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BMinNT: group theory is the perfect illustration
of a Bridging Method in Nuclear Theory !
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OUTLINE

General considerations on group theory

Some simple quantum mechanical applications

Rotations in 2 and 3 dimensions

Dynamical symmetries

The unitary group U(n)
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GENERAL CONSIDERATIONS ON GROUP
THEORY
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WHAT IS A GROUP ?
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THIS IS A VERY NICE GROUP !
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WHAT IS A GROUP ?

A group G is an ensemble of elements G = {E ,A,B,C ,D . . .} with
an internal multiplication law ◦ such that:

∀A,B ∈ G , A ◦ B ∈ G and B ◦ A ∈ G (closure relation).

∀A,B,C ∈ G , A ◦ (B ◦ C ) = (A ◦ B) ◦ C (associativity).

There exists an identity element E (from the german word
Einheit) such that ∀A ∈ G , A ◦ E = E ◦ A = A.

∀A ∈ G , there exists an inverse A−1 ∈ G such that
A ◦ A−1 = A−1 ◦ A = E .

Remarks:

−→ Often the symbol ◦ is omitted.

−→ In general the commutation is NOT commutative.
If it is the case, the group is called abelian.
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A FEW EXAMPLES...

All integers under addition (infinite, discrete, abelian group).

The n complex numbers exp(2πmi/n),m = 0, 1, . . . , n − 1 under
multiplication (cyclic group Cn, abelian).

Two-dimensional rotation group R2 (abelian).

Three-dimensional rotation group R3 (non-abelian !).

Etc. etc. etc.
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AN EXAMPLE OF A POINT GROUP

Symmetry group of the Eiffel Tower in Paris: C4v (point-group)

C4v = {E ,C4,C
2
4 ,C

3
4 , σ

(1)
v , σ

(2)
v , σ

(3)
v , σ

(4)
v }

EXERCISE: explain what are the elements of the group C4v !
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SOME USEFUL DEFINITIONS

The number of elements of a group g ≡ |G | is the order of the
group. If g is (in)finite, the groupe is called (in)finite.

For a given element A, the different powers A2, A3 etc. belong to
the group ! Therefore, for a finite group, there exists an integer n
such that An ∈ G . The smallest integer for which this relation
holds is the order of the element A.

The ensemble {E ,A,A2,A3 . . .} forms the cyclic group of order
n. Cyclic groups are abelian !

An ensemble {A,B,C ,D . . .} of elements of G is an ensemble of
generators of the group if every element of G is expressible as a
finite product of powers of {A,B,C ,D . . .}.
Note that a cyclic group is generated by a unique generator.

GS is a subgroup of G if it is itself a group with the same
multiplication law ◦. Notation: G ⊃ GS .
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INVARIANT SUBGROUPS

A subgroup H of a group G is an invariant subgroup in G when
g{H}g−1 = {H},∀g ∈ G , i.e. ghg−1 ∈ H,∀g ∈ G and ∀h ∈ H.

A group possessing no invariant subgroup apart from E and G
itself is called simple.

A group is called semi-simple if its invariant subgroups are
non-abelian.
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COSETS, CONJUGATED ELEMENTS AND
CLASSES

Be H a (proper) sub-group of G (|H| < |G |), and g ∈ G (g /∈ H).
{g ◦ H} is called the left coset of H in G and
{H ◦ g} is called the right coset of H in G , with respect to g .

An element B ∈ G is the conjugated of A if one can find g ∈ G
such that B = gAg−1.

Remark: since A = g−1Bg , A is also the conjugated element of
the element B.

Conjugated elements form a class of conjugated elements or,
simply, a class.
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LINEAR AND MATRIX REPRESENTATIONS OF A
GROUP

An application F (which associates to each element g an image
F (g)) is said to be homomorphic if

F (g1)F (g2) = F (g1g2)

Be now a linear vector space V with an ensemble of
transformations A = {T ,T ′,T ′′, . . .} acting in V, i.e.
T (αu + βv) = αTu + βTv , ∀α, β ∈ R and u, v ∈ V.

If A is homomorphic to a group G , then A is called a linear
representation of G .

If V is of finite dimension, the relation v ′ = Tv can be expressed,
within a given basis, as v ′i =

∑
j Dij(g)vj .

The set of matrices {D(g), g ∈ G} forms a group under matrix
multiplication, and the correspondance g → D(g) is called a
matrix representation of G .
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REDUCIBLE/IRREDUCIBLE and EQUIVALENT
REPRESENTATIONS

Reducible/irreducible representations

A is said to be a reducible representation of a group G in a
vector space V if there exists in V a subspace V ′ invariant with
respect to the transformations A.

