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Caveat emptor
We will treat the many-body problem 
within a non-relativistic quantal hamiltonian approach
(merely nucleonic degrees of freedom)
As opposed to relativistic mean field approaches
Using Lagrangian (nucleonic and mesonic degrees of freedom)



  

1 - Independent particles, correlations
The concept of an independent N-particle state is of a statistical nature
It is defined for N particles from a set of N single particle states              as 

A particular case

From the corresponding N-particle (purely spatial, no spin) wavefunction, 
one gets the probability of presence at 

 
Yet correlations do exist

- of dynamical nature (pairing correlations, quantal fluctuations around 
some classical equilibrium solution, etc.)
- due to symmetries

Examples of the latter : geometrical (e.g. planar reflexion), global spin symmetry for a 

system of two distant particles like in the EPR problem, etc.) 

Ψ([ r⃗ i ]) = <[ r⃗ i ] ∣ Ψ0 > = ∏i=1, N < r⃗ i∣ ϕi >
Prob(1 in r⃗ 1 , 2 in r⃗ 2, ...) = ∏i=1, N Prob(i in r⃗ i )

∣ [ r⃗ i ] > = ∏i=1, N
∣r⃗ i >

∣ Ψ0 > = ∏i=1, N
∣ϕi >

[∣ϕi > ]

[ r⃗ i ]



  

One-body, two-body observables, … :

hermitian, commuting with any permutation P of N objects
- same mathematical form for any i or (i,j)  
-      etc. 

Examples of one-body potentials :
Kinetic energy, Coulomb electron-nucleus interaction

Examples of two-body potentials :
Electron-electron coulomb, nucleon-nucleon strong interactions

Independent particle states are mathemetically acceptable stationary 
solutions of the Schrödinger equation for a one-body Hamiltonian

In atomic physics neglecting the residual interaction, the dynamics is 
reasonably approximated by such a one-body Hamiltonian
In nuclear physics this is of course a priori different 

Op (1) = ∑i =1, N
O(qi , pi)

Op (2) =
1
2 !

∑i =1, N ; j ≠i
O(qi , q j , pi , p j )

O(qi ,q j , pi , p j ) = O(q j ,qi , p j , pi )



  

For a one body potential binding fermions 
in a restricted part of the space, 
shell effects have been observed 
(bunching of the single particle states)

When one such shell is filled 
the separation energy (positive quantity) 
is suddenly decreased 

For a one-body Hamiltonian

This is observed in atomic physics 
(for the ionisation potential) 
which does not come as a surprise
due to the mostly one-body character of H

E = ∑i=1, Z
ei

Esep=∣E(Z) � E(Z�1)∣
=∣elast∣

e = 0



  

But this is observed in nuclear physics which is more surprising :
The Hamiltonian is not a one-body potential

Should a mean (i.e. averaged) potential exist in the nucleus ?

J. Dobaczewski(U. Warsaw)

H = ∑
i=1

A
p⃗2

2m
+

1
2 ∑

i=1

A

∑
j <i

v(i , j ) + ...



  

In some classical fashion one might expect (Hartree 1928) that this mean field 
V would be obtained by the following convolution product :

Where the two-body interaction                      is translationally invariant
and                    is the probability density of presence of the i-nucleon in 
evaluated within the independent particle limit. 
Thus

Beyond the spurious effect of self interaction and the neglection of the Pauli 
principle (the second correcting for the first incidentally) 
the very existence of such a mean field seems a priori to be questioned :
Evaluating roughly the mean free path as

with the saturation nuclear density 
and an average value of the free N-N cross section 
(at an energy typical of the nucleonic zero point motion ~ 30 MeV) one gets
                   
which is of the order of the nucleonic size (radius                             ) 

V ( r⃗ ) = ∑
i =1

A

∫ ∣ϕi ( r⃗ ' )∣2 v( r⃗ � r⃗ ' ) d 3 r '

V ( r⃗ ) =∫ρ( r⃗ ' ) v( r⃗ � r⃗ ' )d3 r ' with ρ( r⃗ ' ) = ∑
i=1

A

∣ϕi ( r⃗ ' )∣2

λ = 1/(σ ρ)

λ ≈ 1 fm
R ≈ 1.2 A1/3 fm

v( r⃗ � r⃗ ' )
r '∣ϕi ( r⃗ ' )∣2



  

This is, of course, not consistent with the very concept of a nucleonic motion 
in an average field. 
A given nucleon does not  feel the presence of the A -1 other nucleons
but merely those immediately close to it 

The Pauli principle, reducing the available phase-space for scattering  
quenches the effective interaction cross section 
to raise λ at a value larger or equal to the nuclear size

Therefore the practical problem given the Hamiltonian

is to define as best as possible, 
from first principles, this mean field, 
in particular taking into account the Pauli principle 
which proves to be essential. 
 

H = ∑
i=1

A
p⃗2

2m
+

1
2 ∑

i=1

A

∑
j <i

v(i , j ) + ...



