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OUTLINE

GOALS OF THE LECTURE

General form of a two-body potential

Notion of renormalization (Wilson and by similarity tranformation SRG)

Introduction to chiral potentials

THEORETICAL AND MATHEMATICAL TOOLS

Quantum mechanics (including symmetries)

Group representation theory

Field theory
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PART 1: General form of a two-nucleon potential

1 Operator form in momentum space
2 Symmetries
3 Spin-isospin operator basis
4 Momentum structure functions
5 Final expression and Henley–Miller classification
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1) OPERATOR FORM IN MOMENTUM SPACE

Definitions

Individual momenta before pi = ~ki and after p′i = ~k ′i
interaction.
The partial matrix element 〈k ′1k ′2|V̂NN |k1k2〉 is at the same
time a function of momenta and an operator in spin and
isospin spaces

〈k ′1k ′2|V̂NN |k1k2〉 =
∑
F(k ′i ,kj) Ôs(σ̂1, σ̂2)⊗Ôt (τ̂1, τ̂2) (1)

where σ̂i and τ̂i are the Pauli spin-1/2 and isospin-1/2
matrices.
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1) OPERATOR FORM IN MOMENTUM SPACE

Momentum variables

Two-nucleon system isolated⇒ two-body problem reduces
to a one-body problem in the center-of-mass frame.
Instead of individual momenta Jacobi momenta (here,
relative and total momenta)

k =
1
2

(k1 − k2) , K = k1 + k2 (before interaction) (2a)

k ′ =
1
2

(k ′1 − k ′2) , K ′ = k ′1 + k ′2 (after interaction) (2b)

⇒ the momentum structure is a priori a function of k , k ′, K , K ′,
and one can write

〈k ′1k ′2|V̂NN |k1k2〉 = 〈k ′K ′|V̂NN |kK 〉 .
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2) SYMMETRIES

Invariance properties and conservation laws

1 invariance by translation in time⇒ conservation of energy and V̂NN is
Hermitean

2 invariance by translation in space⇒ conservation of total momentum
3 invariance by a change of Galilean frame
4 invariance by rotation⇒ conservation of total angular momentum and

the spin-space part of V̂NN is a scalar
5 invariance by space reflection⇒ conservation of parity
6 invariance by time reversal
7 invariance by permutation
8 V̂NN commutes with T̂z = 1

2 (τ̂1,z + τ̂2,z)⇒ conservation of neutron and
proton numbers
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2) SYMMETRIES

Transformation properties of spin and isospin Pauli matrices

1 Hermiticity (spin and isospin)

σ̂†i = σ̂i τ̂ †i = τ̂i (3)

2 translation in space (spin and isospin): invariant
3 change of Galilean frame (spin and isospin): invariant
4 rotation (spin only): σ̂i transforms as a vector
5 space reflection (spin only)

Π̂σ̂i Π̂
−1 = σ̂i (4)

6 time reversal (spin and isospin)

T̂ σ̂i T̂ −1 = −σ̂i (5)

T̂ τ̂i,x/z T̂ −1 = τ̂i,x/z (6)

T̂ τ̂i,y T̂ −1 = −τ̂i,y (7)

7 permutation (spin and isospin): indices 1↔ 2
8 commutation relations for isospin operators:

[τ̂x , τ̂y ] = 2 i τ̂z (+ circular permutations) (8)
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2) SYMMETRIES

Consequences for the momentum structure

1 Hermiticity:
F(k ′,K ′; k ,K ) = F(k ,K ; k ′,K ′)∗ (9)

2 invariance by translation in space

F(k ′,K ′; k ,K ) = δ(K ′ − K )F(k ′, k ,K ) (10)

3 invariance by a change of Galilean frame

F(k ′, k ,K ) = F(k ′, k) (11)

4 invariance by rotation: F(k ′, k) and Ôs(σ̂1, σ̂2) are spherical tensors
of the same rank, fully contracted to form a scalar Spherical tensors

5 invariance by space reflection:

Π̂k Π̂−1 = −k ⇒ F(k ′, k) = F(−k ′,−k) (12)

⇒ F involves products of an even number of momentum vectors
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2) SYMMETRIES