If A is not reducible (i.e. only V itself is invariant), then A is an
irrreducible representation (irrep) of G .

Equivalent representations

Be 2 matrix representations T = {T (E ),T (A),T (B) . . .} and
T ′ = {T ′(E ),T ′(A),T ′(B) . . .} of a group G .

Suppose the existence of a non-singular matrix S such that
T (A) = S−1T ′(A)S (and identical relations with B, C . . . ).

Then T and T ′ are 2 equivalent representations of G .
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NOW TWO SHORT EXERCICES !

EXERCISE 1

Show that T (E ) = I (unity matrix).

EXERCISE 2

Show that T (A−1) =
[
T (A)

]−1
.
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THE SOLUTIONS !

SOLUTION TO EXERCISE 1

∀A ∈ G ,EA = AE = A implies that

T (E )T (A) = T (A)T (E ) = T (A)

If one supposes detT (A) 6= 0, this matrix equation can only be
satisfied for T (E ) = I, q.e.d.

SOLUTION TO EXERCISE 2

Since we have AA−1 = E , it follows that
T (AA−1) = T (A)T (A−1) = T (E ) = I.

Again, with the assumption detT (A) 6= 0, we obtain immediately

T (A−1) =
[
T (A)

]−1
, q.e.d.
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DIRECT PRODUCT OF GROUPS

Be two groups G1 and G2. We define the product of pair
elements as

(g1, g2)× (g ′1, g
′
2) ≡ (g1 ◦ g ′1, g2 • g ′2)

for g1, g
′
1 ∈ G1 and g2, g

′
2 ∈ G2.

The ensemble G1 ⊗ G2 of pairs (g1, g2) form a group under the
multiplication ×, called direct product of G1 and G2.
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CHARACTERS

Let us start wit two equivalent representations T and T ′:
∀A ∈ G ,T ′(A) = S T (A)S−1 (similarity transformation).

EXERCISE: show that the trace is invariant with respect to the
similarity transformation, i.e. TrT ′ = TrT .
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CHARACTERS

SOLUTION:

We have T ′ = S T S−1, and therefore

TrT ′ =
∑
i

T ′ii

=
∑
i

[
S T S−1

]
ii

=
∑
i

[∑
k

Sik (T S−1)ki

]
=

∑
i

∑
k

Sik
∑
l

Tkl (S−1)li

=
∑
kl

Tkl

∑
i

(S−1)li Sik
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CHARACTERS

Using now the fact that S−1 S = I, or, explicitly,

(S−1 S)lk = δlk =
∑
i

Sik (S−1)li

we end up with

TrT ′ =
∑
kl

Tkl

∑
i

(S−1)li Sik

=
∑
kl

Tkl δlk

=
∑
k

Tkk

= TrT q.e.d.
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CHARACTERS

Definition

Be g ∈ G and D(g) its representation, of matrix
(
D(g)

)
ij

. The

character of g ∈ G in the representation D(g) is defined as the trace

χ(g) ≡ Tr
[
D(g)

]
≡
∑
i

(
D(g)

)
ii

Theorem

Be g , h, g ′ ∈ G such that g ′ = h ◦ g ◦ h−1, meaning that g and g ′

belong to the same class of equivalence. One has χ(g ′) = χ(g).

→ One says that all elements in a class have the same character in a
given representation.

→ The character is therefore a function of classes, similarly to the fact
that a representation is a function of the elements of a group. 21 / 69



SCHUR’S LEMMAS and CRITERIA OF
IRREDUCIBILITY

Schur’s lemma I (a)

If D and D ′ are two irreps of a group G of different dimensions, and
if matrix A satisfies D(g)A = AD ′(g), ∀g ∈ G , then A = 0.

Schur’s lemma I (b)

If D and D ′ are two irreps of a group G of equal dimensions, and if
matrix A satisfies D(g)A = AD ′(g), ∀g ∈ G , then
i) Either A = 0,
ii) or D and D ′ are inequivalent, and det A 6= 0.

Schur’s lemma II

If the matrices D(g) form an irrep of a group G , and if
D(g)A = AD(g), ∀g ∈ G , then A = λI or A = 0 (λ being a
constant).
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PROPERTIES

Property 1

The number of non-equivalent irreducible representations of a given
group is EQUAL to the number of classes in the group.