  

2 – Pauli principle correlations 
From the complete set of N ! non hermitian permutation operators P of N 
objects one defines the hermitian idempotent (thus projector) operator A as

where sgn(P) is the signature of P.
Any permutation is equal to a product of m(P) transpositions, whose number
is defined up to an arbitrary number 2n and one defines

One proves that he operator A
a) is hermitian

      b) satisfies

Thus it is idempotent

A being hermitian and idempotent is therefore a projector

A =
1

N ! ∑{ P}
sgn(P) P

∀ P ; A P = P A= sgn(P) A

sgn(P) = �1m(P)

A2 =
1

N ! ∑{ P}
sgn(P) P A=

1
N ! ∑{ P}

A = A



  

One defines completely antisymmetric states             by

Thus the operator A projects onto completely antisymetric states 
since

These completely antisymetric states form a subspace S
A
 

of the space of systems of N particles

The Pauli principle postulates two things for the states of N identical fermions 

- A symmetry principle for the Hamiltonian : [H,P] = 0 for all P 
- A choice principle : acceptable physical states belong to the subspace S

A

Notation 
The permutation P is defined as 

∀ P ; P ∣ Ψ > = sgn(P) ∣ Ψ >

∣ Ψ >

A∣ Ψ >

P A∣ Ψ > = sgn(P) A∣ Ψ >

{ i } { P(i ) }
P



  

Then the naive independent particle wavefunction

is not acceptable 
Instead one defines from it

It is normalized provided that the individual wavefunctions are such
 

Its wavefunction 

is called a Slater determinant, since the determinant of a matrix              is

where here 

∣ Ψ0 > = ∏i=1, N
∣ϕi >

Ψ([ r⃗ i ]) =
1

√N !
∑[ P ]

sgn(P) ∏i =1, N
< r⃗ i ∣ϕP(i ) >

< ϕi ∣ ϕ j > = δi j

∣ Ψ > = √ N ! A∣ Ψ0 > =
1

√N !
∑[ P ]

sgn(P) ∏i =1, N
∣ϕP(i )>

det [ M i , j ] = ∑[ P ]
sgn(P) ∏i=1, N

M i , P(i )

[ M i , j ]

M i , j = < r⃗ i ∣ ϕ j > with j ≡ P(i )



  

The above entails the so-called Pauli exclusion principle 
stating that two identical fermions within a given system 
cannot be in the same (single particle) state

If one has in the state            or equivalently
two identical fermions in two individual states labeled i and j ( i ≠ j ) such that

then, calling          the transposition   

the state            has a vanishing probability, since

If the set                 constitutes an orthonormal (complete) basis 
of the one-particle physical space, 
the ensemble of above defined Slater determinants 
built from N different such individual particle basis state 
constitutes an orthonormal basis 
of the physically acceptable states of N identical fermions. 

∣ Ψ >∣ Ψ0 >

∣ ϕi > ≡∣ ϕ j >
T i , j

∀k ≠ i and j ; P(k) = k while P(i ) = j , P ( j ) = i
∣ Ψ >

T i , j ∣ Ψ > =∣ Ψ > = �∣ Ψ > = 0

[∣ϕi > ]



  

3 – The Hartree-Fock approximation 
The Ritz theorem establishes that solving the variational problem for 
normalized states  

is  equivalent to solving the Schrödinger stationary (eigenvalue) problem

The Hartree-Fock approximation consists in restricting the trial states in the 
above variation to be merely Slater determinants           .

Varying             is performed varying the single particle states            leading to

where one has defined the functional derivative as a function of        such that

and where                                                     is considered as a functional of
with      being a Lagrange multiplier  to conserve the norm of
NB One must make independent variations of                and 

δ [ < Ψ ∣ H ∣ Ψ >] = 0

H ∣ Ψ > = E ∣ Ψ >

ϕi ( r⃗ ' )
ei

∣ Ψ >

r⃗

∣ Ψ >

∀ i ;
δ [ < Ψ ∣ H ∣ Ψ > �ei < ϕi ∣ ϕi > ]

δ ϕi ( r⃗ ' )
= 0

∣ Ψ >

δ E [ f ( r⃗ ' )]
δ f ( r⃗ ' )

= limǫ → 0

δ { E [ f ( r⃗ ' ) + ǫδ( r⃗ ' � r⃗ ) ] � E [ f ( r⃗ ' )]}
ǫ

< Ψ ∣ H ∣ Ψ > �ei < ϕi ∣ ϕi >

∣ϕi >

∣ϕi >
ϕi ( r⃗ ' ) ϕi ( r⃗ ' )*



  

This leads to a set of  stationary Schrödinger equations for the  states          

where one has introduced a one-body hamiltonian, 
called the Hartree-Fock Hamiltonian  

composed of a kinetic energy      and a one-body « Hartree-Fock » potential

The latter is defined if       includes a two body interaction     
from the Hartree-Fock solution
which is a Slater determinant built from a set               
of N solutions of the above one-body Schrödinger equations, as 

where one defines a (not-normalized) antisymmetrized ket

The first term of              i.e. ignoring the Pauli principle 
(or the transposition operator T) is called the Hartree potential
It is exactly equal to the classical mean field considered above

