and hence do not evaporate
as much. Based on these simulations, we find this to
be the case, with the final dark matter mass often
exceeding that in the baryons by at least a factor of
10.

2.2 Progenitor Galaxies

Since the smaller progenitor galaxy (SPG) is more
likely to get tidally disrupted, we assume that the
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from the SPG. In order to characterize this patch we
need to know the SPG’s surface density, its local den-
sity at the disrupted region and hence its scale radius,
the local orbital velocity that tells us both the stabi-
lizing angular momentum and which also contributes
to the total kinetic energy in the patch, as well as the
dispersion velocities for both the PIDM and for the
baryons. The dispersion velocity of the PIDM follows
from the model, as shown in section 1.1. The remain-
ing parameters can be estimated by rescaling the val-
ues from the Milky Way galaxy to the mass of the
smaller of the progenitors estimated by [5]. Hammer
et al. argue that Andromeda is a result of a merger
of two galaxies with mass ratio of about three, which
makes the SPG’s mass about M

Andromeda

/4. We use
the Tully-Fisher relationship L / v

4 and assume that
the mass to light ratio is similar to rescale the Milky
Way properties in order to determine the SPG prop-
erties similarly to what was done in [12].

By rescaling the mass and velocity according to the

Tully-Fisher relationship, we find the best estimate
for radial disk scale to be half that of the Milky Way,
or r

d

= 1.5kpc. Using the surface density at the
Sun’s location to normalize and applying the above
scale length yields at the center of the SPG ⌃

0

=
860M�/pc2 (which corresponds to 60M�/pc2 in the
solar neighborhood). The rotation curve flattens out
at R = 2kpc and reaches the asymptotic velocity v

0

⇠
165km/s.

Since the mass of Andromeda is uncertain, we also
redo our analysis assuming Andromeda is larger by a
factor of 1.5. In that case the mass of the SPG is that
of Milky Way rescaled by a factor of 1.5/4 = 0.375.
This means the SPG radial scale is r

d

= 1.84kpc and
the orbital velocity in the flat rotation curve goes to
v

0

⇠ 183km/s.

2.3 Clumps

As we argued in section 2.1, each patch consists of
one or more gravitational instabilities, clumps. Both
baryons and PIDM are subject to gravitational in-
stabilities that may cause clumping in the original
smooth distribution of matter within the disks. In
a uniform three dimensional distribution the crite-
rion for existence of gravitational instabilities is the
Jeans mass. The Toomre criterion is the analog of
the Jeans mass in a two dimensional system with an-
gular momentum, such as disks. The Toomre crite-
rion is a good indicator of the onset of instabilities
as it describes the time evolution of an amplitude of
a small density perturbation with a particular wave-
length. When !(k), the oscillation frequency of the
amplitude of a density perturbation with wavelength
k, gains a non-zero imaginary component, these den-
sity perturbations grow (and quickly violate the lin-
ear assumption used to derive this expression). The
expression for !(k) is simple:
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2 corresponds to a flat rotation curve), � is the ve-

locity dispersion of the matter in the disk and ⌃(R)
is the local surface density of the disk. Notice that
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2 stabilizes the disk and so does large �

2. In
the first case, the disk is angular momentum sup-
ported and in the latter it is pressure supported. On
the other hand, the term proportional to G⌃ lowers
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2 and induces instabilities, just as we would expect.
If the disk is unstable (!2(k) < 0 for some k) there
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Figure 2: Illustration of the Toomre Criterion with
parameters that correspond to local properties of
SPG at R = 4kpc. The red marked range of ks corre-
sponds to density perturbations that grow with time.
The largest and smallest k modes that exhibit grow-
ing behavior are marked k� and k
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, while the mode
that initially grows the fastest is marked k⇤.

are three wavenumbers of interest:
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k⇤ =
⇡G⌃

�

2

(6)

Whereas k

+

and k� correspond to the smallest and
largest unstable regions (for which !(k±) = 0), re-
spectively, k⇤ is the wavenumber of the least sta-
ble perturbation (!2(k⇤) = min(!2) < 0). Figure 2
shows the di↵erent k-numbers of interest.

Notice that 2/k⇤ is equal to the characteristic scale
height of the disk h

D

(under the assumption � =
�

r

= �

z

). This means that the most unstable region
is essentially the same as the region for which the
three-dimensional Jeans instability applies. However,
we will focus here not on the most unstable but on
the largest unstable region of the dark disk.

In our model the velocity dispersion is purely ther-
mal and the PIDM cools down to a temperature of
order T ⇠ B/20 = ↵

2

D

m

C

/40, (B is the binding en-
ergy of the dark hydrogen). As a result the velocity
dispersion obeys a simple relation:

� =
↵

D

cp
40

r
m

C

m

X

(7)

The velocity dispersion � determines the scale height

of the disk h

D

:

h

D

=
�

2

⇡G⌃
dm

=
↵

2

D

c

2

40⇡G⌃
dm

m

C

m

X

, (8)

and therefore we can, and will, treat h

D

as a free
parameter in our study.

In our N-body simulations we set the size of the
patch pulled out of the SPG to be of the same order
as the size of the largest unstable region in the dark
disk. This is a self-consistent approach because all the
particles from a particular clump that might end up
in the same gravitationally bound object are included
in the simulation. However, since we do not know the
exact size of the patch that gets pulled out, we treat
x as a free parameter and show results for a range of
x’s.

2.4 Simulation

How much of the matter that gets lifted out of the
disk remains bound in the tidal stream and how much
of the matter flows out? The answer depends on
the kinetic energy of the material that is pulled out.
Because baryons under our dark disk assumption
have bigger velocity than the dark matter particles,
baryons evaporate out of the region at a higher rate
than the dark matter. Even many of those baryons
on the low velocity tail that initially had low enough
velocity to be bound will be removed by their in-
teractions with other energetic baryons, which will
kick them out of the bound system. So even though
baryons dominate the initial tidally produced clump,
dark matter can dominate in the end. However, it is
subtle to calculate the values in this complicated dy-
namical system where energy is exchanged between
baryons and dark matter so we choose to do a crude
dynamical simulation to evaluate what will occur.

In order to determine how many particles of each
type stay bound to the patch that has been pulled out
by tidal forces we perform a series of N-body simu-
lations. We replace the original smooth density dis-
tribution of matter by N particles that are modeled
by Plummer spheres (defined in appendix A) with
smoothing length ✏ of the same order as the initial
interparticle spacing. We numerically integrate the
equations of motion of these particles with a leapfrog
algorithm, as defined in appendix B. We chose the
leapfrog algorithm for its relative simplicity and high
degree of energy conservation, which is important be-
cause our analysis depends on determining the fi-
nal distributions of binding energies of these parti-
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Partially Interacting DM

Since only ~5% of DM is dissipative, then from the 
SIDM perspective, this is unconstrained: 

i. Ellipticity of halos 

ii. Subhalo evaporation 

iii. Cluster Collisions 

iv. …
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Relativistic Degrees of 
Freedom

16

particles, leading to gdec

⇤s,D = 2+

7

8

⇥4 = 5.5. It is also interesting to consider the generalization to an
SU(N) dark sector with C in the fundamental representation, for which gdec

⇤s,D(N) = 2

�
N2 � 1

�
+

7

2

N .
In the visible sector, at the time of BBN we take gBBN

⇤s,D = 10.75, while we expect the dark sector
degrees of freedom to be unchanged. This leads to

⇠(t
BBN

) =

✓
10.75

86.25

◆
1/3

⇡ 0.5. (9)

The number of additional effective neutrino species is determined by g⇤s,D⇠4

(t
BBN

) =

7

8

⇥2⇥�NBBN

e↵,⌫ ,
leading to:

�NBBN

e↵,⌫ = 0.20 for U(1)D and

�NBBN

e↵,⌫ = 0.07N2

+ 0.12N � 0.07 for SU(N)D. (10)

Numerically, �NBBN

e↵,⌫ is 0.46 in the SU(2)D model, 0.94 in the SU(3)D model, and 1.56 in the
SU(4)D model. Ref. [52] derives a conservative bound on extra-degrees of freedom during BBN,

�NBBN

e↵,⌫ < 1.44 at 95% C.L., (11)

so the U(1)D model is easily safe. The SU(N)D model satisfies the bound for N  4, with N = 4

barely outside the 95% confidence region but easily inside if we assume decoupling at temperatures
above the top quark mass when gdec

⇤s,vis

= 106.75. For an alternative point of view, we can relax
our assumption about the decoupling temperature and ask: for what value of gdec

⇤s,vis

is the BBN
constraint saturated? It turns out that as long as

gdec

⇤s,vis

> 19.3 (12)

the bound is satisfied for the abelian model. This is the number of degrees of freedom when
T dec

vis

⇡ 200 MeV.
An equally significant bound on the number of radiation degrees of freedom comes from the

CMB. A recent analysis of nine years of WMAP data [53] combined with the terrestrial experiments
SPT [54] and ACT [55] and baryonic acoustic oscillations constrains �NCMB

⌫ < 1.6 at 95% C.L.
Very recently, the Planck Collaboration has published a stronger bound [56]:

�NCMB

⌫ < 1.0 at 95% C.L., (13)

using the “Planck+WP+highL+H
0

+BAO” result in which the Hubble scale floats in the fit. At
the time of last scattering in the visible sector, we have gCMB

⇤s,vis

= 3.36 (from photons and the colder
neutrinos) and gCMB

⇤s,D = 2 (from dark photons) or 2(N2 � 1) (in the nonabelian case). At this time
the temperature ratio is

⇠ =

✓
5.5

2

⇥ 3.36

86.25

◆
1/3

⇡ 0.5 for U(1)D,

⇠ =

 
2

�
N2 � 1

�
+

7

2

N

2 (N2 � 1)

⇥ 3.36

86.25

!
1/3

for SU(N)D, (14)

Robustly, if the two sectors are in thermal equilibrium near the weak scale, we expect the dark
photon temperature to be around half the visible photon temperature. Alternative cosmologies, for

8

Assuming thermal 
decoupling at the 

weak scale

instance with decoupling at much higher temperatures below which many new visible-sector degrees
of freedom exist, could allow much smaller ⇠, but we will generally take ⇠ ⇡ 0.5 throughout the
paper.