Property 2

If dµ denotes the dimension of irrep [µ], nirr . the number of irreps and
nG the order of a group, it can be shown that

nirr.∑
µ=1

d2
µ = nG
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REPRESENTATIONS OF ABELIAN GROUPS

For an ABELIAN group, we have ∀g , g ′ ∈ G , gg ′ = g ′g and thus
g ′ = g g ′ g−1. This means that for an abelian group, each element
forms its own class.

Consequently, for an abelian group, the number of equivalence
classes is equal to nG , the order of the group (=number of
elements of the group).

Therefore, for an abelian group, the number of non-equivalent
irreducible representations is equal to the order of the group
(nirr . = NG ).

Using property 2 seen previously, we get

nG∑
µ=1

d2
µ = nG , which is only

possible with dµ = 1,∀µ !

Thus, for an abelian group, the irreducible representations are all
one-dimensional.
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REPRESENTATIONS OF ABELIAN GROUPS

Consider now a FINITE abelian group. In such a case, the order of
each element, say k , is finite, and we have the property

gk = E ←→ D(gk) = D(E )←→
[
D(g)

]k
= 1

Of course, for one-dimensional representations, matrix and character
will coincide: [

D(g)
]
11

= χ(g).

Therefore we get the result

χ(g) = exp 2πil/k , l = 1, . . . , k .

In other words: for such representations, the numerical values of the
characters are the complex roots of unity.
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A SIMPLE ILLUSTRATION

Let us consider the point-group C2 = {E , Ĉ2}.

For this particular example we have nirr . = 2, and each of these two
irreps is one-dimensional, since the group is abelian. We denote them
by D [1] and D [2].

We have D [1](E ) = χ(1)(E ) = I and D [2](E ) = χ(2)(E ) = I.

Furthermore one has Ĉ 2
2 = E , wherefrom

[
χ(Ĉ2)

]2
= 1, and thus

χ(Ĉ2) = ±1. We will then attribute arbitrarily χ(Ĉ2) = +1 to χ(1),
and χ(Ĉ2) = −1 to χ(2).

The results are usually summarized in a character table:

C2 E Ĉ2

D(1) +1 +1

D(1) +1 −1
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QUANTUM MECHANICAL APPLICATIONS
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SPECTROSCOPIC PROPERTIES

Consider a hamiltonian H of a quantal system invariant under all
symetry transformations g of a group G . One says also that G is
the symmetry group of H: [H,D(g)] = 0, ∀g ∈ G .

The irreps of the group are denoted by D
[µ]
ij (g), and the

corresponding invariant subspaces by {ϕ[µ];µ = 1, . . . , nirr .}:
{ϕ} = {ϕ[µ1]} ⊕ . . .⊕ {ϕ[µnirr. ]}.
In each sub-space one can introduce a basis:

B [µ] ≡ {ψ[µ]
i ; i = 1, . . . , nµ}.

Using Schur’s lemma, one can demonstrate the following theorem:

〈ψ[µ]
i |H|ψ

[ν]
j 〉 = δµν〈ψ[µ]

i |H|ψ
[µ]
j 〉
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SPECTROSCOPIC PROPERTIES

One demonstrates the following property:

∑
g∈G

D
[µ]∗

lm D(g)ψ
[ν]
i =

nG
nν
δµνδmiψ

[ν]
l

Theorem

Be ϕ
[µ]
i a solution of the Schrödinger equation Hϕ

[µ]
i = e [µ]ϕ

[µ]
i .

One demonstrates that Hϕ
[µ]
j = e [µ]ϕ

[µ]
j , which means that:

All members of the multiplet can be generated starting from one
of it’s member (this is demonstrated with the help of the above
property). (→ A multiplet is in fact an an irreducible invariant
subspace of a given group).

All members of the multiplet are degenerate with respect to
the same eigen-energy.

29 / 69



LIE GROUPS
A Lie group G of order r is a special case of of continuous group
whose elements are noted R(a); a ≡ (a1, a2, . . . , ar ) represent r real
parameters. It obeys the following 5 postulates:

There exists an identity element R(a0) such that
R(a0)R(a) = R(a)R(a0) = R(a), ∀R(a) ∈ G .
NB: usually one takes a0 = 0.
For all a one can find ā such that R(ā)R(a) = R(a)R(ā) = R(0),
which means that for all R(a) there exists an inverse
R(ā) = R−1(a).
For given parameters a and b one can find parameters c such
that R(c) = R(b)R(a), where c are real functions of a and b, i.e.
c = ϕ(a, b) (combination law for the group parameters).
Associativity: R(a)[R(b)R(c)] = [R(a)R(b)]R(c) and
ϕ(ϕ(c , b), a) = ϕ(c , ϕ(b, a)).
Parameters c above are analytical functions of a and b, and ā are
analytical functions of a.