Hartree potentials in position representation
  

{∣ϕα > }

H

H HF ∣ ϕi > = ei ∣ ϕi >
∣ ϕi >

H HF = K + V HF

K V HF

v

∀χi > ,χ j > ; < χ i ∣ V HF ∣ χ j > = ∑α
< χ i ϕα ∣ v ∣ χ̃ j ϕα >

∣ m̃ n> = (1�T ) ∣ m n> =∣ m n> �∣ n m>

V HF



  

< χ i ∣ V H ∣ χ j > = ∑α
< χ i ϕα ∣ v ∣χ j ϕα >

Assuming the two-body potential to be local
(plus translational and rotational invariant) i.e.

From the definition of the Hartree potential 

choosing         

one gets upon developing the single particle states in the               basis

and thus

Expressing the local character of the Hartree potential

Microscopic foundation of two usual phenomological Hartree fields

A) the Woods Saxon potential

∣ χ i > ≡∣ r⃗ > , ∣ χ j > ≡∣ r⃗ ' >

< r⃗ 1 r⃗ 2 ∣ v ∣ r⃗ 3 r⃗ 4 > = δ( r⃗ 1 �r⃗ 3) δ( r⃗ 2 � r⃗ 4) v(∣r⃗ 1 � r⃗ 2∣)

∣ ϕm> =∫ ϕm( r⃗ ) ∣ r⃗ > d3 r

V H (r ) = < r⃗ ∣ V H ∣ r⃗ ' > = δ( r⃗ � r⃗ ' ) ∫ d3 r 0 v(∣r⃗ � r⃗ 0∣) ρ( r⃗ 0) d 3 r 0

{∣ r⃗ >}

< r⃗ ∣ V H ∣r⃗ ' > = ∑α ∬d3 r 0 d3 r 0 ' ϕα
* ( r⃗ 0)ϕα( r⃗ 0 ' ) < r⃗ r⃗ 0 ∣ v ∣r⃗ ' ⃗r ' 0 >



  

From electron scattering experiment one shows
for heavier enough nuclei, 
their geometrical saturation property 
(constant density in the nuclear internal part
thus                                                              ) 
and its leptodermous (thin skin) character

Roughly the density profile is thus 
of the Fermi type

Convoluting ρ with an interaction v
whose range is much shorter (~ 0.8 fm) than R, *
one yields a Fermi type V

H
 potential 

which is the Woods-Saxon ansatz

* In the case of a                          interaction one has exactly

R

a

a/R < 1
in nuclei

Leptodermous density

ρ(r ) =
ρ̃ 0

1 + e(r � R)/a

a
R

< 1 a ≈ 1 fm

WWS(r ) =
V 0

1 + e(r � R)/a

δ( r⃗ � r⃗ ' ) V HF ( r⃗ ) ∝ ρ( r⃗ )

volume ∝ A and radius ∝ A1/3



  

One may deform this model mean field by replacing R by a function of the 
two angles θ and φ defining a position in spherical coordinates

the first term being included to conserve the nuclear volume 

Restricting to the quadrupole (λ=2) term one gets the two parameters (β,γ) 
collective Å. Bohr model such that (in the intrinsic frame)

R → R(θ ,ϕ) = R̊({αλ ,µ}) (1 + ∑λ ∑µ=�λ

µ=+λ
αλ ,µ Yλ ,µ(θ ,ϕ))

∭ ρ( r⃗ ) r 2 sin (θ)dr d θ d ϕ = A =
4π
3

r 0
3 A ρ 0

ρ( r⃗ ) ≡ ρ 0 H [ R(θ ,ϕ) � r ] (r 0 ≈ 1.2 fm)

α20 = βsin (γ) α2∓2 = β/√2cos(γ)
α2∓1 = 0

H(x)

x

1

Axial quadrupole moment

Prolate (Q>0): rugby ball
at low deformation
Axailly symmetric ellipsoid
Symmetry axis = large axis 

Oblate  (Q<0): pancake
at low deformation
Axailly symmetric ellipsoid
Symmetry axis = small axis

Q20=2z2 � (x2+ y2)

Q =∫ρ( r⃗ ) Q20 d3 r

β x

γ



  

B) The Nilsson model

One may expand the two body interaction in multipoles

If one truncates the expansion to include 
only a monopole term              (with            )
and a quadrupole term               (with       ) 
further assumes the axial symmetry
one gets for the Hartree potential

which is the axially deformed harmonic oscillator of Å. Bohr and J. Rainwater 

Adding a spin-orbit and a   corrective term, one gets  
the Nilsson model 

v(∣r⃗ 1 � r⃗ 2∣) = ∑λ ∑µ=�λ

µ=+λ
wλ µ(r 1 , r 2) Yλ µ( r̂ 1)