Consequences for the momentum structure

6 invariance by time reversal + Hermiticity

F(k ′,k) = F(−k ,−k ′) (13)

7 invariance by permutation: same constraint as from space
reflection

P̂12k P̂−1
12 = −k ⇒ F(k ′,k) = F(−k ′,−k) (14)

⇒ no additional constraint on F
8 commutation with T̂z : any F(k ′,k) commutes with isospin

operators
⇒ no additional constraint on F
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3) SPIN-ISOSPIN OPERATOR BASIS

Group representation method1

Notations:

Es = Hilbert space of spin states of 1 nucleon (s = 1/2)
⇒ dim Es = 2s + 1

Et = Hilbert space of isospin states of 1 nucleon (t = 1/2)
⇒ dim Et = 2t + 1

E = Es ⊗ Et = Hilbert space of spin and isospin states of 1
nucleon

E⊗N = Hilbert space of spin and isospin states of N nucleons

E = (E⊗N)∗ ⊗ E⊗N = vector space of linear operators acting on
E⊗N (two-nucleon spin-isospin operators)

Remark: F∗ is the dual space of the vector space F, that is the vector space
of linear applications from F to R (such as the scalar product)

1Method due to Phillips and Schat, Phys. Rev. C 88, 034002 (2013).
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3) SPIN-ISOSPIN OPERATOR BASIS

Group representation method

Main ideas:

1 Build irreducible representations (irreps) D of the group SU(4) in
the vector space E

2 Decompose the restriction of D to the subgroup
SU(2)s × SU(2)t ⊂ SU(4) into irreps of SU(2)s × SU(2)t in the
vector space E (using so-called branching rules2)⇒ each such
irrep is labeled by spin and isospin quantum numbers which are
the ranks of the corresponding spin and isospin spherical-tensor
operators

2See, e.g, Hecht and Pang, J. Math. Phys. 10, 1571 (1969).
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3) SPIN-ISOSPIN OPERATOR BASIS

Application to two-nucleon spin-isospin operators

Irrep of SU(4) in the spin-isospin space of 1 nucleon: fundamental

representation R1 =
4

(of dimension (2s + 1)(2t + 1) = 4)

Irreducible decomposition of the tensor product R⊗2
1 =

4
⊗

4
into

irreps R2 of SU(4) in the spin-isospin space of 2 nucleons:

4
⊗

4
=

6

⊕
10

(15)

Branching rules: irreducible decomposition of

6

and
10

into irreps

of SU(2)s × SU(2)t denoted by (DS ,DT ) 3

6

= (D0,D1)⊕ (D1,D0)
10

= (D0,D0)⊕ (D1,D1) (16)

3 DJ is the irrep of SU(2) in the vector space of angular-momentum states |JM〉
(of dimension 2J + 1).
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3) SPIN-ISOSPIN OPERATOR BASIS

Application to two-nucleon spin-isospin operator basis

Using the property

(DS1 ,DT1 )⊗ (DS2 ,DT2 ) = (DS1 ⊗ DS2 ,DT1 ⊗ DT2 ) (17)

and the Clebsch–Gordan series

Dj1 ⊗ Dj2 =

j1+j2⊕
J=|j1−j2|

DJ (18)

decompose R⊗2
1 ⊗ R⊗2

1 into irreps of SU(2)s × SU(2)t

R⊗2
1 ⊗ R⊗2

1 = 4 (D0,D0)⊕ 6 (D1,D0)⊕ 2 (D2,D0) (isoscalar, T = 0)

⊕ 6 (D0,D1)⊕ 9 (D1,D1)⊕ 3 (D2,D1) (isovector, T = 1)

⊕ 2 (D0,D2)⊕ 3 (D1,D2)⊕ (D2,D2) (isotensor, T = 2)
(19)

Spin-isospin operator basis contains 4 spin-scalar–isospin-scalar
operators, 6 spin-vector–isospin-scalar operators, ... and 1
rank-2-spin–rank-2-isospin operator
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3) SPIN-ISOSPIN OPERATOR BASIS