NB: if the parameters are bounded the Lie group is called compact. 30 / 69



LIE ALGEBRAS
DEFINITION

A (real or complex) vector space A is called a Lie algebra if it has
been defined a Lie multiplication or commutator [X ,Y ] satisfying,
∀X ,Y ,Z ∈ A:

[X ,Y ] ∈ A.

[αX + βY ,Z ] = α[X ,Z ] + β[Y ,Z ], ∀α, β ∈ R or C (bilinearity).

[X ,Y ] = −[Y ,X ].[
[X ,Y ],Z

]
+
[
[Y ,Z ],X

]
+
[
[Z ,X ],Y

]
= 0

(Jacobi associativity).

STRUCTURE CONSTANTS

Within the basis {ei ; i = 1, . . . , n}, X =
∑

i a
X
i ei and Y =

∑
j a

Y
j ej .

One then writes Z = [X ,Y ] =
∑

k a
Z
k ek =

∑
ij a

X
i a

Y
j [ei , ej ].

Defining now the structure constants of the Lie algebra
[ei , ej ] =

∑
k c

k
ij ek , one can write aZk =

∑
ij c

k
ij a

X
i a

Y
j .
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GENERATORS OF LIE GROUPS

With the requirement of analyticity, each element g in the
neighborhood of the identity E can be expressed as

g(0, . . . , εj , . . . , 0) ' E + iεj Ij

where

Ij ≡
1

i

( ∂g
∂εj

)
(0)

are called the generators of the Lie group.

By successive application of the product one can reach an element of
the group at finite distance from the identity:

g(a) ≡ g(a1, . . . , ar ) = e i
∑r

i=1 ai Ii

NB: a Lie group with r parameters has r generators.
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CASIMIR OPERATORS OF LIE GROUPS

The maximal number of generators of a Lie group commuting
with each other is it’s rank.

An operator commuting with all the generators of a Lie group is
called a Casimir operator.

Theorem of Racah

The number of independent Casimir operators of a (semi-simple) Lie
group is equal to the rank of this Lie group.

Fundamental interest: the eigenvalues of the Casimir operators can be
used to label the irreps of a Lie group.
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LINK WITH LIE ALGEBRAS

It can be shown that for a given r -parameter Lie group, the generators
Ii have the following properties: if one defines the commutator
(bracket) [Ii , Ij ] ≡ Ii Ij − Ij Ii , then:

[Ii , Ij ] is a linear combination of I1, I2, . . . , Ir .

[Ii , Ij ] = −[Ij , Ii ].[
[Ii , Ij ], Ik

]
+
[
[Ij , Ik ], Ii

]
+
[
[Ik , Ii ], Ij

]
= 0.

The operators Ii are independent, and can be chosen to form a
basis of a vector space A.

If, furthermore, one introduces the bracket [ , ] as a product defined
such that K =

∑r
i αi Ii , J =

∑r
j βj Ij → [K , J] =

∑
ij αiβj [Ii , Ij ], then

A is called the Lie algebra of the Lie group.
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LINK WITH LIE ALGEBRAS

A is the ensemble of linear combinations of the generators of its
corresponding Lie group.
The relation aZk =

∑
ij c

k
ij a

X
i a

Y
j seen previously defines the

multiplication table of this algebra.
The relation [Ii , Ij ] =

∑
k c

k
ij Ik defines the structure constants

ckij of the Lie group.
Suppose now that one is able to find an ensemble of r matrices of
order p satisfying the commutation relations of a Lie algebra.
Then these matrices form a represenation of dimension p of the
Lie group, i.e.

A representation of a Lie algebra can be used to generate a
representation of the associated Lie group.

Remark: structure constants characterize a Lie group; they do not
depend on a specific representation. However they are not unique,
similarly to the group generators.
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THE GROUP R2
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THE GROUP OF 2-DIMENSIONAL ROTATIONS

Consider the ensemble of rotations of a circle around an axis
perpendicular to the circle, passing through its center.
Each element of this ensemble can be characterized by a certain
parameter taken as the rotation angle θ ∈ [0, 2π].
This ensemble of elements constitutes an example of a continous,
abelian, compact, doubly connected, one parameter Lie group,
the group of axial rotations, or group of 2-dimensional
rotations R2.

EXERCISE: find out what is meant by doubly connected by making
a simple figure !