* Yλµ( r̂ 2)

w00 ∝ r 1 r 2

w2µ ∝ r 1 r 2

λ = 0
λ = 2

v(∣r⃗ 1 � r⃗ 2∣) = ∑λ ∑µ=�λ

µ=+λ
wλ µ(r 1 , r 2) Yλ µ( r̂ 1)

* Yλµ( r̂ 2)

V H ( r⃗ ) = α < ΨHF∣r 2∣ΨHF > (x2 + y2 + z2) +

β < Ψ HF∣r 2Y20( r̂ )∣ΨHF > (2z2 � x2 � y2)

l⃗ 2



  

Spin-orbit term l⃗ . s⃗

Phenomenological corrective term

Its role is to correct from the HO parabolic wall 
into one closer to a Fermi-like pattern (as a Woods  Saxon)
Incidentally it lifts the degeneracy within a major  shell

l⃗ 2



  

Spin orbit

α l⃗ . s⃗
 
with α < 0

Perturbative energy corrections to single particle energies

< nlj∣α l⃗ . s⃗∣nlj > =
α l
2

for j=l + 1/2 lowered

= �
α( l + 1)

2
for j=l � 1/2 raised

Intruder states
within a major shell
of opposite parity
states



  

The Fock term
The second term V

F
 in V

HF
 (involving the transposition T) is the Fock term. 

It is originating from the Pauli principle which implies to project on S
A
 .

In the nuclear medium, the absolute value of its contribution to the average 
potential  is typically one order of magnitude smaller than the one of V

H
 

(both for the Coulomb pp and the strong interaction NN parts). 
The negative signature of T makes V

F
 to quench the attraction of V

H
.

An important feature of the Hartree-Fock  equations is 
their non linear character. 
Decomposing the solutions φ for individual states on a basis {|m>}

one gets

This is generally solved by iterations, hoping for a convergence:
- guess some set of φ for the occupied individual states
- get from them a V

HF
 potential

- diagonalize H
HF

 and deduce a new set of occupied states φ,       etc.

∑mn
< m∣ K + V HF ∣ n> X n i = ei ∑m

X m i

∑mn
(< m∣ K ∣ n> + ∑ j

occ.

∑kl
X k j

* X l j < m k∣v ∣ ñ l >) X n i = ei ∑m
X m i

∣ ϕ i > = ∑m
X m i ∣ m>



  

When convergence is reached, there is a consistency between the mean field 
and the eigensolutions of the associated one-body Hamiltonian.
One calls this a self-consistent solution. 

It then results that V
HF

 depends on the nucleus (even the nuclear state), so this 

entails that              
Now, approximating
One proves that

where is the energy of the Hartree-Fock of the solution for A nucleons 
and     is the energy of the lowest unoccupied state of the mean field 
associated to this solution for A nucleons.
Thus one approximates the separation energy in the A+1 nucleus as

This is a reasonable approximation, yet it does not take into account 
the polarization effects (as e.g. the size scaling
in   in the bulk, due to the  nuclear saturation)
For instance, see N. Smirnova lectures,                     is only
approximated as the binding energy differences of 17O and 16O

V HF ( A+1) ≠ V HF ( A)

∣ ΨHF (A+1)> ≈∣ ΨHF
appr.( A+1)> = aA+1

† ∣ ΨHF ( A)>

EHF
appr.( A+1) = < ΨHF

appr.( A+1) ∣ H ∣ Ψ HF
appr.(A+1)> = EHF (A) + eA+1

EHF ( A)
eA+1

en(1d5/ 2)

stability valley

isotopic 
series

Aα <1/3A1/3

A1/3

SN (A+1) =∣ E(A+1) � E(A) ∣≈ eA+1



  

The energy of the Hartree-Fock solution is given by

Since

the Hartree-Fock (total) energy is not given as the sum of the individual 
energies of the occupied states

If one approximates roughly the Hartree-Fock field as a harmonic oscillator
using a usual virial theorem for eigenstates of this Hamiltonian

then

The same harmonic oscillator approximation provides a nuclear energy scale 
as a function of the nucleon number A

EHF = < Ψ ∣K+v∣ Ψ > = ∑i

occ.
{< ϕi ∣ K ∣ ϕi > + (1/2) ∑ j

occ.
< ϕi ϕ j∣ v ∣ ϕ̃i ϕ j > }

ei = ∑i

occ.
{< ϕi ∣ K ∣ ϕi > + ∑ j

occ.
< ϕi ϕ j∣ v ∣ ϕ̃i ϕ j >}

EHF = ( 1/2) ∑i

occ.
( ei + < ϕi ∣ K ∣ ϕi > ) ≠∑i

occ.
ei

< ϕ j∣ K ∣ϕ j > = < ϕ j∣ V HO ∣ϕ j >

EHF ≈
3
4 ∑i

occ.
ei



  



  

Solving the Hartree-Fock variational problem one gets a local extremum, 
in practice for stability reasons, this is a local minimum. 
Physical intuition and/or more or less educated guesses and trials lead to an 
approximation of the ground state (minimum minimorum).
One explores non equilibrium solution by solving a constrained variational 
problem (constraining e.g. some multipole moment Q

λμ
) 

One so obtains e.g. shape coexistence energy patterns, fission barriers ...