The temperature of dark recombination (formation of dark atoms from X and C ions) is about
a factor of ten below the binding energy BXC ⇠ ↵2

DmC . Large ↵D suppresses the thermal relic
abundance of X, ¯X and larger mC prevents efficient cooling, as we will see in Section 5. Hence, we
favor parameter space at small BXC where recombination in the dark sector doesn’t happen until
after last scattering in the visible sector. This means that when the CMB is formed, dark photons
are interacting with the dark fluid of X and C particles, with a speed of sound slightly less than,
but of order, c/

p
3. Much as for ordinary baryons, there will be dark acoustic oscillations and other

effects from this nontrivial coupling of radiation to matter. Although not entirely correct since the
additional degrees of freedom in our model are not yet free streaming, we interpret the bound on
the number of effective neutrino species as a bound on free dark photons, ignoring the coupling to
the fluid. We expect that, because the sound speed is of order the speed of light, this will be a
good approximate guideline to whether the theory is allowed by the current data. It will be very
interesting to do a more careful analysis that can distinguish this scenario.

The number of additional effective neutrino species is determined by g⇤s,D⇠4

(t
CMB

) =

�
4

11

�
4/3 ⇥

7

8

⇥ 2 ⇥ �NCMB

e↵,⌫ , leading to:

�NCMB

e↵,⌫ = 0.22 for U(1)D,

�NCMB

e↵,⌫ = 4.4(N2 � 1)⇠4

for SU(N)D. (15)

Numerically, �NCMB

e↵,⌫ is 0.49 in the SU(2)D model, 0.91 in the SU(3)D model, and 1.45 in the
SU(4)D model, so the bound is satisfied for N < 4. In the abelian model, if we ask what value of
gdec

⇤s,vis

saturates the CMB bound, we find it is

gdec

⇤s,vis

> 28.1, (16)

a slightly tighter bound than we derived from BBN. Thus, the abelian model is allowed provided the
two sectors decoupled at temperatures above the QCD phase transition. The SU(N)D is allowed for
N  4, and predicts sizable deviations in the number of effective neutrino species. Further analysis
of Planck data in combination with other experiments may help to clarify the number of relativistic
species at the time of the CMB [57–59]. Improved measurements of �NCMB

e↵,⌫ will also come from
ACTpol [60] and SPTpol [61]. Finally, we note that related comments on the number of allowed
dark gauge bosons appeared recently in Ref. [62].

3.2 Relic Abundance of X and C

Having considered the relic radiation, we now consider the relic abundances of X and C. The thermal
relic abundance of particles charged under a hidden U(1)D has been discussed in Refs. [15–17].
Depending on whether the mediator particles coupling X to the Standard Model thermal bath are
heavier or lighter than X, the dark sector may be at precisely the same temperature as the SM
when X freezes out, or as we saw in the previous subsection it could have about half the Standard
Model temperature if the two sectors have decoupled. In Figure 1, we have plotted the curve in the
(mX ,↵D) plane which predicts ✏ = 0.05 for the thermal relic abundance of X and ¯X, assuming the
SM and the hidden sector are still at the same temperature at the time of X decoupling. The relic
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B. ⌃DAO + ⇠

In this section, we keep the fraction of interacting DM
fixed while letting ⇠ and log10(⌃DAO) vary, allowing to
determine how the constraint contours change as a func-
tion of the interacting DM fraction. As before, we fix
↵D = 0.05 and mD = 10 GeV. We show in Fig. 11
the marginalized constraints for three di↵erent values of
fint, using the dataset Planck+WP+High-l+BAO+Lens.
While we observe the constraints becoming progressively
weaker as fint is reduced, the di↵erence between the
fint = 50% and fint = 5% limits is surprisingly modest.
This indicates that our constraints are robust to changes
in the interaction DM fraction (for fint & 5%). It also
show that it matters little if fint = 5%, 50%, or 100% in
the ruled out regions: there, PIDM a↵ects the cosmolog-
ical observables in a way that is incompatible with the
current data and lowering the fraction of interacting DM
only slowly improves the fit. This is in agreement with
our discussion of sections III and IV where we showed
that shrinking the fraction of interacting DM does re-
duce the impact on the cosmological observables but at
the price of increasing the DAO scale and bringing it to
linear observable scales.

C. Varying the Dark Fine-structure Constant

In this section, we study the e↵ect of varying ↵D on
the cosmological limits on the ⇠ and ⌃DAO parameters.
We display the constraints on these two dark parameters
in Fig. 12 for three values of the dark fine-structure con-
stant. Here, we fix fint = 10% which yields constraints
representative of a broad range of interacting DM frac-
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FIG. 11: Marginalized constraints on ⇠ and ⌃DAO for three
fixed values of fint. We display the 68% and 95% confidence
regions for the dataset “Planck+WP+High-l+BAO+Lens”.
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FIG. 12: Marginalized constraints on ⇠ and ⌃DAO for three
fixed values of ↵D. Here, we have fixed fint = 10% and mD =
10 GeV. We display the 68% and 95% confidence regions for
the dataset “Planck+WP+High-l+BAO+Lens”.

tion (see previous section). For ⌃DAO > 10�2.5, we ob-
serve that the constraint on ⇠ is largely independent of
↵D, indicating that our limits are robust to changes in
the dark sector microphysics in that region of parame-
ter space. At smaller values of ⌃DAO, the constraints
become stronger as ↵D is reduced. This somewhat coun-
terintuitive result is a consequence of the definition of
⌃DAO: at fixed ⌃DAO, lowering ↵D leads to a smaller
values of the atomic binding energy, hence bringing dark
recombination and kinematic decoupling closer to the last
scattering surface of CMB photons and leading to a larger
e↵ects on the cosmological observables. From Fig. 12, we
observe that the main impact of varying ↵D is to modify
the shape of the ⇠ constraint in the transition region de-
limiting the parameter space where the limit is similar to
the Ne↵ bound (small ⌃DAO) and where it is dominated
by PIDM e↵ects (large ⌃DAO).

D. ⌃DAO + fint

In this section, we explore the constraints in the
fint � log10(⌃DAO) plane for fixed values of ⇠. This anal-
ysis allows to determine how much interacting DM is al-
lowed by the current data given an interaction strength
and a certain density of DR. We displays the constraints
in Fig. 13 for three values of ⇠. As in the bounds
presented in the previous subsections, there is a sharp
transition around ⌃DAO ⇠ 10�3 � 10�4 for which the
fraction of interacting DM goes from being largely un-
constrained to being tightly bounded withfint . 5%.
The exact constraint depends somewhat on the value of
⌃DAO, with larger values of the latter leading to smaller

4

DM models, the DAO scale divides the modes that are
strongly a↵ected by the DM interactions (through damp-
ing and oscillations) from those that behave mostly like
in the CDM paradigm. We note however that, in contrast
to warm DM models, the suppression of small-scale fluc-
tuations in the PIDM scenario is mostly due to acoustic
(also known as collisional) damping [47, 74], while resid-
ual free-streaming after kinematic decoupling can play a
minor role.

In the tight-coupling limit of the dark plasma, the

sound speed takes the form cD = 1/
q

3(1 +R�1
D ), where

RD ⌘ 4⇢�̃/3⇢int. Here, ⇢�̃ stands for the the energy
density of the DR. In a matter-radiation Universe, the
integral of Eq. 5 can be performed analytically

rDAO =
4⇠2

p
⌦�

3H0

p
fint⌦DM⌦m

⇥ (6)

ln

p
�int

p
⌦r + ⌦maD +

p
⌦m + �intaDp

�int⌦r +
p
⌦m

�
,

where we have defined

�int ⌘
3fint⌦DM

4⇠4⌦�
, (7)

aD is the scale factor at the epoch of atomic DM kine-
matic decoupling, and H0 is the present-day Hubble con-
stant. ⌦� , ⌦r, and ⌦m stand for the energy density in
photons, radiation (including neutrinos and DR), and
non-relativistic matter, respectively, all in units of the
critical density of the Universe. We observe that the
DAO scale depends most strongly on the ratio ⇠2/

p
fint

and that the details of the interacting DM microphysics
only enter through a logarithmic dependence on aD. The
scale factor at the epoch of dark decoupling can be es-
timated from the criterion nADMxD�T,D ' H, since
Thomson scattering is the dominant mechanism respon-
sible for the opacity of the dark plasma. Here, H is the
Hubble parameter. We give an expression for aD in terms
of the dark parameters in Appendix A.

The scale factor at the epoch of dark decoupling (and,
consequently, rDAO) is largely determined by the follow-
ing combination of parameters

⌃DAO ⌘ ↵D

✓
BD

eV

◆�1 ⇣ mD

GeV

⌘�1/6
. (8)

This quantity is directly proportional to the scattering
rate between DR and interacting DM. Its non-trivial de-
pendence on the dark parameters ↵D, BD, and mD is
caused by xD which itself depends on these dark pa-
rameters (see Appendix A). To give a sense of scale,
we note that for regular baryonic hydrogen we have
⌃BAO ' 5.4 ⇥ 10�4. We emphasize that, while the def-
inition given in Eq. 8 is very specific to the atomic DM
model considered, ⌃DAO is a simple proxy for the cross
section between DM and DR at the epoch of kinematic
decoupling (�DM�DR(aD)) over the DM mass. Explicitly,
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FIG. 1: Comoving DAO scale as a function of the parameter
⌃DAO for strongly-coupled atomic DM models (↵D > 0.025).
In the upper panel, we fix ⇠ = 0.5 and vary the fraction of
interacting DM. In the lower panel, we fix fint = 5% and let
⇠ vary. Here, take H0 = 69.57 km/s/Mpc, ⌦m = 0.3048,
⌦DMh2 = 0.1198, and Ne↵ = 3.046.

the relation between ⌃DAO and the DM-DR cross section
over the DM mass is

✓
�DM�DR(aD)

mD

◆
= 1.9⇥ 10�4

✓
⇠

0.5

◆✓
⌃DAO

10�3

◆

⇥
✓
fint⌦DMh2

0.12

◆�1
cm2

g
. (9)

It should be clear from the above expression that any con-
straints we put on ⇠ and ⌃DAO can be directly translated
to model-independent limits on the DM-DR cross section
over the DM mass2 at kinematic decoupling. In the re-
mainder of this work, we shall parametrize the strength of
the DM-DR interaction in terms of ⌃DAO but the reader
should keep in mind that our results can be translated to

2 We note that this cross section between DM and DR should not
be confused with DM self-interaction cross section relevant for
small-scale astrophysical objects.
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H0 = 69.57 km/s/Mpc, 109As = 2.21, ns = 0.969, and
⌧ = 0.092. In the following, we often compare our PIDM
observables with those from a standard ⇤CDM cosmol-
ogy with a “equivalent” number of neutrinos (denoted
⇤CDM+⌫) to ensure an identical cosmological expansion
history. This equivalent number of neutrinos is given by
Ne↵,equiv = 3.046 + (8/7)(11/4)4/3⇠4.