Be T (θ) an element of this group. The composition law is given
by

T (θ)T (φ) = T (φ)T (θ) = T (θ + φ) if θ + φ < 2π

T (θ)T (φ) = T (φ)T (θ) = T (θ + φ− 2π) if θ + φ > 2π

The identity is E = T (0) and the inverse of T (θ) is T (2π − θ)37 / 69



A REPRESENTATION OF R2

What can be a representation of this group ?

Consider a transformation of the cartesian coordinates (x , y) of a
point in a plane, under the rotations of R2. This transformation
is given (in a passive view) by

T (θ)

(
x
y

)
≡
(
x ′

y ′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
To every element T (θ) one can associate an orthogonal 2x2
matrix of determinant +1, this association being one-to-one.
(Orthogonal matrix: AT = A−1).

The ensemble of such matrices is called SO(2) (Special means
det= +1), and is isomorphic to the group R2. It provides
therefore a 2-dimensional representation of the group R2.
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IRREPS OF R2

We have already observed that R2 is an abelian group, which
implies that its irreps must be one-dimensional.

To find them, we can make use of the composition law, and
remark that the only numbers (matrices 1x1 !) that satisfy to it
have the form

χ(θ) = ecθ

where c is a given number and χ(θ) the character of T (θ).

Now, since T (2π) = E , and knowing that E has to be
represented by 1 in any one-dimensional representation, we get
e2πc = 1, wherefrom c = im with m integer, or

χ(m)(θ) = e i m θ.

→ For all integer value m, this equation provides an irrep of
R2 !
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GENERATORS OF R2

Since SO(2) is a 1-parameter group, it has only 1 generator.

However, this generator will depend on the group that has been
taken as isomorphic to R2.

EXAMPLE 1: the group SO(2) itself. The generator is then given by

I =
1

i
lim
φ→0

{( cos θ sin θ
− sin θ cos θ

)
φ

−
(

1 0
0 1

)}
=

(
0 −i

+i 0

)
= σy

(Pauli matrix).

Any orthogonal 2x2 matrix with det= +1 can be written as(
cos θ sin θ
− sin θ cos θ

)
= e i φσy
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GENERATORS OF R2

EXAMPLE 2:

Consider a certain function f = f (x , y) and an orthogonal
transformation of the coordinates as seen previously:

T (φ)

(
x
y

)
≡
(
x ′

y ′

)
=

(
cosφ sinφ
− sinφ cosφ

)(
x
y

)
The action of T (φ) on the function f reads

T (φ)f (x , y) = f (x cosφ+ y sinφ,−x sinφ+ y cosφ)

The generator can be obtained using the relations

I f (x , y) =
1

i
lim
φ→0

{
f (x cosφ+ y sinφ,−x sinφ+ y cosφ)− f (x , y)

φ

}

=
1

i
lim
φ→0

{
yφ∂f∂x − xφ ∂f∂y

φ

}
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GENERATORS OF R2

This expression then reduces to

I f (x , y) =
1

i

(
y
∂

∂x
− x

∂

∂y

)
f (x , y)

Introducing the z component of the orbital angular momentum
operator

Lz =
~
i

(
x
∂

∂y
− y

∂

∂x

)
=

~
i

∂

∂φ

it is seen that an orthogonal transformation of the coordinates in
the (x , y) plane is given by

T (φ) = e−
i
~ φ Lz

The rank of SO(2) is 1, because there is only 1 generator Lz .
The eigenvalues are given by m.
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THE GROUP R3
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THE GROUP OF 3-DIMENSIONAL ROTATIONS

The group of all orthogonal spatial transformations in
3-dimensional space is usually denoted by O(3).

Alternatively, O(3) can be defined as the group of all 3x3
orthogonal matrices.

These two groups are isomorphic.

In fact, one has O(3) = SO(3)⊗ (E , Î ).

EXERCISE: explain why the ensemble of matrices of O(3) with
det= −1, does NOT form a group, in contrast to SO(3) !
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PARAMETERS OF SO(3)

According to the isomorphism between orthogonal matrices and
orthogonal transformations, it is seen that an orthogonal matrix
with det= +1 corresponds to a pure or proper rotation of the
coordinate system.

Orthogonal matrices with det= −1 correspond improper
rotation of the coordinate system.

SO(3) is a 3-parameter group which can be taken as follows: 2
angles (polar and azimuthal) characterizing the position of the
rotation axis, plus the angle of rotation about this axis. This is
known as the Darboux parametrization.
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PARAMETERS OF SO(3)

Another choice is given by the 3 Euler angles (α, β, γ): rotation about
the z axis by angle α, followed by a rotation about the y ′ axis by
angle β, followed by a rotation about the z ′′ axis by angle γ.