δ(H �χQλµ) = 0

L. Bonneau, P. Quentin, D. SamsoenM. Girod, J. Libert et al.



  

R.D. Herzberg, P.T. Greenless
Nilsson diagrams

One obtains also single particle energy
Variation patterns with the deformation

protons neutrons



  

Shape coexistence 

Consider the 31Na nucleus
Z = 11 , N = 20

Upon deforming the odd proton 
stays on the same orbit Kπ = 3/2+

stemming from the 1d
5/2

 subshell

with a slight tendency to deformation
(spherical mid sub-shell)

While the last two neutrons jump from
a state Kπ = 3/2+ (from 1d

3/2
) onto

a state Kπ = 1/2- (from intruding 1f
7/2

) 

The downsloping character of the 1/2- state
plus core polarisation effects induce
an other local minimum 
which is deformed



  

Constrained Hartree-Fock deformation energy curves 
of some sodium isotopes 
(X. Campi et al. Nucl. Phys. A251 (1975) 193)

Around N = 20 on 
a deformed minimum
is established and becomes 
the ground state for N =22

An experimental signature :
a discontinuity in the 
2-neutron separation energy
between N = 18 and N = 20



  

The Hartree-Fock approximation may be extended to the non-stationary case.
The Schrödinger equation may be formally cast into the form of a variational 
problem for normalized states               of the following functional 

The Hartree-Fock approximation consists here too 
to restrict the variation of               to Slater determinants.

The corresponding equations of motion (due to Dirac) 
for the individual states are written as

 

δ [∫
t1

t2

< Ψ ∣ H �i ℏ ∂
∂ t

∣ Ψ > dt ] = 0

H HF ∣ ϕ j > = i ℏ
∂∣ ϕ j >

∂ t

∣ Ψ >

∣ Ψ >



  

4 – Treatments of Correlations beyond 
the Hartree-Fock approximation 

The Hartree-Fock approach to determine the stationary states, 
results in the replacement of the« exact » hamiltonian H 
by its one-body approximation H

HF
  

What is left out is called the residual interaction

Whereas shell model calculations pay less attention 
to the determination of a mean field encompassing
as much physics as possible and place the emphasis on treating well 
Self-consistent variational approaches producing complicated 1-body states
are forced to treat approximately the residual interaction

The latter including a 2-body interaction 
yields a mixing of Slater determinants (configuration mixing)
and as a consequence produces correlations

V res = H � H HF = v � V HF

V res



  

One way to treat the residual interaction is to diagonalize it in a restricted 
basis corresponding to limited particle -hole excitations

(1)vacuum
∣Φ0 >

(2) 1p1h
ap † ah∣Φ0 >

(3) 2p 2h
ap' †ap†ah' ah∣Φ0 >

(4)one-pair
transfer

ap † aT ( p)† ahaT (h)∣Φ0 >

Symmetries
(assumed here)

Kramers degeneracy
Necessary condition: 
even nucleus

and e.g. axial and 
parity symmetries
K and π conserved
→strong reduction of  
states as (2), (3) …

These states form 
a N-body basis  
to be truncated

States of type (4) for 
g.s. of even nuclei
are numerically and 
dynamically favored 

(K ,�K ) π



  

This is due to the binding character of pairing correlations.
The latter is due to some specific part of the residual interaction.
- Start from the multipole expansion
- Note that the higher multipole part  may be well described by a zero 
range interaction
- We will show that such an interaction favours matrix elements of the type

These  terms are implied in a basis made of 1-pair transfer states 

Notation : for axial symmetry, in cylindrical coordinates

Let us compute

Due to the S = 0 character of the interaction 
the ket (similarly for the bra) to consider is 

δ( r⃗ 1 � r⃗ 2)

< ϕi ϕT (i ) ∣ δ(T=1, S=0) ∣ ϕ̃k ϕT (k) >

< ϕi ϕ j ∣ δ(T=1, S=0) ∣ ϕ̃k ϕl >

< r⃗ σ ∣ ϕK > ∝ f σ(ρ , z) ei Λ θ δ(K ,Λ+σ) ∣ χσ >

δ

1

√2
[∣ ϕk

+ ϕl
- > �∣ ϕk

- ϕl
+  >] where ∣ϕk

+/- >

are the kets for the space degrees of freedom associated with the spinors ∣χ+/- >



  

Developing the 4 terms of the matrix element of                       
one gets performing the trivial integration on θ 
and the spinor scalar products, a term

and thus 

Owing to 

if one takes the state j (and l resp.) 
as the time reversed of the state i (and k resp.) one gets for the integrand

which maximizes, for real f-factors

and thus maximizes the absolute value of the matrix element

The couple of states                                   is called a Cooper pair

A particular case of the above is realized in spherical symmetry where one 
considers the pairs of states       and     