A. Galaxy Clustering

The matter power spectrum describing the clustering
of matter in the Universe depend on a variety of cos-
mological parameters, and for this reason it has been
used (together with its Fourier transform, the correla-
tion function) to set constraints on, among others, dark
energy parameters [79], models of gravity [80], neutrino
mass [81, 82], the growth of structures [83, 84], and non-
Gaussianity [85]. Since PIDM models can generally have
a large impact on the clustering of matter in the Uni-
verse, we expect that recent measurements of the galaxy
power spectrum and correlation function [79, 84, 86, 87]
can provide useful limits on scales where non-linearities
can be neglected3.

Similar to the baryon acoustic oscillation signature in
the galaxy correlation function of the standard ⇤CDM
model, the DAO feature appears as a local enhancement
of the correlation function at rDAO. While the location of
the DAO feature depends mostly on ⇠ = (TD/TCMB)|z=0,
fint, and ⌃DAO (it also depends somewhat on ↵D through
✏D, see Eq. A5), the shape on the DAO feature does de-
pend on the “microphysical” dark parameters such as ↵D,
mD, and BD, with the feature being generally sharper for
small values of ↵D. Moreover, since fluctuations on scales
smaller than the DAO scale are suppressed by acoustic
damping, the correlation function (and the matter power
spectrum) will generally be damped on small scales as
compared to a standard ⇤CDM cosmology without a
DAO feature. If it a↵ects the linear cosmological scales,
we expect this damping to play a major role in our con-
straints on PIDM.

We illustrate in Fig. 2 the predicted galaxy correlation
function for di↵erent PIDM models. We plot the galaxy
linear correlation function, that is computed from the
linear matter correlation as

⇠̃g(r) = b2⇠̃m(↵r) , (19)

where b is the galaxy bias and ↵ is the scale dilation
parameter compensating for the di↵erence between the
fiducial cosmology used to compute the correlation func-
tion from the data and the actual cosmology (see [89] for

3 Since PIDM models generally predict a di↵erent shape and am-
plitude for the small-scale power spectrum as compared to a
standard ⇤CDM model, one cannot use tools such as Halofit [88]
to model non-linearities.
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FIG. 2: Angle averaged galaxy correlation function ⇠̃0(r) for
di↵erent PIDM models. In the upper panel, we take fint =
5%, ⇠ = 0.5 and vary ⌃DAO and ↵D. In the lower panel,
we fix ⌃DAO = 10�3, ↵D = 0.01 and ⇠ = 0.5, but let the
fraction of interacting DM vary. We set the galaxy bias to
b = 2.2 and the dilation scale to ↵ = 1.016. We compare
theoretical predictions with BOSS-DR9 measurements from
Ref. [86], and we also show a standard ⇤CDM model with
an equivalent number of e↵ective neutrinos. In this work, we
focus uniquely on linear scales, which lie to the right of the
dashed vertical line on the plot.

more details). The matter correlation function is com-
puted from the linear matter power spectrum, Pm(k),
via the relation

⇠̃m(r) =

Z
k2

2⇡2
Pm(k) j0(kr) dk. (20)

In this work, we focus exclusively on the linear
cosmological scales (corresponding to comoving k 
0.12h/Mpc, see Section VC for more details). Never-
theless, we also plot in Fig. 2 the predictions for smaller
scales to highlight the considerable damping at small
scales for PIDM models. This shows how important it
would be, in order to further reduce the allowed param-
eter space, to be able to model the quasi-linear regime.
In the upper panel of Fig. 2, we vary ⌃DAO and ↵D

for a fixed fraction of interacting DM fint = 5%. In
all cases considered the DAO feature is clearly visible,



Is this allowed?
• Lisa & her student Eric Kramer worked out an analysis of the 

stellar and gas constraints of the dark disk [1604.01407]
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Fig. 9.— 68% and 95% bounds on DDDM parameter space using Φ(z) method.
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Is this allowed?
• Abandoning the static solution: [1604.01407]
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Fig. 10.— 68% and 95% bounds on DDDM parameter space using the non-equilibrium version of

the HF method for A stars only.
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Is this allowed?
• Using Gas [1603.03058]:

20

– 26 –

Fig. 6.— Confidence bounds as in Figure 4 but using the values of McKee et al. (2015). Left: Not

including magnetic field and cosmic ray contributions. Right: including magnetic field and cosmic

ray contributions as in Figure 5.
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DDDM and the death of 
dinosaurs

Crossing this disk might release periodic meteor strikes. 
With period of order the oscillation of the sun through the 
galactic disk ~ 35-60 million years.



Killing the dinosaurs

8

Figure 3. The figure shows the history of craters larger than 20 km in diameter over the past 250 My as a
probability density in age, as well as the predicted comet rate (in arbitrary units) assuming Solar oscillations
with a best fit dark disk surface density of ΣD = 9M⊙pc−2. Each blue spike represents a cratering shower.
The recent craters of Popigai (36 Mya) and Chicxulub (66 Mya) are separated by only 29 My. The figure
shows that the 50 My spent crossing the Carina / Sagittarius arm reduces the period for long enough to
account for this smaller interval.
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Figure 4. Plots of likelihood ratio vs. ΣD. The first plot on the left shows the effect of varying the
parameters of the interstellar gas disk between those of Kramer & Randall (2016b) and the right figure uses
those of McKee et al. (2015). The second plot shows the effect of varying the disk scale height relative to its
minimum size hmin(ΣD) under the stability bound of Shaviv (2016). The third plot and fourth plots show
the effect of varying the present height of the Sun, Z⊙ and its vertical velocity W⊙.
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Unified Models ?
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XC Dark Matter
• We tried to explain both CDM and Dissipative DM components in Dark 

Catalysis: [1702.05482] 
• Particle contents: 

X: heavy (1TeV), charged, mostly symmetric, majority of dark matter 
C: light (1MeV), charged, mostly asymmetric 
A’: Massless dark photon, no mixing with our photon 

• Dark Matter composition: 
95% :   
5%:     

• The X behave like a WIMP 
• The C behave like a coolant/catalyst (dissipation) 
• The C and X can form (XC) bound state, neutralizing the plasma and 

turning of some of the interactions to a degree.

X, X̄
X,C



95%: X, X̄



Ellipticity of DM 
halos

• We expect the DM halos to be triaxial with 
smallish ellipticity. Moreover, we have an 
observation (NGC 720) in which we see non-
zero ellipticity  of the gravitational potential at 
R=3kpc.[astro-ph/0205469] 

• We can think about ellipticity of a halo as 
determined by the difference between velocity 
dispersions in different directions. 

• The dark matter self-interactions tend to 
equalize the velocity dispersions and erase 
ellipticity.   

• We require that the DM self-interactions have 
not had enough time to randomize a typical 
particle velocity.

5

Fig. 2.— (Left panel) ϵx as a function of semi-major axis computed from the Chandra image with point source removed (circles and error
bars; blue). The (red) boxes are the values of ϵx obtained from the image which includes the point sources. The (green) dotted error bars
are the values obtained with the ROSAT HRI (Buote & Canizares 1996a) (Right panel) PA as a function of a computed from the Chandra
image with point sources removed (circles and error bars; blue). The (red) boxes are the values of ϵx obtained from the image which includes
the point sources. Note that because we use all image pixels interior to a to compute ϵx and PA, the values and the error bars for adjacent a
are not independent. We express a in kpc on the top axis.

Fig. 3.— (Left panel) ϵx as a function of semi-major axis computed from the source-free Chandra image (circles and error bars; blue). The
optical B-band ellipticity is indicated by the (green) dashed line (see §4.2). The values of ϵx expected for a model where the gravitating mass
follows the optical light is shown by the (red) squares; i.e., the oblate M ∝ L⋆ model mentioned in the text. (Right panel) PA as a function
of a computed from the source-free Chandra image (circles and error bars; blue). The optical B-band value (green) is also shown. We express
a in kpc on the top axis.

wildy with a then setlles down to ϵx ≈ 0.2 until it declines
for a ! 150′′. This erratic behavior is a stark constrast to
the slowly varying values of ϵx computed from the source-
free image. We interpret this result as a strong affirmation
of our success at removing and replacing the point sources
over this range in a for the purpose of computing ϵx.

The PA generally does not exhibit such dramatic varia-
tions with a in either case, though the PA values computed
from the image with sources (for the most part) systemati-
cally exceed those computed from the source-free image by
∼ 10◦. This relative similarity between the PAs computed
from the raw and source-free images coupled with the lack
of strong fluctuations with a suggest that PA is less sensi-
tive than is ϵx to contaminating point sources. However,
with the present data we cannot rule out the possibility
that PA is more sensitive than ϵx to contaminating point

sources and is therefore only slightly affected by our at-
tempt to exclude and replace the sources. Since the values
of ϵx and PA are necessarily interwined, and we are confi-
dent of the success in computing ϵx, we do not believe the
PA values computed from the source-free image are still
substantially affected by embedded point sources. Never-
theless, to be conservative we shall address below the need
for dark matter in NGC 720 using ϵx and PA separately.