Explicit form

Spin operators

Rank S Operators Number

0 1, σ̂1 · σ̂2 2

1 σ̂1 ± σ̂2, σ̂1 × σ̂2 3

2 {σ̂1 ⊗ σ̂2}2 1

Isospin operators

Rank T Operators Number

0 1, τ̂1 · τ̂2 2

1 τ̂1 ± τ̂2, τ̂1 × τ̂2 3

2 {τ̂1 ⊗ τ̂2}2 1
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4) MOMENTUM STRUCTURE FUNCTIONS

Tensor products of vectors

A B

(L)
= {A⊗ B}L (20a)

(L)

A

B

C
(`)

= {{A⊗ B}` ⊗ C}L (20b)

(L)

A

B C

D

(`) (`′)

= {{A⊗ B}` ⊗ {C ⊗ D}`′}L (20c)
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4) MOMENTUM STRUCTURE FUNCTIONS

Elementary tensor-product structures

Problem: determine all the independent (non redundant) tensor structures of
fixed rank L from a given set of momentum vectors with repetitions allowed,
called elementary structures

Example for 2-nucleon case: scalar structures from momentum vectors at
hand k and k ′

using 2 vectors in the product: k · k , k · k ′, k ′ · k ′

using 3 vectors in the product: no non-vanishing structures (for example
(k × k ′) · k = 0)

using 4 vectors: no structures independent of those with fewer vectors (for
example (k × k ′)× (k × k ′) = k · k − k ′ · k ′, so it is not elementary)

21/57



4) MOMENTUM STRUCTURE FUNCTIONS

Independent elementary tensor structures (green: allowed by parity)

Rank L Elementary tensor products Hermitean momentum structures

0
(0)

(scalar product) k , k ′, k ′ · k (or q, p, q · p)

(0)

(1)

(scalar triple product) 0

1
(1)

(“initial” vector) iq, p

(1)

(vector product) ik ′ × k = iq × p

with k =
√

k · k , q = k ′ − k and p = 1
2 (k ′ + k) 22/57



4) MOMENTUM STRUCTURE FUNCTIONS

Independent elementary tensor structures (green: allowed by parity)

Rank L Elementary tensor products Hermitean momentum structures

2
(2)

{q ⊗ q}2, {p ⊗ p}2, i {q ⊗ p}2

(2)

(1)

{(q × p)⊗ q}2, i {(q × p)⊗ p}2

(2)

(1) (1)

{(q × p)⊗ (q × p)}2
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5) FINAL EXPRESSION

Henley–Miller classification

〈k ′1k ′2|V̂NN |k1k2〉 = δ(K ′−K )
(
〈k ′|v̂ (I)|k〉+〈k ′|v̂ (II)|k〉+〈k ′|v̂ (III)|k〉+〈k ′|v̂ (IV)|k〉

)
(21)

Class I: isospin invariant (isoscalar)

Class II: charge symmetric Vnn = Vpp 6= Vnp (isotensor)

Class III: charge symmetry breaking but commutes with T̂ 2 (isovector
∝ T̂z )

Class IV: full isospin symmetry breaking (remaining isovector)
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5) FINAL EXPRESSION

Class I (isospin invariant)

〈k ′|v̂ (I)|k〉 = (V (I)
C + W (I)

C τ̂1 · τ̂2)1s + (V (I)
S + W (I)

S τ̂1 · τ̂2) σ̂1 · σ̂2

+ (V (I)
LS + W (I)

LS τ̂1 · τ̂2) i (k ′ × k) · (σ̂1 + σ̂2)

+
[
(V (I)

T + W (I)
T τ̂1 · τ̂2) {q ⊗ q}2 + (V ′(I)

T + W ′(I)
T τ̂1 · τ̂2) {p ⊗ p}2

+ (V (I)
Lσ + W (I)

Lσ τ̂1 · τ̂2) {(k ′ × k)⊗ (k ′ × k)}2

]
· {σ̂ ⊗ σ̂}2

(22)

where all form factors V and W are real scalar functions of k , k ′ and k ′ · k ,
symmetric under the exchange of k and k ′, and q = k ′ − k , p = 1

2 (k ′ + k)
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5) FINAL EXPRESSION

Classes II, III and IV

〈k ′|v̂ (II)|k〉 =
[
V (II)

C + V (II)
S σ̂1 · σ̂2 + V (II)