The Euler matrix rotation (general element of SO(3)) is

R(α, β, γ)=

 cosα cosβ cos γ − sinα sin γ sinα cosβ cos γ + cosα sin γ − sinβ cos γ
− cosα cosβ sin γ − sinα cos γ − sinα cosβ sin γ + cosα cos γ sinβ sin γ

cosα sinβ sinα sinβ cosβ
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GENERATORS OF SO(3)

The generators of SO(3) can be obtained by considering an
infinite rotation of angle ε about an axis ~u.

The group of rotations R~u(φ) (0 6 φ < 2π) is in fact a sub-group
of SO(3), isomorphic to SO(2) and therefore we have

I~u = −1

~
Lu, Lu = ~L · ~u

Since any rotation can be expressed as the product of 3 rotations
about the cartesian axes, we need the 3 operators

Ix = −1

~
Lx , Iy = −1

~
Ly , Iz = −1

~
Lz

Any rotation operator reads then

R~u(φ) = e−
i
~φ
~L·~u
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LABELLING IRREPS OF SO(3)

There are 3 generators, but each of them commutes with itself:
the rank of SO(3) is 1.

The only Casimir operator for SO(3) is ~L2. Its eigenvalues
l(l + 1), or simply the label l , serve to characterize the irreps
D(l), which are of dimensions (2l + 1).

The common eigenstates |lm〉 of ~L2 and Lz are introduced in
quantum mechanics. The group-theoretical justification for their
use is very simple, and stems from the group chain

SO(3) ⊃ SO(2)

→ l and m are labels for the Casimir operators of SO(3) and
SO(2), respectively !

48 / 69



IRREPS OF THE 3-DIMENSIONAL ROTATION
GROUP

Using Dirac ket notations, one can write

R(αβγ)|lm〉 =
∑
m′

|lm′〉〈lm′|R(αβγ)|lm〉

=
∑
m′

Dl
m′m(αβγ) |lm′〉

Dl
m′m are called Wigner functions.

EXERCISE: give a justification for this relation !
Projecting onto |θφ〉, one gets for the spherical harmonics
Ylm(θφ) ≡ 〈θφ|lm〉:

R(αβγ)Ylm(θφ) =
+l∑

m′=−l
Ylm′(θφ)D(l)

m′m(αβγ)

The spherical harmonics span/generate an irrep of
dimension (2l + 1) denoted by D(l).
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IRREDUCIBLE SPHERICAL TENSORS

An irreducible spherical tensor T k , of rank k , is defined such
that its (2k + 1) components transform under rotations as

T ′
k
q =

+k∑
q′=−k

T k
q′ D

(k)
q′q(αβγ)

An alternative (and equivalent) definition has been given by
Racah:

[Jz ,T
k
q ] = q T k

q , [J±,T
k
q ] = ~

√
k(k + 1)− q(q ± 1)T k

q±1
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SO(3) VERSUS SU(2)

Let us make a short intermezzo at this point !

Consider the Special Unitary Group SU(2) composed of all 2x2 unitary
matrices (U† = U−1) with det= +1. They can be expressed as(

a −b∗
b∗ a∗

)
, aa∗ + bb∗ = 1.

SU(2) is a 3-parameter group (a and b are called the
Cayley-Klein parameters).
One can show that each SU(2) matrix can be put into
correspondence with a unique rotation of SO(3).
However, the inverse is only partly true, since to each rotation of
SO(3) correspond 2 different SU(2) matrices ! For example, to a
rotation about Euler angles (α = 0, β = 0, γ = 0) and
(α = 0, β = 2π, γ = 0) (NO ROTATION AT ALL !) one
associates the 2 different SU(2) matrices +(I )2×2 and −(I )2×2.
One says that there is a 1 to 2 homomorphisme between SO(3)
and SU(2).
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CLEBSH-GORDAN SERIES

It is well known from the theory of angular momentum that the
coupled and uncoupled bases are related by

|JM〉 =
∑
m1m2

|j1m1; j2m2〉〈j1m1; j2m2|JM〉

The brackets 〈j1m1; j2m2|JM〉 = C JM
j1m1;j2m2

are the
Clebsh-Gordan coefficients.