[( f i
+)*( f j

- )* f k
+ f l

- ] + [( f i
-)*( f j

+)* f k
- f l

+ ] � [( f i
+)*( f j

- )* f l
+ f k

- ] � [( f i
-)*( f j

+)* f l
- f k

+ ]

f T (i )
+ = ( f i

+)* = � f i
- and f T (i )

- = ( f i
-)* = f i

+

∣ nljm> ∣ nlj�m>

δ(T=1, S=0)

[( f i
+)*( f j

- )* � ( f i
-)*( f j

+)* ] [ f k
+ f l

- � f l
- f k

+ ]

[∣ f i
+∣2 +∣ f i

-∣2 ] [∣ f k
+∣2 +∣ f k

- ∣2 ] = 1

[( f i
+)*( f j

- )* � ( f i
-)*( f j

+)* ] and [ f k
+ f l

- � f l
- f k

+ ]

∣ ϕi > and ∣ ϕT (i ) >



  

As a consequence to model the pairing correlations in simple terms one often 
uses a delta interaction. 
Since, with such an interaction, the matrix elements are single particle 
wavefunctions overlaps 
in nuclei with N significantly far from Z, n-n or p-p correlations are prevalent 
over n-p correlations ( |Tz|= 1 thus T = 1 thus S = 0 interaction).

In this approach what is left in the residual interaction 
are therefore low multiple interactions responsible 
in particular for quantal fluctuations (zero point motion)
around a classical equilibrium point. 
These correlations are usually called RPA correlations 
(name due to one of the standard approximations to evaluate them).

First microscopic calculations (Copenhagen, ~1960) took stock on these 
simplifications of the residual interaction to mock it up as 
a pairing plus quadrupole interaction

Of course modern calculations use more sophisticated forms of the residual 

vres( r⃗ 1 � r⃗ 2) = �V δ( r⃗ 1 �r⃗ 2) + χ ∑µ=�2

µ=+2
Q2µ

* ( r⃗ 1) . Q2µ( r⃗ 2)



  

In principle, the residual interaction is fixed whenever the interaction v and 
the Hartree-Fock potential V

HF
 are given. In practice, this is not so clear:

- first for practical reasons (a very difficult handling: 
« we are simply forced to simplify the force !» B. Mottelson)
- second, because the interaction v is an « effective » force (see below) 
- third, because to include the effects of the residual interaction one uses 
a restricted basis either in a diagonalisation procedure or in its Ritz theorem 
equivalent within a variational procedure. This entails a much significant 
renormalisation of the residual interaction (a further cause of effectiveness)

The concept of effective interaction
One labels an operator O as effective when to 
compute its matrix elements between two states 
belonging to a restricted ensemble, 
one includes in some more or less approximate way, 
higher order effects including the interaction 
with states outside the retained ensemble 
comming finally back to it

Restricted
ensemble

| α >

| i >
| f >

O
O



  

For Hartree-Fock calculations and in general 
for approximate variational approaches, the restricted ensemble is the one
where the variation is made (Slater determinants for Hartree-Fock). 

One must then include effects of correlations not taken into account. 
The interaction in use there is not the N-N interaction between free nucleons.
These corrections are in particular corrections due to the presence of other 
particles mocked up by a density dependence. This is generally done as

They are many parametrisations of the interaction in Hartree-Fock calculations 
among which the most popular are (beyond the p-p Coulomb interaction) :

- the Skyrme forces made of a zero range scalar term plus gradient corrections, 
a zero range spin orbit interaction and the above v

DD

- the Gogny forces made of two (finite range) gaussian scalar terms plus 
gradient corrections, a zero range spin orbit interaction and the above v

DD

vDD( r⃗ 1 , r⃗ 2) = ρ(( r⃗ 1 + r⃗ 2)/2) α δ( r⃗ 1 � r⃗ 2)



  

PARTIAL CONCLUSION: Two main routes to treat the residual interactions

Shell Model calculations
- Crude (simple) spherical model wave functions + ad hoc individual energies

- Restricted number of 1-body states to define n- particle n-hole states
- Complete many body basis given this restriction
- Elaborated residual interaction (theoretical or deduced from relevant 
experimental matrix elements)
- Good symmetries (rotational symmetry, parity, particle number)
To sum up : poor mean field excellent treatment of the residual interaction

Self-Consistent Mean Field plus Correlations Approach
- Elaborated mean field carrying most of the physics relevant to 1-body 
properties
- Effective interactions phenomenologically determined
- Approximate and partial treatment of the residual interaction
- Spurious symmetry breaking (rotational, translational symmetries, 
sometimes parity symmetry, particle number …) restored or not
To sum up : excellent mean field poor treatment of the residual interaction

H MF = ∑i
ei ai

† ai



  

i) a physical effect (due the p-p Coulomb interaction and -to a very small 
extent- to a piece of the strong interaction)
ii) a spurious effect (         depending differently on         and          ) V HF ρn ρ p



  