LS i (k ′ × k) · (σ̂1 + σ̂2) +
(

V (II)
T {q ⊗ q}2

+ V ′(II)
T {p ⊗ p}2 + V (II)

Lσ {(k
′ × k)⊗ (k ′ × k)}2

)
· {σ̂ ⊗ σ̂}2

]
{τ̂ ⊗ τ̂}20

(23)

〈k ′|v̂ (III)|k〉 =
[
V (III)

C + V (III)
S σ̂1 · σ̂2 + V (III)

LS i (k ′ × k) · (σ̂1 + σ̂2) +
(

V (III)
T {q ⊗ q}2

+ V ′(III)
T {p ⊗ p}2 + V (III)

Lσ {(k
′ × k)⊗ (k ′ × k)}2

)
· {σ̂ ⊗ σ̂}2

]
(τ̂1 + τ̂2)0︸ ︷︷ ︸

2 T̂z

(24)

〈k ′|v̂ (IV)|k〉 = i (k ′ × k) ·
(

V (IV)
1 (σ̂1 − σ̂2) (τ̂1 − τ̂2)0 + V (IV)

2 (σ̂1 × σ̂2) (τ̂1 × τ̂2)0

)
(25)

Remark: the Coulomb potential is a combination of classes I, II and III

26/57



PART 2: Introduction to chiral potentials

1 From QCD to chiral EFT Lagrangian
2 Derivation of the internucleon potential
3 Regularization and Wilson renormalization
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1) FROM QCD TO CHIRAL EFT

Fundamental interactions

Strong interaction: quantum chromodynamics (QCD) by Politzer,
Wilczek et Gross (Nobel prize in 2004); responsible for nuclear binding

Electromagnetic and weak interactions: electroweak theory by
Glashow, Salam and Weinberg (Nobel prize 1979); weak interaction
responsible for β decay of nuclei; electrostatic (Coulomb) interaction
responsible for limit of stability (fission of heavy nuclei)

QCD non usable at the energy scale of atomic nuclei because relevant
degrees of freedom are nucleons and pions, not quarks and gluons

⇒ need for building effective interactions betweens degrees of freedom
adapated to nuclear-structure scales
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1) FROM QCD TO CHIRAL EFT

Chiral symmetry of QCD and pions

Introduction to field theory

Decoupling of light-quark (u, d, s) and heavy-quark (c, b, t) sectors

muc2 ≈ 2.5 MeV, md c2 ≈ 5 MeV and msc2 ≈ 101 MeV
⇒ u et d quarks only (2 flavors)

mu,md � mhadrons ⇒ limit of vanishing mass in LQCD: chiral symmetry
(ψquarks → γ5ψquarks, γ5 = iγ0γ1γ2γ3) and isospin symmetry (mixing of u
and d fields; true if mu = md )

Spontaneous chiral-symmetry breaking (solution does not have
symmetry of Lagrangian)
⇒ massless Goldstone bosons associated = pions (mesons
π0 → uu/dd , π+ → ud , π+ → ud)

In fact mπ 6= 0 but small because chiral symmetry is approximate
(mu,d 6= 0 but small)
⇒ pions reflect at the same time spontaneous and explicit breaking of
chiral symmetry
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1) FROM QCD TO CHIRAL EFT

Chiral effective-field theory

Most general Lagrangian respecting all symmetries of underlying theory
(QCD), especially chiral symmetry, using nucleon and pions field

Leff = LN + Lπ + LπN (26)

Chiral perturbation theory:
Leff contains an infinite number of terms⇒ need to order these terms
according to decreasing importance
Truncation of Leff as a function of (Q/Λχ)ν where Q is a momentum
transfer, Λχ ∼ 1 GeV the chiral-symmetry breaking scale, and ν an integer
which depends on the number of interacting nucleons and the number of
exchanged mesons
At a given truncation order ν, L

(ν)
eff contains a finite number of terms
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1) FROM QCD TO CHIRAL EFT

Hierarchy of chiral forces
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2) DERIVATION OF THE INTERNUCLEON POTENTIAL

Definition

V = iM whereM is the scattering amplitude of the process
(example of one-pion exchange two-nucleon potential)

k1

k2

qk ′1

k ′2

In a potential description of interactions, the propagation time of
the exchanged pions is neglected⇒ instantaneous interaction
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2) DERIVATION OF THE INTERNUCLEON POTENTIAL