Let us focus on the source-free image (Figure 3). As ex-
plained above in §3.1 the best-fitting values of ϵx and PA
computed within a " 30′′ must be considered tentative be-
cause of residual source-replacement errors. Nevertheless,
certain trends in these data appear to be robust. First,
for small a we have, ϵx ≈ 0.2 − 0.3, consistent with the
optical isophotes in this region within the relatively large
estimated errors. Second, the position angle is consistent

4

Fig. 1.— (Left) False-color ACIS-S3 image of NGC 720 in the 0.3-3 keV band. The image has been adaptively smoothed using the ciao task
csmooth with default parameters. No exposure-map correction or background subtraction has been applied. Contours are spaced according
to the square root of the intensity. (Right) Same image except the point sources have been removed. The contour levels are the same as the
original image. Each image is oriented so that celestial N is up and E is to the left.

because the area of the source becomes increasingly more
significant relative to r2. It is likely that at such small
radii the approach of simply filling in the source region
with a spatially uniform count distribution does not faith-
fully (enough) represent the shape the local diffuse emis-
sion. We defer consideration of more sophisticated source-
replacement algorithms to a future study. In our analyses
below we treat the region r ! 30′′ with caution.

As should be expected, residual source-replacement ef-
fects in these inner regions are much less important for the
radial profile. We shall therefore use the whole image for
construction and analysis of the radial profile.

3.2. ϵx and PA

3.2.1. Method

The flattening of the X-ray isophotes is of central im-
portance to our study of the flattening and concentration
of the total gravitating matter in NGC 720. The standard
parameter used to denote the flattening of an individual
isophote is the ellipticity, 1−b/a, where a is the semi-major
axis and b is the semi-minor axis. However, fitting perfect
ellipses to the X-ray isophotes is not necessarily justified
since the isopotential surfaces generated by an elliptical
mass distribution are not perfect ellipsoids. In addition,
over most of the X-ray image the surface brightness of the
diffuse gas is ! 1 counts per pixel. This condition requires
that relatively large areas (in excess of a single-pixel width
isophote) must be averaged over to obtain interesting con-
straints on the image flattening.

We quantify the image flattening using the method de-
scribed by Carter & Metcalfe (1980) and implemented in
our previous study of the ROSAT image of NGC 720 (e.g.
Buote & Canizares 1994). This iterative method is equiv-
alent to computing the (two-dimensional) principal mo-
ments of inertia within an elliptical region. The ellipticity,
ϵx, is defined by the square root of the ratio of the princi-
pal moments, and the position angle, PA, is defined by the
orientation of the larger principal moment. If these mo-
ments are computed within an elliptical region where the
image is perfectly elliptical with constant ellipticity and

orientation, then ϵx represents a true ellipticity and PA is
the true orientation of the major axis. If the image is not
perfectly elliptical within this region, then ϵx and PA are
average values weighted heavily toward the edge of the re-
gion; i.e., ϵx provides a useful measure of image flattening
which does not assume the image to be perfectly elliptical.

Following our previous studies we compute ϵx(a) using
all image pixels interior to the ellipse defined at a (obtained
via iteration). We did investigate using elliptical annuli to
provide a more direct measurement of the variation of ϵx
with a. Unfortunately, because of the low counts per pixel
noted above the radial fluctuations of ϵx, PA, and centroid
were considerably larger when using elliptical annuli.

We estimate uncertainties on ϵx and PA using a Monte
Carlo procedure. The counts in each pixel are randomized
assuming poisson statistics. Then ϵx and PA are computed
precisely as done for the original image. After performing
100 such realizations and corresponding “measurements”
of the image we compute the standard deviations of ϵx and
PA at each a for the 100 runs. We take these standard de-
viations to be the 1σ errors.

We have computed ϵx and PA out to a = 185′′ from
the Chandra image such that the background-subtracted
counts in each aperture increase by ≈ 500 for each a. (The
edge of the S3 chip corresponds to r ≈ 215′′.) Because we
use all image pixels interior to a to compute ϵx and PA,
their values computed for a given a are correlated with
values computed at adjacent inner a. This means that the
error bars on ϵx and PA for adjacent a are not fully inde-
pendent. But we emphasize that these quantities, being
derived from second moments of the image, are weighted
heavily by the pixels near a.

3.2.2. Results

In Figure 2 we show ϵx and PA computed from the Chan-

dra image before and after removing the point sources.
(Note the error bars for values computed from the image
with sources are not shown for clarity but are of similar
magnitude to those obtained from the source-free image.)
For the image with point sources, within a ! 80′′ ϵx varies



Time Scales
• Previous calculations use a typical 

time scale this happens in: 

• However, the form of the solution to 
the differential equation is not linear 
and this time scale is not a good 
estimate 

• We solve the full Boltzmann 
equation:
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Figure 1: Time evolution of the ellipticity as modeled by our simplified system in section 3.1.2 starting
from an ellipticity of order unity. The solid orange line shows the approximate linear evolution, similar
to the expansion performed in eq. (3.24). The solid blue curve illustrates the exact solution given in
eq. (3.23). The dashed vertical lines illustrate the time to reach an ellipticity of 0.1 in both cases. The
saturation e↵ect of the rate of isotropization as the halo becomes more isotropic is clearly visible in
the exact solution.
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Since the distribution is uniquely determined by v
c

, it is su�cient to look at the evolution of the
v
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= 0 bin. Since we are setting v
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With all the pieces ready, we can focus on the evolution of the v
1

= 0 bin. The Boltzmann eq. (3.13)
tells us (using cos ✓0 = x):
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⌧1 = E/Ė

We will neglect the backreaction on the bath, v̇
h

. Using rotation invariance, we can perform the
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Rather than do the exact integral, we focus instead on the ✓ ! 0 (x ! 1) limit, which dominates the
behavior. After some algebra (see appendix B) the Boltzmann equation reads
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As before, we use the interparticle spacing to cut o↵ the infrared divergence above. The result is a
first order di↵erential equation for v
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where ⇤ is the same as in eq. (3.9), with v
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where v
c,0

is the initial velocity dispersion of the cold population, and where we have defined an
e↵ective timescale to isotropize the velocity distribution:
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The ellipticity evolves over time as
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We can see that for small initial dispersion v
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However, this early time expansion neglects the saturation e↵ect as the temperature of the cooler
component gets comparable to the hotter one. In figure 1 we show that the time taken to get to a
small ellipticity can be much longer than the timescale in eq. 3.22. In order to include this e↵ect we
need to determine the degree to which the velocity components become isotropic inside the galaxy.
Since ellipticity in NGC720 varies with the galactic radius we need to extend our analysis to include
radius dependence, which we now turn to in the next section.

3.1.3 Ellipticity and Density as a function of radius

Measuring ellipticity as a function of radius is a complex process. To tackle this challenge, authors
of Ref. [71] have adopted an iterative process based on measuring second moments inside elliptical
annuli. We show their measurements for NGC720 in figure 2. From eq. (3.10) we see that regions with
the highest phase space density ⇢/v3

0

yield the shortest time scales. We use the data of Ref. [72] to

– 8 –

Figure 1: Time evolution of the ellipticity as modeled by our simplified system in section 3.1.2 starting
from an ellipticity of order unity. The solid orange line shows the approximate linear evolution, similar
to the expansion performed in eq. (3.24). The solid blue curve illustrates the exact solution given in
eq. (3.23). The dashed vertical lines illustrate the time to reach an ellipticity of 0.1 in both cases. The
saturation e↵ect of the rate of isotropization as the halo becomes more isotropic is clearly visible in
the exact solution.
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Figure 3: Time to erase galactic ellipticity (caused by velocity anisotropy) through collisions of
darkly-charged dark matter particles. The blue curve gives the time to reduce ellipticity in NGC720
down to ✏(r) as given by the lower bound from figure 2. The orange curve shows the time it takes to
reduce ellipticity down to a fixed, average ✏ = 0.2 for each r. The green curve shows the timescale ⌧

iso

given by eq. (3.1) (adopted from Ref. [8]) where both ⇢ and v
0

are evaluated as functions of radius
as given in Ref. [72]. We show the 10 billion year mark in red and the 3 kpc radius by a dashed
vertical line. The grey regions indicate radii for which baryons dominate the gravitational potential
of NGC720 and are thus not reliable for constraining ellipticity of the dark matter component. Both
panels use m

X

= 300 GeV but di↵er in their value of ↵
D

, with the left panel using ↵
D

= 1.7⇥ 10�3

(which would satisfy Ref. [8]) and the right panel showing ↵
D

= 10�2 (which represents the bound
from our calculation).

hard scattering. As presented in Ref. [53], the constraint reads

↵2

D

m3

X

< 10�11 GeV�3. (3.25)

We believe this constraint is also somewhat overstated, both for technical reasons that reduce the
bound slightly and for other reasons that could be very interesting, but require a more careful analysis
that we delay to a future publication. We do not present the full calculation but rely on the calculation
for ellipticity as presented above. The technical disagreements are as follows:

• The same consideration about the cuto↵ in the infrared logarithm applies here. Putting in
the inter-particle spacing rather than the Debye wavelength weakens the numerical value of the
bound in eq. (3.25) by about a factor of 2/3.

• Ref. [53] integrates cos ✓
cm

on the interval [0, 1) and then multiply by a factor of 2. This
overestimates the cross-section by a factor of 2.

• The analysis assumed a dark matter density of 10�26

g

cm

3 . Though approximately correct, this is
probably a slight overestimate of the density in the region for the relevant dwarf galaxies. Putting
in the Carina dwarf galaxy we found the density overestimated by a factor of 3, assuming the
dwarf does not spend much time at smaller radius, which was assumed for a conservative bound.
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Figure 2: Ellipticity of the NGC720 potential as measured by Ref. [71]. The black data points show
the measurements with 1� error bars. The blue curve is our interpolation of their central values, while
the 2� error bands are in dashed red.

determine both the dark matter density and local virial velocity as a function of radius. The shortest
times and therefore the strongest constraint would come the densest regions – the inner most parts of
the galaxy. However, the uncertainty on ellipticity is significant for these smaller radii, weakening the
overall bound.