These spuriously broken symmetries must in principle be restored 

To do so one reconstructs good symmetry states by adding solutions with 
appropriate weights 

Intrinsic parity : involution operator P

  
∣ Φ( p)> =

∣Ψ > + p P ∣Ψ >

√2 (1 + p< Ψ∣P∣Ψ >)
leading to

E( p) =
< Ψ∣H∣Ψ > + < Ψ∣PHP∣Ψ > + p (< Ψ∣PH∣Ψ > + < Ψ∣HP∣Ψ >)

2 (1 + p< Ψ∣P∣Ψ >)

∣ ΦIM > ∝ ∫ d ω [ DMK
I (ω)]* R(ω)∣ΨK >

with R(ω) = exp(i α j x)exp(i β j y)exp(i γ j z)

makes a 
spherical
object

Superposing 
deformed 
ellipses

T.V. Nhan Hao, P. Quentin, L. Bonneau
Phys. Rev. C 86, 064307 (2012)A

+

-
Rotations : unitary rotation operator R(Ω)



  

Given a solution e.g. axially symmetrical
One has a perfect angular information on the angle of the axis of symmetry 
Heisenberg principle : 
the canonically conjugated variable, the angular momentum, is distributed
 
Upon projecting on normalized states                 of good angular momentum I

One assumes for well deformed solutions               of an even-even nucleus 
that the energies of the projected states follow a pure rotor law

Then the true ground state energy      is given by

(Lipkin approximate projection energy formula)

                              L. Bonneau, P. Quentin, D. Samsoen
                                          E. Phys. J. A21, 391 (2004)

∣ ΨK >

∣ Φ IK >
∣ ΨK > = ∑I

a I ∣ Φ IK >

∣ ΨK >

E I = <Φ IK∣H ∣Φ IK > = E0 +
ℏ2 I ( I +1)

2 J in.

E0

E0 = < ΨK∣H∣ΨK > �
< ΨK∣ J⃗2∣ΨK >

2 J in.



  

Connexion between the symmetries of the density and of the V
HF

 potential :

the symmetry properties of V
HF

 depends on the symmetry properties of v and 

of the Hartree-Fock solution 

The consistent symmetry theorem

Given a symmetry generated by some hermitian operator S 
(e.g. the angular momentum component j

z
 for a rotation around the Oz axis)

Assume that 
and that the subspace spanned by the occupied states   is invariant 
under the application of S (invariant by rotation along Oz in our example)
Then V

HF
 constructed from the set              is such that    

[∣ α > ]

[∣ α > ] [V HF , S] = 0

[ v , S] = 0



  

∀ i , j ; < i∣U V HF U +∣ j > = ∑α
<U + (i ) α∣ ṽ ∣U +( j ) α >

= ∑α
< i U (α)∣ U ṽ U+ ∣ j U (α)>

= ∑α
< i U (α)∣ ṽ ∣ j U (α)>

= ∑αβγ
( X βα)* X γα < i β∣ ṽ ∣ j γ >

since ∑α
( X βα)* X γα = δβ , γ

∀ i , j ; < i∣U V HF U +∣ j > = ∑β
< i β∣ ṽ ∣ j β > = < i∣V HF∣ j >

thus [V HF , U ] = 0 and this ∀θ thus [V HF , S] = 0

One defines from S a unitary linear operator

From                          one gets

Calling                               and with

One has
  

U = exp(i θS)

[ S , v] = 0 [U , v] = 0

ṽ = v (1 �T )

U +∣i > ≡∣U +(i )> and thus <U +(i )∣≡ < i∣U
U +∣ j U (α)> ≡∣U + ( j ) α > and thus <U +(i ) α∣≡ < i U (α)∣U



  



  

6 – Examples of correlations treatment
Pairing correlations à la BCS
One desires to mock up a state including 0- 1- 2- … Cooper pairs 
within the Bardeen Cooper Schrieffer ansatz for an even nucleus

where the products runs over a pair of states which are Kramers degenerate
(if H

HF
 is unchanged by time reversal symmetry its one-body eigenstates 

come by pairs of states – Kramers pairs - having the same eigenenergy 
which are conjugated by time reversal one from the other). 

We define positive i states as such (e.g. as in the axial symmetry case) that 
their third component of the angular momentum K is positive. 
Their time reversed pair companion would then correspond to a negative i.  
We define the u's and the v's to be real
For the BCS state to be time reversal invariant, one chooses 

∣ BCS> = ∏pair i
(ui + vi ai

† ai
†) ∣ 0 >

vi > 0 and v�i < 0 (if i > 0)
ui > 0 (for all signs of i )

∣ui∣=∣u�i∣
∣vi∣=∣v�i∣



  

For the BCS state to be normalized (the one body states i being normalized) 
one has   for all i. The    parameter corresponds to the 
occupation probability of the state i (and also of its time reversed) 

The BCS wavefunction is a sum of Slater determinants having 
0,2, 4 , … ,N-2, N, N+2, … particles 
This is of course a serious drawback of this approximation
One fixes the mean value of the number of fermions to a given value N by 
using a Lagrange parameter λ (called the chemical potential) in a variational 
process described below. 
Typically for deformed heavy nuclei one has for each charge state