Calculation by the Feynman rules
In the heavy-baryon approximation (mN � mπ) and non relativistic limit, the
dominant long-range part of the pion–nucleon Lagrangian is

L (AV )
πN = − gA

2Fπ
N
(
τ ·
[
(σ ·∇)π

])
N (27)

k −k

q

k ′ −k ′

V (AV )
NN = i

(
− gA

2Fπ

)
(σ1 · q) τ a

1︸ ︷︷ ︸
left vertex

× iδab

−q2 −m2
π︸ ︷︷ ︸

pion propagator

×
(
− gA

2Fπ

)
(σ2 · q) τ b

2︸ ︷︷ ︸
right vertex

(28)

= −
( gA

2Fπ

)2 (σ1 · q)(σ2 · q)

q2 + m2
π

τ1 · τ2 (one-pion exchange potential) (29)
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3) REGULARIZATION AND WILSON RENORMALIZATION

Design of effective theories4

Low-energy phenomena can be sensitive to short-distance
physics, but not its details

Freedom to redesign the short-distance interaction (Lagrangian,
potential...) ⇒ effective theories describing any low-energy data
with arbitrary precision

1 Incorporate in the interaction the correct long-range behavior in
the potential (supposed to be known from underlying theory,
including parameters)

2 Introduce a cutoff to exclude explicit high-momentum contributions
and make interactions regular at r = 0

3 Add counterterms to the interaction to mimic the
short-distance/high-momentum effects and remove the cutoff
dependence

4See G. P. Lepage lecture notes, “How to renormalize the Schrödinger equation”,
arXiv:nucl-th/9706029v1 (1997). Link to arXiv
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3) REGULARIZATION AND WILSON RENORMALIZATION

Application to leading-order chiral potential

Renormalization applied to chiral effective Lagrangian yields at LO

V̂ (LO)
NN = v̂1π + v̂ (0)

ct (30)

where

long range: 〈k ′|v̂1π|k〉 = −
( gA

2fπ

)2 (σ̂1 · q) (σ̂2 · q)

q2 + m2
π

τ̂1 · τ̂2 fΛ(k ′, k)

(31a)

short range: 〈k ′|v̂ (0)
ct |k〉 =

(
CS(Λ) + CT (Λ) σ̂1 · σ̂2

)
fΛ(k ′, k) (31b)

typical cutoff function: fΛ(k ′, k) = e−(k ′ 6+k6)/Λ6
(31c)

CS(Λ) and CT (Λ) constants are to be fitted to some low-energy data
(typically scattering data at specific energies) for a given cutoff 5

5E. Epelbaum et al., Nucl. Phys. A747 (2005)
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COMPUTER SESSION

Renormalization of Schrödinger equation
Renormalization applied to the Schrödinger equation of a spinless
particle in a local, central potential[

− ~2

2µ
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
2µr2 L2

]
ψ(r) + V (r)ψ(r) = Eψ(r) . (32)

Setting ψ(r) = u`(r)
r Y m

` (r̂) we get

− ~2

2m

(
− d2

dr2 +
`(`+ 1)

r2

)
u`(r) + V (r) u`(r) = E u`(r) . (33)

Work to do
Compute eigenvalues E for a given “bare” potential V (r) whose
long-range behavior is known

Replace V (r) with an effective potential Veff(r) having the same
long-range form and counterterms with 2 constants

Fit the 2 parameters to the least-bound state energy

Plot relative error on remaining eigenvalues for bound states as a
function of energy (Lepage plot)
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SUMMARY
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PART 3: SRG transformation of V̂NN for
nuclear-structure calculations

1 Renormalization by similarity transformation
2 Application to the potential
3 Evolution of other operators
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1) RENORMALIZATION BY SIMILARITY TRANSFORMATION

Effective potentials for nuclear-structure calculations

Non observable character of a potential V̂ and a Hamiltonian Ĥ: only
the eigenvalues of Ĥ are observables (can be measured), neither its
matrix elements nor its eigenvectors

Reduction to a restricted Hilbert space for practical reasons: need for a
transformation preserving the spectrum of Ĥ