For example, the 2� uncertainty region includes ✏ ⇠ 0 for the inner most data point and therefore
leads to virtually no constraint at all for that radius. We study this e↵ect in figure 3, where we plot as
a function of r the time required to reach the ellipticity corresponding to the 2� lower bound shown
in figure 2. We show our results for two values of ↵

D

with a sample mass m
X

= 300 GeV.
Even when we include the e↵ects of weakening bounds from ellipticity at smaller radii we still

obtain strong bounds from the inner regions of the galaxy. However, these inner regions are dominated
by the mass of the baryonic component and so the ellipticity of the local gravitational potential is
dominated by the baryons. As a result, we do not trust the ellipticity measurement as a constraint
on dark matter self-interaction for these inner radii. Ref. [74] have constrained the mass components
of NGC720 as functions of radius. In their study the dark matter component becomes dominant in
mass only after r ⇠ 6 kpc. As a result we will cuto↵ the constraints on ↵

D

�m
X

from the ellipticity
measurement at this radius r = 6 kpc. Figure 4 shows the resulting ellipticity constraint in the
↵
D

� m
X

plane together with other constraints we discuss in the following sections. We note that
even this revised constraint is subject to uncertainties, as mentioned in section 3.1.

3.2 Dwarf Galaxy Survival

We now turn to other potential constraints. The strongest such constraint is from dwarf galaxy
survival as they orbit in the halo of the host galaxy. With too strong an interaction, dwarf galaxies
will be stripped as they pass through a halo. Ref. [53] derived a reasonably strong constraint on dark
matter–not quite as strong as the purported ellipticity constraint but stronger than that from the
Bullet Cluster, for example. Again, they found that numerous soft scatterings dominated over a single
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• Merging clusters: Bullet cluster 

analysis requires that DM-DM 
cross-section is small-ish: at 
most nuclear sized [1308.3419]: 

• As dwarf galaxies travel through 
the DM halos of their hosts, they 
experience drag and stripping: 
since we see them after 10GYr, 
the cross-section can’t be too 
large. [1308.3419] 
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spite of the small number of expulsive collisions, the im-
mediate evaporation rate is comparable to the cumulative
evaporation rate. Consequently, we have to take both e↵ects
into account when comparing to observational bounds.

To conclude this section, we note that the resulting drag
force is given by

F

drag
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Since the fundamental interactions are independent of ve-
locity, the e↵ective drag force is proportional to v

2

0

. Such a
force is expected to arise from any velocity-independent self-
interaction cross-section, provided the fraction of expulsive
collisions is su�ciently small so that we can average over a
large number of interactions. While we considered a partic-
ularly simple form for the di↵erential cross-section here, we
expect to obtain a similar e↵ective drag force also for more
complicated cases.

B3 Observational constraints

Long-range interactions

Because of the strong velocity dependence of long-range in-
teractions, we expect the strongest constraints to arise from
systems with low velocities. For example, we can obtain a
bound by requiring Carina, Draco and Ursa Minor to sur-
vive until the present day (see Gnedin & Ostriker (2001)). In
other words, we require that the typical timescale of evap-
oration caused by the motion of these objects through the
Milky Way DM halo is su�ciently larger than the age of the
Milky Way, i.e.

R

�1

cml

> 1010 yr . (B16)

The background DM density is of the order of 10�26 g cm�3

and the relative velocity of the dwarf spheroidals is roughly
150 km s�1 (Gnedin & Ostriker 2001). This translates to
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The corresponding drag force is then constrained to be
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We note that even stronger constraints on ↵

02
/m

3

DM

have
been obtained by studying galaxy ellipticity (Feng et al.
2009). However, these bounds apply only under the assump-
tion that the hot gas is in hydrostatic equilibrium and has
negligible rotation (see Binney et al. (1990); Buote et al.
(2002); Diehl & Statler (2007); Brighenti et al. (2009)). We
thus prefer the more conservative bounds from evaporation.

12 We have chosen the normalisation of �̃ in such a way that
�
T

= �̃/2 in analogy to the case of isotropic scattering.

Velocity-independent interactions

For velocity-independent interactions the drag force grows
with velocity, so we expect strong constraints from the Bullet
Cluster, which has v

0

⇡ 4500 km s�1. Following Markevitch
et al. (2004), we derive a constraint by requiring that the
sub-cluster loses no more than �N/N < 30% of its mass
during the collision. We integrate R

imd

and R

cml

along the
trajectory of the sub-cluster to find
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Estimating ⌃ = 0.3 g cm�2 for the Bullet Cluster (Marke-
vitch et al. 2004), we obtain the constraint
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corresponding to
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APPENDIX C: DETAILS ON THE
NUMERICAL SIMULATIONS

C1 Systems under consideration

We perform numerical simulations for three di↵erent sys-
tems which are chosen to be representative of known major
mergers. System A consists of two galaxy clusters of similar
mass (M = 1.5 ⇥ 1014 M� and M = 3.5 ⇥ 1014 M�) with
a relative velocity of v

0

⇠ 2400 km s�1. We describe these
clusters with Hernquist profiles (Hernquist 1990)13

⇢(r) =
M b

2⇡ r(r + b)3
(C1)

with b = 200 kpc and b = 400 kpc, respectively. These pa-
rameters are chosen in such a way as to resemble the col-
liding clusters in A520 (Mahdavi et al. 2007; Girardi et al.
2008; Jee et al. 2012; Clowe et al. 2012).

System B consists of two galaxy clusters of very di↵erent
mass, similar to the Bullet Cluster (Barrena et al. 2002;
Clowe et al. 2004; Markevitch et al. 2004; Clowe et al. 2006).
For the larger cluster we take a Hernquist profile with b =
1000 kpc and M = 2.5⇥1015 M�, for the smaller cluster we
takeM = 3⇥1014 M� and b = 100 kpc (Randall et al. 2008).
We assume a collision velocity of 4500 km s�1, even though
it has been argued that the velocity of the Bullet Cluster
may be significantly smaller (Springel & Farrar 2007).

Finally, our System C is representative of a merger with
small velocity such as the Musket Ball Cluster (Dawson et al.
2012; Dawson 2012). We model both haloes by Hernquist
profiles with slightly di↵erent mass, using M = 3⇥1014 M�
and b = 400 kpc for the first halo and M = 1.5 ⇥ 1014 M�
and b = 300 kpc for the second halo. The collision velocity
is 2000 km s�1. For simplicity, we will always refer to the

13 We prefer the Hernquist profile over an NFW profile for the
cluster haloes as it has a finite mass, a finite central potential
and an analytical expression for the velocity distribution function.
Since our results are largely independent of the behaviour of the
haloes at large radii, both profiles give nearly identical results.
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spite of the small number of expulsive collisions, the im-
mediate evaporation rate is comparable to the cumulative
evaporation rate. Consequently, we have to take both e↵ects
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Since the fundamental interactions are independent of ve-
locity, the e↵ective drag force is proportional to v

2

0

. Such a
force is expected to arise from any velocity-independent self-
interaction cross-section, provided the fraction of expulsive
collisions is su�ciently small so that we can average over a
large number of interactions. While we considered a partic-
ularly simple form for the di↵erential cross-section here, we
expect to obtain a similar e↵ective drag force also for more
complicated cases.

B3 Observational constraints

Long-range interactions

Because of the strong velocity dependence of long-range in-
teractions, we expect the strongest constraints to arise from
systems with low velocities. For example, we can obtain a
bound by requiring Carina, Draco and Ursa Minor to sur-
vive until the present day (see Gnedin & Ostriker (2001)). In
other words, we require that the typical timescale of evap-
oration caused by the motion of these objects through the
Milky Way DM halo is su�ciently larger than the age of the
Milky Way, i.e.
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The background DM density is of the order of 10�26 g cm�3

and the relative velocity of the dwarf spheroidals is roughly
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We note that even stronger constraints on ↵
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have
been obtained by studying galaxy ellipticity (Feng et al.
2009). However, these bounds apply only under the assump-
tion that the hot gas is in hydrostatic equilibrium and has
negligible rotation (see Binney et al. (1990); Buote et al.
(2002); Diehl & Statler (2007); Brighenti et al. (2009)). We
thus prefer the more conservative bounds from evaporation.

12 We have chosen the normalisation of �̃ in such a way that
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= �̃/2 in analogy to the case of isotropic scattering.

Velocity-independent interactions

For velocity-independent interactions the drag force grows
with velocity, so we expect strong constraints from the Bullet
Cluster, which has v

0

⇡ 4500 km s�1. Following Markevitch
et al. (2004), we derive a constraint by requiring that the
sub-cluster loses no more than �N/N < 30% of its mass
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Estimating ⌃ = 0.3 g cm�2 for the Bullet Cluster (Marke-
vitch et al. 2004), we obtain the constraint

↵

02

m

3

DM

<⇠ 550GeV�3

,

�̃

m

DM

<⇠ 1.2 cm2 g�1

. (B20)

corresponding to

F

drag

m

DM

< 10�9 ms�2

⇣
v

0

4500 km s�1

⌘
2

⇣
⇢

2

1GeV cm�3

⌘
.

(B21)

APPENDIX C: DETAILS ON THE
NUMERICAL SIMULATIONS

C1 Systems under consideration

We perform numerical simulations for three di↵erent sys-
tems which are chosen to be representative of known major
mergers. System A consists of two galaxy clusters of similar
mass (M = 1.5 ⇥ 1014 M� and M = 3.5 ⇥ 1014 M�) with
a relative velocity of v

0

⇠ 2400 km s�1. We describe these
clusters with Hernquist profiles (Hernquist 1990)13

⇢(r) =
M b

2⇡ r(r + b)3
(C1)

with b = 200 kpc and b = 400 kpc, respectively. These pa-
rameters are chosen in such a way as to resemble the col-
liding clusters in A520 (Mahdavi et al. 2007; Girardi et al.
2008; Jee et al. 2012; Clowe et al. 2012).