The variational solution of the BCS problem is obtained by making the 
variation with respect to the sets   and as

yielding the set  and 

 

ui
2 +vi

2 = 1

√<( N�< N >)2 > = 3�4

[ vi
2 ]

vi
2

[∣ ϕi > ]

δ[ H �λn N n � λ p N p ] = 0

vi
2 =

1
2

[1 �
(ei � λ)

√∆i
2 + (ei � λ)2

]

ui
2 =

1
2

[1 +
(ei � λ)

√∆i
2 + (ei � λ)2

]

[∣ ϕi > ]



  

In the above the pairing gap is defined by

Large amplitude collective correlations 
in the Generator Coordinate Method (GCM) approach

One performs a variational calculation for a trial wave function which 
corresponds to a mixing of states 

where the                 are solutions of e.g. variational calculations under a 
constraint on a operator Q whose eigenvalue is noted q
Imposing

one has to solve the following eigenvalue problem to get the            solutions

∆ i = � ∑ j>0
< ϕi ϕT ( i ) ∣ vres∣ ϕ̃ j ϕT ( j ) > u j v j

∣ Ψ >=∫ f (q) ∣ Φq> dq

[∣ Φq >]

δ [
< Ψ ∣ H ∣ Ψ >

< Ψ ∣ Ψ >
] = 0

∫< Φq ∣ H � E ∣ Φq ' > f (q') dq' = 0

f (q)



  

In practice, one has to be careful to remove from the space spanned by the 
set               states corresponding to zero eigenvalues of the norm matrix

This approach might also be used to restore symmetries (in that case the f(q) 
might be known by theoretical arguments beforehand (one has « just » to 
perform the integration on the relevant q's)

An example 
of complicated
multiple GCM 
calculations :
projection on spin 0
followed by 
a mixing of
different quadrupole
deformation states  

[∣ Φq >]

N qq' = < Φq ∣ Φq ' >



  

Epilogue : some attempt to bridge self-consistent mean-field calculations
and shell model calculations :
The Highly Truncated Diagonalization Approach (HTDA)

The basic idea is that if some physics is included in the mean field
a mixing involving a relatively moderate number of Slater determinants
(thousands or tens of thousand states) could be enough 
to describe ground state correlations and may be low energy excited states

Moreover this presents two advantages

a) preserve by construction the particle number and the Pauli principle
(as opposed to BCS or RPA approaches)

b) make more transparent the calculational output 
For instance, one should identify directly Cooper pair excitations 
as opposed to their being dissiminated over hundred thousand components 



  

In practice

1) One  defines an « as good as possible »  mean field  
(typically through self-consistent plus BCS calculations)

2) Consider the Slater determinant             solution of the eigenvalue problem
associated with the one body hamiltonian
as a vacuum for a many-body basis 
composed of n particles - n holes (n p – n h) states excited above

3) Choose a suitable truncation of the many body basis in two ways
- considering only valence single particle states around the Fermi level
allowed to generate particle - hole excitations
(typically in the                                          interval 
for a description of pairing correlations in heavy nuclei) 
- truncate the size of the many body basis
  either in terms of a maximum order n for n p – n h states
  and/or in terms of unpertubed energies of  n p – n h states

V 0

∣Ψ0 >
H 0 = K + V 0

∣Ψ0 >

λ

[ λ � 6 , λ + 6 ] (MeV)

< np-nh∣H 0∣np-nh > = ∑
i=1

n

ei
( p) � ∑

j =1

n

e j
(h)



  

3) Approximate the residual interaction with respect to the physical problem
in accordance with the choice made for the truncated basis
- a delta force for instance for studying pairing correlations
- a low-l multipole-multipole interaction for studying RPA correlations
- a combination of them whereby using e.g. a long-range interaction …
The rationale for that may be schematized as

This formalism has mostly been used to describe pairing correlations
in even-even nuclei
It has been extended to describe rotations (within a Routhian HTDA frame)
or time - odd systems (high K-isomers, odd nuclei) which in both cases
imply a low pairing correlations regime where BCS is at fault

H = H 1b + H res. ≡ [ K + V 1b + C ] + [ v � V 1b � C ]
one chooses V 1b ≡ V HF

Ψ0 and C = � < Ψ0∣v∣Ψ0 >
thus < Ψ0∣H 1b∣Ψ0 > = < Ψ0∣H∣Ψ0 >

< Ψ0∣H res.∣Ψ0 > = 0
replace in H 1b v by e.g. a δ interaction so that
H res.≈ δ �δHF

Ψ0 + < Ψ0∣δ∣Ψ0 >



  

 

Example of results
N. Pillet, P. Quentin, J . Libert, Nucl. Phys. A697, 141 (2002)

Ground and isomeric states in 178Hf (SIII plus  δ residual interactions)

Ground state correlation energies

Isomeric energies