Ĥ|Ψ〉 = E |Ψ〉
⇐⇒

Ĥeff|Ψeff〉 = E|Ψeff〉
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1) RENORMALIZATION BY SIMILARITY TRANSFORMATION

SRG method6

Idea: succession of infinitesimal, unitary transformations Ûs of a
Hamiltonian Ĥ to bring it into a simpler form for subsequent
nuclear-structure calculations (Wegner 1994, Glazek et Wilson 1993)
“Flow equation” for the transformed Hamiltonian Ĥs = ÛsĤÛ†s , Ûs=0 = 1

Ûs unitarity: Û−1
s = Û†s ⇒ Ûs

dÛ†s
ds

= −dÛs

ds
Û†s (34)

dĤs

ds
=

dÛs

ds
ĤÛ†s + ÛsĤ

dÛ†s
ds

= −Ûs
dÛ†s
ds

ÛsĤÛ†s︸ ︷︷ ︸
Ĥs

+ ÛsĤ︸︷︷︸
ĤsÛs

dÛ†s
ds

=
[
η̂s, Ĥs

]
where η̂s = −Ûs

dÛ†s
ds

=
dÛs

ds
Û†s (35)

Generator of the transformation: Hermitean operator Ĝs defined by

η̂s ≡
[
Ĝs, Ĥs

]
(36)

6R. J. Furnstahl, Nucl. Phys. B (Suppl.) 228 (2012). 40/57



1) RENORMALIZATION BY SIMILARITY TRANSFORMATION

Choice of the generator

Flow equation of Ĥs in terms of Ĝs

dĤs

ds
=
[[

Ĝs, Ĥs

]
, Ĥs

]
(37)

With an appropriate choice of the generator Ĝs defined by η̂s ≡
[
Ĝs, Ĥs

]
, one

can tailor the final form of the Hamiltonian Ĥ∞ = lim
s→∞

Ĥs

Ĝs = T̂ (relative kinetic energy): the Hamiltonian is driven to a diagonal form
(see computer session)

Ĝs =

(
P̂ĤsP̂ 0

0 Q̂ĤsQ̂

)
, where P̂ and Q̂ are projectors such that P̂ + Q̂ = 1

and P̂Q̂ = Q̂P̂ = 0: the Hamiltonian is driven to a block-diagonal form (useful to
decouple low- and high-momentum states)

41/57



2) APPLICATION TO THE POTENTIAL

Evolution of the potential: simple numerical example

H = T +V with T =

(
3 0

0 9

)
and V =

(
6 4

4 6

)
(spectrum of H : 7 and 17)

Transformation of hamiltonian matrix : H(s) = U(s) H U(s)†

SRG flow equation for the transformed potential matrix V (s) ≡ H(s)− T

dV (s)

ds
= [[T ,V (s)] ,T + V (s)]

with V (s) =

(
V11(s) V12(s)

V12(s) V22(s)

)
, hence the nonlinear order-1 differential system



dV11

ds
= −12 V 2

12(s)

dV22

ds
= 12 V 2

12(s)

dV12

ds
= −6 V12(s)

(
6 + V22(s)− V11(s)

) with


V11(0) = 6
V22(0) = 6
V12(0) = 4
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2) APPLICATION TO THE POTENTIAL

Evolution of the potential: simple numerical example

Numerical solution using the Runge–Kutta method of order 4
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λ = s
-1/4

V22

V11
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lim
s→∞

H(s) =

(
7 0

0 17

)
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2) APPLICATION TO THE POTENTIAL

Induced interactions

Flow equation in operator form

Practical calculations require a choice of basis

In basis of physical states of A nucleons (Slater determinants for
example, see lecture by Ph. Quentin), SRG evolution of N-body
interactions with N < A induce N + 1-interactions, N + 2-interactions...

dVs

ds
=

[[ ∑
a†a︸ ︷︷ ︸

1-body Ĝs

,
∑

a†a†aa︸ ︷︷ ︸
2-body Ĥs

]
,
∑

a†a†aa︸ ︷︷ ︸
2-body Ĥs

]

= · · ·+
∑

a†a†a†aaa︸ ︷︷ ︸
3-body

+ · · · (38)