System B consists of two galaxy clusters of very di↵erent
mass, similar to the Bullet Cluster (Barrena et al. 2002;
Clowe et al. 2004; Markevitch et al. 2004; Clowe et al. 2006).
For the larger cluster we take a Hernquist profile with b =
1000 kpc and M = 2.5⇥1015 M�, for the smaller cluster we
takeM = 3⇥1014 M� and b = 100 kpc (Randall et al. 2008).
We assume a collision velocity of 4500 km s�1, even though
it has been argued that the velocity of the Bullet Cluster
may be significantly smaller (Springel & Farrar 2007).

Finally, our System C is representative of a merger with
small velocity such as the Musket Ball Cluster (Dawson et al.
2012; Dawson 2012). We model both haloes by Hernquist
profiles with slightly di↵erent mass, using M = 3⇥1014 M�
and b = 400 kpc for the first halo and M = 1.5 ⇥ 1014 M�
and b = 300 kpc for the second halo. The collision velocity
is 2000 km s�1. For simplicity, we will always refer to the

13 We prefer the Hernquist profile over an NFW profile for the
cluster haloes as it has a finite mass, a finite central potential
and an analytical expression for the velocity distribution function.
Since our results are largely independent of the behaviour of the
haloes at large radii, both profiles give nearly identical results.
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Figure 5. Two-dimensional distribution (i.e. surface density) of
DM after the sub-cluster has passed through the main cluster for
System A (representative of Abell 520) and System B (represen-
tative of the Bullet Cluster) for the case of contact interactions.
The black solid contours indicate lines of constant surface density,
starting at 108 M

�

kpc�2 at the outermost contour and increas-
ing by a factor of 2 with each contour towards the centre. For
example, the dark purple region (outermost for both systems)
has a surface density of ⌃ = (1–2) ⇥ 108 M

�

kpc�2, the light
yellow region (innermost for System B) has a surface density of
⌃ > 6.4⇥109 M

�

kpc�2. The green dashed contour indicates the
iso-density contour containing 68% of the total halo mass, which
is used for the calculation of the centroid (see § 2.2).

scattered particles will no longer be bound to the DM halo.
As they leave the system, they will slow down in the gravi-
tational potential of the DM halo thus transferring some of
their momentum to the surroundings. In other words, the
tail of scattered DM particles will exert a gravitational pull
on the DM halo, which will slow down the entire system.

One might be tempted to conclude that rare self-

interactions therefore lead to a drag on the DM halo similar
to the one we found for the case of frequent self-interactions.
However, the origin of this drag are gravitational interac-
tions alone. Consequently, this drag force will necessarily
a↵ect the DM halo and the galaxies and stars within it in
exactly the same way.7 Our central observation is therefore
that a DM particle that does not directly experience any
collisions will behave exactly like a collisionless galaxy.

A possible exception would be if a DM particle, after
having scattered, scatters again as it leaves the DM halo.
If such secondary scatterings were to occur frequently, DM
particles would transfer their momentum preferentially to
the DM halo rather than to stars and galaxies. However,
observational constraints on evaporation rates and, in fact,
halo shapes imply that the probability for a DM particle
to scatter within one orbit has to be very small. In other
words, most particles that scatter from DM particles in the
main cluster will typically not scatter again as they leave
the sub-cluster.

We conclude that rare DM self-interactions do not lead
to an e↵ective drag force that can separate DM halo and
galaxies. DM particles which have not undergone any col-
lisions will always remain coincident with the equally colli-
sionless galaxies. However, those particles which have had
collisions will preferentially travel towards the back of the
halo. Ultimately, these particles will end up far away from
their original system, but shortly after the collision they still
appear to be a part of the DM halo. Consequently, as they
leave the system, these particles will shift the centroid of
mass of the DM halo in the direction opposite to the di-
rection of motion thus leading to an apparent separation
between DM and galaxies shortly after the collision.

A similar argument applies to particles that have scat-
tered but remain bound to the DM halo. These particles will
typically have elliptical orbits. Since the relaxation time for
DM particles is very large, we expect them to retain these
orbits for a long time. For a short time after the collision
(i.e. before they complete half an orbit) these particles will
therefore preferentially be found towards the back of the sys-
tem. Again, particles that have scattered very recently can
induce an apparent separation between DM and galaxies.

We have identified a key di↵erence between rare and
frequent DM self-interactions. For rare self-interactions, a
separation between DM halo and galaxies is caused by DM
particles leaving the gravitational potential in the direction
opposite to the direction of motion. This is in contrast to
the case of frequent self-interactions, where the separation
arises from galaxies moving ahead and leaving the gravita-
tional potential in the direction of motion. Consequently, the
two scenarios are distinguishable if the shape of the stellar
distribution can be measured with su�cient accuracy (and
the initial distribution is known).

To check our expectations, we have extended the nu-
merical simulation introduced above to include contact in-
teractions between individual DM particles. The details of
our code are presented in Appendix C. Fig. 5 shows the re-
sulting shapes of the DM haloes after the cluster collision

7 As discussed in § 2.2 scattering between individual DM particles
with large momentum transfer via gravitational interactions is
completely negligible.
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Figure 4: Constraints on the darkly-charged dark matter parameter space in them
X
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D

plane. Note
that the constraints aside from relic abundance have the caveats discussed in the text and should not
be taken as strict bounds on the parameter space. The ellipticity constraints (discussed in section 3.1)
are presented as two curves: the original Ref. [8] calculation [dashed yellow], and the more complete
(though still uncertain) calculation that includes the radius dependent constraints on ellipticity from
figure 3 [red]. We also show the constraint from evaporation of Milky Way dwarf galaxies from Ref. [53]
and discussed in section 3.2 [dot-dashed blue]. We also display the Bullet cluster bound adopted from
Ref. [49] and discussed in section 3.3 [purple]. Finally, we show the m

X

� ↵
D

curve for which the
freeze-out mechanism discussed in section 2.1 produces the correct relic density for darkly-charged
dark matter [green], which includes the e↵ects of Sommerfeld enhancement.

Putting all these factors together:

f =
3

2|{z}
log⇤

⇥ 2|{z}
d�/d⌦

⇥ 3|{z}
⇢

= 9 (3.26)

introduces additional uncertainty – up to an order of magnitude in the cross section and a factor of a
few in the mass, for example. However, Ref. [53] have chosen to understate their bound by a factor of
about 4, and so numerically the bound does not change by more than a factor of 2.

However, the bound is in fact even more subtle. The above calculation takes into account multiple
scattering of an individual dark matter particle with multiple halo particles. But it neglects the
interactions of the dark matter particles inside the dwarf – where dark matter is far denser and slower
– leading to core formation and potential core collapse, as discussed in section 4.1 below. Allowing
for this e↵ect redistributes energy so that rather than eventually lifting a particle to escape velocity,
the multiple scatterings of all dark matter particles can redistribute dark matter in the dwarf galaxy
itself. How this does so requires a full detailed calculation. But it seems likely that dwarfs will pu↵
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As a result, even a frozen-out charged dark matter is safe as long as 
mX & 50 GeV

Ask me about caveats!
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Asymmetric Relic 
Abundance

• For a symmetric freeze-out: as the DM 
annihilates both populations are 
getting depleted 

• For an asymmetric freeze-out, one of 
the populations (say X) will always be 
available: this type of freeze-out is 
much more efficient. 

• There are two regimes: 
A. Freeze-out before the asymmetric 

population matters: regular 
freeze-out 

B. Freeze-out when the asymmetry 
matters: mostly determined by the 
initial asymmetry 0.05 0.10 0.50 1
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Figure 1: Relic abundance in the XC dark matter scenario with both a symmetric as well
as an asymmetric component. The blue curve shows where the correct relic abundance,
⌦
X

h2 = 0.119 [56] is obtained, and the orange lines are contours of constant f(XC) fraction
of mass in the asymmetric component. The shaded blue region is excluded if there are no
other interactions that can deplete ⌦

X

.

In this case, the dark matter density is essentially given by the symmetric freezeout value,
and the dark matter is dominantly symmetric. In figure 1, this appears as the vertical part
of the constant-⌦

X

contours (i.e. independent of ⌘). At ⌘ = Y ⌘=0
1 we see a turnover, and for

⌘ > Y ⌘=0
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(3.21)

The relic abundance in this case is set by the asymmetry, and the symmetric component
is exponentially small. In this case, the constant-⌦

X

contours in figure 1 are horizontal
(independent of ↵

D

). Generally, we are interested in the parameter space where there is
both a symmetric and asymmetric population, r1 . 1, so that we are somewhat close to the
turnaround region,

⌘ . Y ⌘=0
1 . (3.22)

At late times, the key quantity to consider is the fraction f(XC) of the total dark matter
mass that can end up in neutral (XC) bound state. In the limit m

X

� m
C

, this mass
fraction is given by f(XC) ' (n

X

� n
X̄

)/(n
X

+ n
X̄

) (see eq. (4.1) below), from which we
obtain the relation

f(XC) '
1� r1
1 + r1

' ⌘

2Y (⌘=0)
1 � ⌘

, (3.23)

where this last relation is valid for ⌘  Y
(⌘=0)
1 . Lines of constant f(XC) values are illustrated

in figure 1. We see that the dependence of f(XC) on ⌘ is approximately linear, so that while we

– 8 –
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Structure Formation
• In the Early Universe the 

dark sector is populated by: 
Dark Radiation, Xs, Cs 

• The Xs are too heavy to 
efficiently interact with dark 
radiation. 

• However, the Cs are light 
enough to get pushed 
around by the radiation. 

• Cs interact strongly enough 
to recouple the Xs to the 
radiation. This is why we call 
this model Dark Catalysis.

�� ���� ��� ��� ��� ����
��-��

��-��

�

����

����

Figure 3: Scattering opacities divided by the conformal Hubble expansion rate for the
relevant scattering channels described in Eqs. (C.11)-(C.15) and (C.28). We illustrate a
model with m

X

= 10 TeV, m
C

= 1 MeV, ↵
D

= 0.12, ⇠0 = 0.5 and f(XC) = 0.05.