It can be shown that the direct product of two SU(2) irreps D(j1)

and D(j2), denoted by D(j1) ⊗D(j2) can be decomposed into the
Clebsh-Gordan series

D(j1) ⊗D(j2) =

J=j1+j2∑
J=|j1−j2|

D(J)

Group theory gives the full justification for the angular
momentum coupling procedure !
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DIRECT AND IRREDUCIBLE TENSOR
PRODUCTS

Two irreducible spherical tensors Rk and Sk ′ can be coupled to

an irreducible spherical tensor TK =
[
Rk ⊗ Sk ′

]K
according to

the rule
TK
Q =

∑
qq′

CKQ
kq;k ′q′ R

k
q Sk ′

q′

The direct product of Rk and Sk ′ is defined as the set of
(2k + 1)(2k ′ + 1) components Rk

q Sk ′
q′ .

The direct product is in general reducible and can be decomposed
as a sum of irreducible tensors according to

Rk
q Sk ′

q′ =
K=k+k ′∑
K=|k−k ′|

CKQ
kq;k ′q′ T

K
Q
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DYNAMICAL SYMMETRIES
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DYNAMICAL SYMMETRIES

We have seen previously some examples of geometrical
symmetries.

They arise in many branches of physics: molecular, atomic,
nuclear physics...

In the context of nuclear physics, they arise for example in the
context of mean-field theories through the symmetry properties of
the mean-field potential.

There exist other forms of symmetries, called dynamical
symmetries, as they stem from particular forms of the
interactions in the system.

We will give now two well known example.
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DYNAMICAL SYMMETRY OF THE HYDROGEN
ATOM

We have noticed already that for a physical system, the bunching
of levels (eigenstates) is related to the dimensions of the irreps of
the corresponding symmetry group.
The hamiltonian of the reduced problem for the hydrogen atom
reflects spherical symmetry, thus the bound states should show
the typical (2l + 1) degeneracy characteristic for the SO(3) irreps.
Eigenenergies are En = − 1

n2
EI (n = 1, 2, 3, . . .), with ionization

energy EI ' 13.6 eV.
Each shell, characterized by n, is composed of subshells
corresponding to the values l = 0, 1, 2, . . . , (n − 1).
Each subshell with given l is composed of (2l + 1) magnetic
substates: −l 6 m 6 +l .
Therefore, each level of energy En has degeneracy
gn =

∑n−1
l=0 (2l + 1) = n2.

It can be shown that in fact the dynamical symmetry of the
hydrogen atom is O(4), which contains SO(3) as a subgroup.
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DYNAMICAL SYMMETRY OF THE ISOTROPIC
HARMONIC OSCILLATOR

The 3-dimensional isotropic harmonic oscillator is another
example where the degeneracies of the bound states are larger
than expected from the geometrical SO(3) symmetry group.

Eigenenergies are En = (n + 3
2)~ω with n = nx + ny + nz , and

thus the degeneracy of the level En is (n + 1)(n + 2)/2.

It can be shown that the dynamical symmetry group of the
3-dimensional isotropic harmonic oscillator is in fact SU(3), and,
more generally, the dynamical symmetry group of a n-dimensional
isotropic harmonic oscillator is SU(n).
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THE UNITARY GROUP U(n)
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THE UNITARY GROUP U(n)
DEFINITION

The unitary group U(n) is the ensemble of n × n complex matrices
satisfying UU† = U†U = In.

One can observe that any unitary matrix U can be expressed with the
help of Cartan-Weyl matrices eij (element in line i and column j equal
to 1, all other elements null) as

U = exp
(
i
∑
ij

aijeij

)
where aij are complex numbers satisfying aij = a∗ji .

STRUCTURE CONSTANTS

The structure constants of the U(n) can be evaluated with the help of
the Cartan-Weyl matrices :

[eij , ekl ] = δjkeil − δilekj , i , j , k , l = 1, . . . , n.
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THE UNITARY GROUP U(n) AND THE
MANY-BODY PROBLEM

Let us introduce the bosonic or fermionic creation a†i and
annihilation ai operators satisfying the commutation or
anti-commutation relations

{ai , a
†
j }± = δij and {a†k , a

†
l }± = 0.

Define the operators Aij = a†i aj .

It is straightforward to show that these operators satisfy the
commutation rules characteristic for the unitary group U(n) :

[Aij ,Akl ] = δjkAil − δilAkj , i , j , k , l = 1, . . . , n,

showing that :

The operators Aij = a†i aj (i , j = 1, . . . , n) can be considered as
generators of the unitary group U(n).

60 / 69



CONSTRUCTING BASIS FOR U(n) IRREPS

We begin by constricting an ensemble of polynomials P of order
p =

∑n
i=1 ρi in the operators a†i :

P = a†1
ρ1
a†2
ρ2
a†3
ρ3
. . . a†n

ρn
.

It can be shown that this ensemble constitutes a basis of
representations for the algebra of U(n). These representations are
however in general not irreducible.