In practical calculations, truncation of normal ordered right-hand side7

7See, e.g., P. Roth et al., Phys. Rev. Lett. 109, 052501 (2009).
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3) EVOLUTION OF OTHER OPERATORS

Determination of the unitary transformation Ûs

By flow equation: according to the relation between η̂s and Ûs

ηs =
dÛs

ds
Û†s

and the definition of the generator

η̂s ≡
[
Ĝs, Ĥs

]
,

and using unitarity of Ûs, one can deduce the flow equation

dÛs

ds
=
[
Ĝs, Ĥs

]
Ûs (39)

⇒ Ûs evolved at the same time as Ĥs

By diagonalization of Ĥs: eigenstates |Ψi (s)〉

Ûs =
∑

i

|Ψi (s)〉〈Ψi (0)| (40)
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3) EVOLUTION OF OTHER OPERATORS

Transformed operators

Let Ô be a Hermitean operator (observable). After SRG
evolution up to s, the transformed operator is given by

Ôs = ÛsÔÛ†s . (41)

It can be calculated directly by matrix multiplication once Ûs is
calculated, or evolved along with the Hamiltonian according to a
similar flow equation

dÔs

ds
=
[[

Ĝs, Ĥs

]
, Ôs

]
(42)
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COMPUTER SESSION

SRG transformation of a matrix

Let H = T + V be a symmetric real matrix of order n, where T is
diagonal.

Reproduce the above numerical example.

Compute the matrix P(0) of eigenvectors of the initial matrix H.

Calculate the unitary transformation matrix U(s) for an arbitrary
value of s.

Compute the matrix P(s) of eigenvectors of evolved Hamiltonian
matrix H(s).

Establish the relation between U(s), P(s) and P(0) and check it
numerically.
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APPENDIX A SPHERICAL TENSORS8

Vectors as rank-1 tensors

A triplet (v1, v2, v3) is said to be a vector of R3 with respect to rotations if
it transforms as follows under rotation in a fixed frame

v ′1
v ′2
v ′3

 = R


v1

v2

v3

 (43)

where R is the rotation matrix

Spherical components of a vector v of Cartesian components
(vx , vy , vz)

v∓1 = ± 1√
2

(vx ∓ i vy ) (44a)

v0 = vz (44b)

Back to symmetries

8See lecture by H. Molique at this school (Friday June 30)
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APPENDIX A SPHERICAL TENSORS

Vectors as rank-1 tensors

Example: spherical harmonics Y1 =
(
Y−1

1 ,Y 0
1 ,Y

1
1
)


Y−1

1 (θ′, ϕ′)

Y 0
1 (θ′, ϕ′)

Y 1
1 (θ′, ϕ′)

 = R


Y−1

1 (θ, ϕ)

Y 0
1 (θ, ϕ)

Y 1
1 (θ, ϕ)


The three spherical components of Y1 are Y m

1 with −1 6 m 6 1.

Back to symmetries
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APPENDIX A SPHERICAL TENSORS

Rank-2 tensors

Rank-2 tensor from two vectors: T2 ≡ {u ⊗ v}2 has 2× 2 + 1 = 5
spherical components T2µ

T2µ =
∑
µ1,µ2

C2µ
1µ11µ2

uµ1 vµ2 =


u±1v±1 if µ = ±2

1√
2

(u±1v0 + u0v±1) if µ = ±1
1√
6

(u+1v−1 + u−1v+1 + 2u0v0) if µ = 0
(45)

Group-theoretical definition: set of 5 numbers that transform under a
rotation R in the same way as the spherical harmonic Y m

2 (θ, ϕ), namely
according to

Y m
2 (θ′, ϕ′) =

2∑
m′=−2

[
D(2)

mm′(R)
]∗

Y m′
2 (θ, ϕ) (46)

where D(2)
mm′(R) is the element (m,m′) of the so-called Wigner rotation

matrix, defined by D(`)
mm′ = 〈`m|R̂|`m′〉 where R̂ is the rotation operator

Back to symmetries
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APPENDIX B INTRODUCTION TO FIELD THEORY

Lagrange formulation of classical Mechanics

1) ONE-PARTICLE SYSTEM

Degrees of freedom qi (length or angle) and time derivatives q̇i = dqi
dt

considered to be independent variables

Lagrange function or Lagrangian L = difference between kinetic and
potential energies