5.2 Dark matter kinetic decoupling

We now turn our attention to the epoch at which dark matter kinematically decouples
from the dark photon bath and starts forming structures. Using the general criterion
̇DM�D(zdec) = H(zdec) to solve for the redshift zdec at which dark matter kinetic decou-
pling occurs, we identify two regimes of interest:

1. zdec > zrec: In this regime, kinetic decoupling occurs before (XC) bound state for-
mation, and we can thus solve analytically the condition ̇DM�D(zdec) = H(zdec) since
R

C

(zdec) ' 1. We obtain

zdec ' 1.4⇥ 104
⇣ m

C

MeV

⌘✓
0.1

↵
D

◆r
m

X

+m
C

10TeV

✓
0.5

⇠dec

◆2
s

0.05

f(XC)
, (5.8)

provided that the condition

↵6
D

⇠2decf(XC)

⇣ m
X

10TeV

⌘�1
< 3⇥ 10�12 (5.9)

is satisfied. This last condition comes from demanding that that zdec > zrec. Here,
⇠dec ⌘ ⇠(zdec). We note that this generally occurs in the weakly-coupled regime (↵

D

⌧
1), or for a cold dark sector (⇠dec ⌧ 1).

2. zdec ' zrec: In this case, the precipitous drop in the free C fraction at z ' zrec entirely
controls kinetic decoupling. In this case, we simply have

zdec ' 8.9⇥ 105
⇣↵

D

0.1

⌘2 ⇣ m
C

MeV

⌘✓
0.5

⇠dec

◆
, (5.10)
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Dissipative Dynamics I
• Typically, at the 

beginning of galaxy 
formation the Cs are 
only in the bound states 
(XC). 

• As the gas falls into the 
galaxy, it heats up and 
re-ionizes.

(XC)

(XC)
(XC)

X

X

X

C
C

C

X

X

X

X



Dissipative Dynamics III
• We need to make sure that: 

1. Not all Xs are in kinetic 
equilibrium with Cs: 
otherwise all of dark matter 
flattens. 

2. The virial temperature is high 
enough to ionize the (XC) 
bound state. 

3. We treat possible large scale 
electric fields correctly. 

4. Are there plasma 
instabilities?

+

+

+

+
+

+

-

-
-

-

-
-



Structure Formation Constraints

Figure 4: Parameter space for XC dark matter. In this plot, we assume that the relation
between ↵

D

and m
X

is fixed by demanding that ⌦
X

h2 = 0.119 (see eq. (3.19)). The top axis
shows the value of the X particle mass corresponding to each value of ↵

D

. In the orange
regions, dark matter kinematically decouples from the dark photons too late, leading to a
suppression of small-scale structures that is in tension with observations of Local Group dwarf
galaxies. The larger orange region denotes this latter constraint when ⇠0 = 0.5, while the
orange dashed line shows what the kinetic decoupling constraint looks like when ⇠0 = 0.1. The
red region denoted ↵

D

> 0.3 illustrates the parameter space where non-perturbative e↵ects
are most likely important. The green regions denote the parameter combinations where the
C particles can shed an O(1) fraction of their kinetic energy through either Compton or
Bremsstrahlung cooling within the age of the Universe. We emphasize that this region is not
necessarily ruled out, but rather indicates where dissipative dynamics can play an important
role shaping the internal structure of galaxy-scale dark matter halos. Again, the large green-
shaded region is valid for ⇠0 = 0.5 while the smaller region bounded by the dashed green
line is for ⇠0 = 0.1. The purple region shows the parameters for which the typical virial
temperature of a Milky Way-size halo is too low to ionize the (XC) bound states.

in dark photons is not entirely negligible. For T
C

⇠ B(XC), collisional processes including
recombination cooling can become more important than radiative ones [79, 80]. Since we

– 19 –



Next Iteration: 

Use three fermions!

37



And now for something 
completely different…

38



2010: Formation of Andromeda as a merger of two 
galaxies reproduces many properties of the galaxy

39

Fig. 2.— Di↵erent phases of a 3:1 major merger for M31 (r
pericenter

=24 kpc, Gal1 incy=70, Gal2 incy=-110).
The simulation starts 9.3 Gyr ago (T=0, z=1.5) and the first passage occurs 0.7 Gyr later. Then new stars
are forming (green color), especially in the secondary galaxy, until the fusion, which occurs at 4.5 Gyr. The
elapsed time between the first passage and fusion is 3.8 Gyr, as the pericenter radius is large. During the
second passage (T=4.2 Gyr) a tidal tail containing many newly formed, intermediate-age stars (green dots)
is formed. Later on this material returns to the galaxy forming the Giant Stream, enriched with stars formed
from 5 to 8 Gyr ago. The resulting galaxy in the last panel (T=9.3 Gyr) is compared with the inserted
M31 image at the same scale (from Ibata et al. 2005, , see an enlarged view of this insert on bottom-right).
The Figure also illustrates the formation of the Giant Stream (see section 4.4) in a case for which the two
galaxies have angle di↵erence near the resonance (180 degrees) providing many particles stripped from the
satellite at 4.2 Gyr. Some of the particles within the tidal tail have velocity below the escape velocity of
the remnant system and are gradually falling back to the galaxy. They are tracing loops around the newly
formed disk as indicated by the arrow in the panel at T=6.8 Gyr. Loops are fed by newly-coming particles
falling back from the tidal tail and are persistent until 9.3 Gyr and later. The dotted rectangle in the 4.2
Gyr panel illustrates how we have selected the tidal tail particles (see section 4.4).

5

Hammer et al: 
1010.0679 



 2013: Andromeda Plane of Satellites

40

12 !

!

Figure 1: Map of the Andromeda satellite system. The homogenous PAndAS survey (irregular 

polygon) provides the source catalogue for the detections and distance measurements of the 27 

satellite galaxies20  (filled circles) used in this study.  Near M31 (ellipse), the high background 

hampers the detection of new satellites and precludes reliable distance measurements for M32 and 

NGC 205 (black open circles); we therefore exclude the region inside 2◦.5 (dashed circle) from the 

analysis. The seven satellites known outside the PandAS area (green circles/arrows) constitute a 

heterogenous sample, discovered in various surveys with non-uniform spatial coverage, and their 

distances are not measured in the same homogenous way. Since a reliable spatial analysis requires 

a dataset with homogenous selection criteria, we do not include these objects in the sample either. 

The analysis shows that satellites marked red are confined to a highly planar structure. Note that 

this structure is approximately perpendicular to lines of constant Galactic latitude, so it is therefore 

aligned approximately perpendicular to the Milky Way’s disk (the grid squares are 4◦  × 4◦). 

Ibata et al 
1301.0446

R=400kpc
w=14kpc

 sig = 4.1σ



2013: Merger history predicts 
streams that might form into TDGs

41

Fossil signatures of a merger at M31 in the Local Group 5

Figure 3. (a): Similar than Figure 2 (a) for another model with di↵erent mass ratio (3:1 instead of 3.5:1), which shows a better agreement
between the tidal tail systems (including loops) and the VTDS plane (blue array). The improvement is mainly due to the fine tuning
of the main progenitor inclination by 20 degrees. This tuning su�ces to change the plane of tidal tail systems with respect to the
orientation of the final M31 disk plane. It also shows that the VTDS extent could be matched by stellar particles of the model, while
IC10 is lying within TT1.(b): Same as (a) but rotated (by ⇠90 degrees) to have the VTDS seen exactly face-on, with loops labelled by
their tidal tail origin (TT1 or TT2) and their loop order (L1 to L3). Only galaxies near the VTDS plane are shown to illustrate at best
whether or not they are matching the loop system. In panel (b) we have chosen to remove particles within r< 20kpc from the M31 center
for a better visibility of the loop system.

the loop system3. Namely, we have verified from their 3D lo-
cations that: And I, III, XI, XII, XIII, and XIV lie within the
TT2 first loop, as And XVII, XXV and XXVI do with the
TT2 third loop. NGC 147, 185, CasII (AndXXX) and And
IX are likely associated to the TT1 first loop. One may won-
der why dSphs are apparently absent from the TT2 second
loop. Maybe this is because TDGs currently lie at discrete
locations along a tidal tail giving it a so-called string of beads
appearance (Wetzstein et al. 2007; Bournaud 2010; Fouquet
et al. 2012). Perhaps this explain why most of VTDS dSphs
are observed on M31 halo side nearest the MW.We have also
verified that dSph velocities are in a roughly good agreement
with expectations from the loop velocities (see also Figure 1-
c) with the noticeable exception of And XIII. It seems that
most VTDS dSphs (9 among 13) are related to TT2 and
that, in our modelling, the VTDS implies a good alignment
between TT1 and TT2 within the (hyper)plane defined by
the orbital angular momentum.

4 DISCUSSION AND CONCLUSION

4.1 Discussing possible falsifications

The proposed scenario can at the same time account for
the M31 Giant Stream, the VTDS around M31 (Ibata et al.
2013), the fact that it points towards the MW, the vast polar
structure around the MW (Pawlowski et al. 2012a), the fact
that the two vast structures are also rotating, and finally, the
proximity of MCs to the MW. Of course implications are so

3 And XXVII is possibly an interloper due to its counter rotating
motion (Ibata et al. 2013).

vast that it would be useful to search for evidence which fal-
sifies this scenario, especially given the impressive knowledge
of the Local Group content. If not passing this step, our sce-
nario could be considered as an interesting ballistic exercise.
This is further complicated because of the enormous amount
of parameters to investigate and also because hydrodynam-
ical models (GADGET2, Springel 2005) require significant
number of particles to interpret faint stellar halo features.
It might be also argued that we have no proof that other
kinds of models could not fit the M31 merger. However the
predicted loop system is particularly consistent with dSph
locations and velocities, possibly supporting the family of
models investigated in this paper.