From now on we will identify each polynomial with its weight
w = [ρ1, ρ2 . . . , ρn], and we call i-th partial weight in P the
value ρi .

Consider now two polynomials P and P ′ with weights w and w ′,
respectively and construct the difference
w ′′ = w − w ′ = [(ρ1 − ρ′1), (ρ2 − ρ′2) . . . , (ρn − ρ′n)].

We say that the weight of P is greater than the weight of P ′ if,
in w ′′, the first non-zero partial weight is positive.
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CONSTRUCTING BASIS FOR U(n) IRREPS

Polynomials P are eigenstates of the operators Aii with
eigenvalues ρi . The operators Aii are therefore called weight
generators.

The operators Aij increase the weights of polynomials if i < j .

The operators Aij decrease the weights of polynomials if i > j .

A highest weight polynomial Pmax is defined such that
AijPmax = 0, i < j , polynomials with lower weights can be
generated by repeated action of lowering-weight operators.

Each symbol [ρ1, ρ2 . . . , ρn]max with ρ1 > ρ2 > . . . > ρn can serve to
label an irrep of the group U(n). In each of these irreps, this symbol,
called highest weight, is unique.
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THE GELFAND AND ZETLIN CONSTRUCTION

The so-called Gelfand-Zetlin approach is based on the following
properties:

As seen previously, each irrep of U(n) can be characterized by its
unique highest weight vector [m1 n,m2 n, . . . ,mn n, ] where
m1 n > m2 n > . . . > mn n.

Owing to the group chain
U(n) ⊃ U(n − 1) ⊃ U(n − 2) ⊃ . . . ⊃ U(2) ⊃ U(1), it follows
that each representation space of U(n) can be decomposed into
irreps with respect to U(n-1), and so on. Therefore, in the irreps
of U(n) one only finds irreps of U(n-1) where the partial weights
of the heighest weights satisfy the betweeness conditions
mi n > mi n−1 > mi+1 n, i = 1, . . . , n − 1.
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THE GELFAND AND ZETLIN CONSTRUCTION

One represents graphically the Gelfand-Zetlin states as follows

(m)n =


m1 n m2 n m3 n . . . mn n

m1 n−1 m2 n−1 . . . mn−1 n−1

. . . . . . . . .
m1 2 m2 2

m1 1


or, in more compact form

|(m)n〉 =

∣∣∣∣∣
(

[m]n
(m)

)〉
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AN APPLICATION FOR MULTIFERMIONIC
SYSTEMS

Consider a multifermionic hamiltonian with one-body and two-body
interaction terms describing for example a mean-field plus a residual
term:

H =
∑
αβ

〈α|h1|β〉a†αaβ +
1

2

∑
αβγδ

〈αβ|h2|γδ〉a†αa
†
βaδaγ .

QUESTION: what are the basis states allowing for the diagonalisation
process of the many-body hamiltonian, in the case there are p = 2
fermions located on n = 4 valence orbitals ?

ANSWER: take the Gelfand-Zetlin construction for U(4), labelled by
the highest weight [1 1 0 0] !
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AN APPLICATION FOR MULTIFERMIONIC
SYSTEMS

|GZ 〉1 =


1 1 0 0

1 1 0
1 1

1

 , |GZ 〉2 =


1 1 0 0

1 1 0
1 0

1

 ,

|GZ 〉3 =


1 1 0 0

1 0 0
1 0

1

 , |GZ 〉4 =


1 1 0 0

1 1 0
1 0

0

 ,

|GZ 〉5 =


1 1 0 0

1 0 0
1 0

0

 , |GZ 〉6 =


1 1 0 0

1 0 0
0 0

0

 .
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A SIMPLE INTERPRETATION

Let us define the quantities

ρ0(m) = 0 and ρk(m) =
k∑

j=1

mj k , k = 1, . . . , n.

Now, omitting the labels m, one defines the Gelfand-Zetlin weight
vectors |GZ 〉i as

|GZ 〉i =


ρn − ρn−1

...
ρ2 − ρ1
ρ1 − ρ0
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A SIMPLE INTERPRETATION

In the case of the previous example, it is straightforward to get

|GZ 〉1 =


0
0
1
1

 , |GZ 〉2 =


0
1
0
1



|GZ 〉3 =


1
0
0
1

 , |GZ 〉4 =


0
1
1
0



|GZ 〉5 =


1
0
1
0

 , |GZ 〉6 =


1
1
0
0


→ Occupation representation !!!
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THANK YOU FOR YOUR ATTENTION !
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