L(qi , q̇i , t) ≡ T − V (47)

Action for fixed end-points

S =

∫ t2

t1

L(qi (t), q̇i (t), t) dt (48)

Back to QCD
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APPENDIX B INTRODUCTION TO FIELD THEORY

Lagrange formulation of classical Mechanics

1) ONE-PARTICLE SYSTEM

Equations of motion result from variational principle: the action is
stationary around the path in space-time corresponding to the solution

Credit: Wikipedia

⇒ Euler–Lagrange equations

d
dt

( ∂L
∂q̇i

)
−
( ∂L
∂qi

)
= 0 (49)

Back to QCD
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APPENDIX B INTRODUCTION TO FIELD THEORY

Lagrange formulation of classical Mechanics

2) MANY-PARTICLE SYSTEM: INFINITE CHAIN OF POINTLIKE MASSES

xq1 q2 q3 q4 q5

Equilibrium solution: qn = n ∆x

Lagrangian: L(qn, q̇n) =
∞∑

n=−∞

[
1
2 m q̇2

n − 1
2 k (qn − qn+1)2

]
Notation: qn = ϕ(n∆x , t) where the real, scalar function ϕ gives the
abscissa on the x axis at time t (called a real, scalar field)

Back to QCD
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APPENDIX B INTRODUCTION TO FIELD THEORY

Lagrange formulation of classical Mechanics

3) CONTINUUM LIMIT

∆x → 0

Order 1 Taylor expansion

qn+1(t)− qn(t) = ϕ((n + 1)∆x , t)− ϕ(n∆x , t) ≈ ∆x
(∂ϕ
∂x

)
x=n∆x

(50)

∞∑
n=−∞

1
2

k (qn − qn+1)2 ≈ 1
2
ρ c2

∫ ∞
−∞

(∂ϕ
∂x

)2
dx (51)

where ρ =
m

∆x
and c =

√
k
m

∆x . Similarly for the kinetic term

∞∑
n=−∞

1
2

k q̇2
n ≈

1
2
ρ

∫ ∞
−∞

(∂ϕ
∂t

)2
dx (52)

Back to QCD
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APPENDIX B INTRODUCTION TO FIELD THEORY

Lagrange formulation of classical Mechanics

3) CONTINUUM LIMIT

Lagrangian becomes an integral over the coordinate variable x

L(t) =

∫ ∞
−∞

L (ϕ, ∂xϕ, ∂tϕ) dx (53)

where L is a Lagrangian density (often improperly called Lagrangian)

L (ϕ, ∂xϕ, ∂tϕ) =
1
2
ρ
(∂ϕ
∂t

)2
− 1

2
ρ c2

(∂ϕ
∂x

)2
(54)

Euler–Lagrange equation becomes, with implicit summation over
repeated indices µ ∈ {x , t}

∂µ
( ∂L

∂(∂µϕ)

)
− ∂L

∂ϕ
= 0 (55)

that is
1
c2

∂2ϕ

∂t2 =
∂2ϕ

∂x2 (longitudinal wave equation) (56)
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APPENDIX B INTRODUCTION TO FIELD THEORY

Lagrangian for the Dirac equation

Dirac equation as a relativistc equation of motion for a free spin-1/2
single particle

i~γµ∂µΨ(x)−mc Ψ(x) = 0 (57)

where Ψ(x) is the wavefunction of the particle (4-component spinor),
x = (xµ, µ = 0, ...3) = (ct , x , y , z) is a 4-vector, and γµ (µ = 0, 1, 2, 3)
are the Dirac 4x4 matrices

γ0 =

(
I2 0

0 I2

)
γk =

(
0 σk

−σk 0

)
(I2 =2x2 unit matrix,

σk = Pauli matrix, k = x , y , z)

Lagrangian density

L (Ψ,Ψ, ∂µΨ, ∂µΨ) =
i~
2

[
Ψγµ(∂µΨ)− (∂µΨ)γµΨ

]
−mc ΨΨ (58)

where Ψ is the conjugate spinor (field independent of Ψ)

Ψ = Ψ†γ0 (59)

Back to QCD
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