4.1.1 dSph dark matter content

If TDGs are progenitors of many dSph in both MW and
M31 outskirts, it leads to an absence of dark-matter (DM)
in galaxies that are being thought to be the most DM-
dominated systems. Clearly the above ballistic exercise has
to be discarded if the dark matter (DM) content of dSphs
is large (Strigari et al. 2008) as inferred from their large
velocity dispersions (Walker et al. 2009). Perhaps the DM
content of dSphs requires some further investigations: dSphs
could be alternatively the outcome of TDGs, which are gas-
stripped when entering the halo of a large disk galaxy such
as the MW (Kroupa 1997; Casas et al. 2012; Pawlowski et al.
2011). We are indeed investigating a similar interpretation
but with a tidal tail coming fromM31 and currently reaching
the MW (Yang et al. 2013). We find that simulated DM-free
TDGs are quite fragile, and, helped by the large eccentric-
ity of their orbit (due to the M31 motion towards us), are
almost destroyed during a single passage, providing a fair re-

c� 2013 RAS, MNRAS 000, 1–8

Hammer et al: 1303.1817 



Too much Mass/Light

42

1303.1817 : “If TDGs are progenitors of many dSph in both MW and M31 
outskirts, it leads to an absence of dark-matter (DM) in galaxies that are being 
thought to be the most DM — dominated systems. Clearly the above ballistic 
exercise has to be discarded if the dark matter (DM) content of dSphs is large 

(Strigari et al. 2008) as inferred from their large velocity dispersions”
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dSph M/L(1) M/L(2) M/L(3)
And I 21± 5 – 18± 7
And III 14± 12 – 45± 14
And IX 88+167

�88

– 404± 150
And XI 78+183

�78

216+115

�87

215± 162
And XII 77+176

�77

0+194 0+194

And XIV 63± 55 – 71± 46
And XVI 39+79

�39

– 4.2+6.4

�4.2

And XVII – – 12+16

�12

And XXV – 10.3+7.0

�6.7

10± 8
And XXVI – 325+243

�225

318± 179
Cass II – 308+269

�219

318± 257
NGC 147 3± 0.5 – –
NGC 185 4± 0.5 – –

Table 1: Collected values of M/L for co-rotating in-
the-plane dwarf satellites of the Andromeda Galaxy.
The M/L(1) values come from [7], we have computed
the M/L error bars from their data. The M/L(2)
values and error bars are from Table 4 of [8]. We
have also used the same method as [7] to compute
the M/L(3) values and error bars based on data from
Table 5 of [8].
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Figure 1: Comparison between out-of-the-plane
(green), co-rotating in-the-plane (blue) and counter-
rotating in-the-plane (red) dwarf satellites of the An-
dromeda Galaxy. Neither population appears dis-
tinct in terms of their M/L values. The M/L val-
ues and error bars have been obtained by applying
the method from [7] to data from Table 5 of [8] and
therefore agree with column M/L(3) of table 1 in this
work.

suggest that a disk of mirror dark matter might play
a role, though they have no explicit mechanism or
dynamics for how this came about.

Given our limited understanding of dark matter,
results such as these are worthy of attention. If dark
matter continues to elude detection, it could be that
exploring matter spatial distributions throughout the
universe will give us best clues as to whether dark
matter has interactions other than gravitational.

In this paper, we propose an admittedly specula-
tive idea based on the Partially Interacting Dark Mat-
ter (PIDM) scenario proposed by Fan et al. [11]. In
PIDM scenarios most dark matter is non-interacting
or extremely weakly interacting and resides in a
smooth spherical halo, but a small fraction of the
dark matter has self-interactions. Double Disk Dark
Matter (DDDM) includes dissipative self-interactions
in the dark sector. If the dark matter particle is heav-
ier than the proton the DDDM forms a thin disk of
dark matter embedded in the plane of the galactic
disk. We propose that tidal forces acting on such a
disk, with a thicker disk of baryonic matter and a
thinner disk containing a small fraction of dark mat-
ter, could account for observations of planes of Tidal
Dwarf Galaxies with large mass-luminosity ratio. Al-
though the dissipative dark matter constitutes only
a fraction of the mass of the initial disk, a thin disk
is indicative of a dark matter mass heavier than that
of the proton as well as a velocity lower than that for
baryons. Because of the lower initial velocity and the
lack of interaction with the more energetic baryons,
dark matter particles are more likely to be trapped
into bound structures when tidal forces pull them out,
and hence large mass to light ratios are expected.

1.1 PIDM

Reference [11] proposes that the dark matter is com-
posed of at least two di↵erent sectors. The majority
of dark matter (DM) has all the assumed properties
of CDM – it does not interact very much with ei-
ther the Standard Model or with itself. However, a
small portion of the dark matter is self-interacting
and dissipative. A particularly simple model con-
sists of two fermions X and C charged under a U(1)0

that only mediates forces among dark sector particles.
The assumed mass of X is bigger than proton mass,
m

X

> 1 GeV, while C is light: m
C

. m

e

. The U(1)0

vector (the dark photon) is massless and therefore of-
fers the possibility of carrying away arbitrarily small
amounts of energy and so both X and C are able to
dissipate energy into the dark radiation. Whereas the

2

Data from: 1204.1562, 1302.6590



Proposed Solutions
• Maybe the satellites are not in equilibrium, and the 

dynamically measured mass is incorrect. Satellites 
are often tidally disrupted. Some of the gas may 
have been stripped as they pass close: 1405.2071 

• MOND predicts large apparent M/L ratios: 
1301.0822 

• Mirror Dark Matter: 1306.1305 
• Double Disk Dark Matter!
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Dark Disk Helps
• There is a significant amount of dark matter with the 

same distribution as baryons. So whatever the 
baryons do, DDDM is likely to do as well. 

• Moreover, dissipative dark matter may be colder, 
lees prone to evaporation:  

• And clumpy: easily forming seeds of future dwarf 
spheroidals:

44
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Analytic Results?
Unfortunately, it is hard to make any reasonable 

analytical predictions:

45

1. Gravitational systems are unstable: without 
additional effects, the final state is always a black 
hole. 

2. One cannot treat the two components (baryons, 
DM) separately and only a small amount of leakage 
between the components can change the result. 

3. The initial conditions do not correspond to an 
equilibrium. 

4. Even the mean field potential is time dependent.



The “Experimental” Setup I
1. Take patches the size of Toomre 

instabilities in the disk: those are likely 
to form objects anyway. 

2. Take a single patch from the smaller of 
the two progenitor galaxies. 

3. Isolate this patch from the rest of the 
galaxy. 

4. Let it evolve long enough to reach an 
equilibrium.

46



The “Experimental” Setup II
5. Find clusters of particles with a Friends 

of Friends algorithm. 

6. Determine binding energies of each 
particle with respect to these clusters to 
determine the final number of bound 
particles. 

7. Determine the final baryon to DM ratio. 

8. Repeat to build up statistics and sample 
parameters. 
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Benchmark Set: Results I
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Benchmark Set: Results II
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Limitations
• We use small number of particles 
• We only simulate a small patch rather than the 

entire merger. 
• We pretend that baryons and dissipative dark 

matter can be simulated as non-interacting. In 
reality hydrodynamics is important to get TDGs 
right. 

• Our initial state is highly idealized, both 
components start out as smooth.
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Future Work
• All of the previous complaints can be addressed by 

using a more sophisticated software. 
• Once we modify any of the available programs to 

include hydrodynamics of the Dissipative Dark 
Matter, we can do great things: 
1. Look at structure formation in the early Universe. 

2. Check the DDM distribution in a galaxy. 

3. Follow a merger that formed Andromeda and check our 
results.
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Potential Signals
• Formation of disks: star and gas kinematics in our neighborhood,  

• More detailed tests of dark matter morphology such as overcooling, 
fragmentation, point sources. 

• Galactic DM halo ellipticity measurements 

• Non-standard filament formation 

• Shapes of dwarf galaxies, from drag, heating and formation 

• Diffuse galaxies from heating inside galaxy clusters 

• Number of effective degrees of freedom 

• Direct detection: co-rotating disks lead to higher density, lower relative velocity 
and different peak in annual modulation. 

• Planes of tidal dwarf galaxies in Milky Way and Andromeda



Conclusions
• Dissipative DM is fun: many signals, complicated/rich 

phenomenology, can solve anomalies — sometimes 
there are surprises. 

• Pretty cheap, particle contents wise. 
• It’s okay to complicate the DM sector: “if the simple 

approach does not work, take the complicated one”. 
(perhaps a more general life lesson) 

• It would be great to work on full cosmological 
simulations of this theory.
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Back-up
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• A lot of previous results appear to strongly depend on 
the size of the patch. 

• Keeping fixed number of particles implies different 
particle masses — potential source of systematic 
effects. 

• We run another set for which each simulation has 
exactly the same particle mass:

Fixed Mass Set: Motivation
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x[kpc] N(Extended Run) N(Fixed Mass Run)
0.3 1024 540
0.4 1024 960
0.5 1024 1500
0.6 1024 2160
0.8 1024 3840

Table 2: Values of N for di↵erent patch sizes for both
the Extended Run and the Fixed Mass Run.
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Figure 9: Dependence of the final mass on the size
of the initial patch. The results from the Benchmark
Set are dotted.
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Figure 10: Dependence of the final dark matter mass
on the thickness of the dark disk. The results from
the Benchmark Set are dotted.

The results are very similar to the Benchmark Set
and we do not see any systematic deviations, as can
be seen from figures 9, 10, 11 and 12.

4 Conclusion

In this paper we have investigated a possible expla-
nation for the planar distribution of satellite dwarf
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Figure 11: Dependence of the final DM to baryon
ratio on the size of the initial patch. The results
from the Benchmark Set are dotted. We have added
a small o↵set to the x values for di↵erent series in
order to allow the reader to resolve all the error bars.
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Figure 12: Dependence of the final DM to baryon
ratio on the thickness of the dark disk. The results
from the Benchmark Set are dotted. We have added
a small o↵set to the h

D

values for di↵erent series in
order to allow the reader to resolve all the error bars.

galaxies with high dark matter content. We find that
presence of a thin dark disk formed from cooled dis-
sipative dark matter during galactic collisions can re-
sult in formation of DDDM rich tidal dwarf galaxies
after galactic mergers. In our simulations, the final
dark matter to baryon ratio could reach as high as
⇠ 30. Such numbers are in agreement with some of
the observed M/L values for the tidal dwarf in the
plane around Andromeda galaxy. However, this ra-
tio depends on the size of the region that gets ejected
during the merger of the two galaxies. Our study does
not determine the scale of these patches and further
full simulations of galactic mergers containing dark
disks have to be performed in order to answer this
question.
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