Modern effective interactions
 Ludovic Bonneau (University of Bordeaux-CENBG) bonneau@cenbg.in2p3.fr

June 29, 2017

Bridging Methods in Nuclear Theory 2017 (IPHC, Strasbourg)

Introduction

Nuclear Structure Theory

Introduction Nuclear Structure Theory

DOE/NSF NSAC, Long-Range Plan 2007

Introduction Nuclear Structure Theory

$4 / 57$

Introduction
 Nuclear Structure Theory

Nuclear Landscape

R.J. Furnstahl, NPB (Suppl.) 228 (2012).

Outline

Goals of The lecture

- General form of a two-body potential
- Notion of renormalization (Wilson and by similarity tranformation SRG)
- Introduction to chiral potentials

THEORETICAL AND MATHEMATICAL TOOLS

- Quantum mechanics (including symmetries)
- Group representation theory
- Field theory

References:

[1] J. Dobaczewski, "Interactions, symmetry breaking and effective fields", lecture at the Ecole Joliot-Curie de Physique Nucléaire (2002),
[2] E. Epelbaum, "Nuclear Forces from chiral effective field theory", lecture at the 2009 Joliot-Curie School of Nuclear Physics. - Link to EJC 09
[3] R. Machleidt and D. R. Entem, Phys. Rep. 503 (2011).
[4] R.J. Furnstahl, "Renormalization Group in Nuclear Physics", Nucl. Phys. B (Suppl.) 228 (2012).
[5] G. P. Lepage, "How to renormalize the Schrödinger equation", arXiv:nucl-th/9706029v1 (1997).

Outline

PART 1: General form of a two-nucleon potential

(1) Operator form in momentum space
(2) Symmetries
(3) Spin-isospin operator basis
(9) Momentum structure functions
(6) Final expression and Henley-Miller classification

Definitions

- Individual momenta before $\boldsymbol{p}_{i}=\hbar \boldsymbol{k}_{i}$ and after $\boldsymbol{p}_{i}^{\prime}=\hbar \boldsymbol{k}_{i}^{\prime}$ interaction.
- The partial matrix element $\left\langle\boldsymbol{k}_{1}^{\prime} \boldsymbol{k}_{2}^{\prime}\right| \hat{V}_{N N}\left|\boldsymbol{k}_{1} \boldsymbol{k}_{2}\right\rangle$ is at the same time a function of momenta and an operator in spin and isospin spaces

$$
\begin{equation*}
\left\langle\boldsymbol{k}_{1}^{\prime} \boldsymbol{k}_{2}^{\prime}\right| \hat{V}_{N N}\left|\boldsymbol{k}_{1} \boldsymbol{k}_{2}\right\rangle=\sum \mathcal{F}\left(\boldsymbol{k}_{i}^{\prime}, \boldsymbol{k}_{j}\right) \hat{O}_{s}\left(\hat{\sigma}_{1}, \hat{\boldsymbol{\sigma}}_{2}\right) \otimes \hat{O}_{t}\left(\hat{\tau}_{1}, \hat{\tau}_{2}\right) \tag{1}
\end{equation*}
$$

where $\hat{\sigma}_{i}$ and $\hat{\tau}_{i}$ are the Pauli spin-1/2 and isospin-1/2 matrices.

Momentum variables

- Two-nucleon system isolated \Rightarrow two-body problem reduces to a one-body problem in the center-of-mass frame.
- Instead of individual momenta \rightsquigarrow Jacobi momenta (here, relative and total momenta)

$$
\begin{array}{rlll}
\boldsymbol{k} & =\frac{1}{2}\left(\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right), & \boldsymbol{K}=\boldsymbol{k}_{1}+\boldsymbol{k}_{2} & \text { (before interaction) } \\
\boldsymbol{k}^{\prime} & =\frac{1}{2}\left(\boldsymbol{k}_{1}^{\prime}-\boldsymbol{k}_{2}^{\prime}\right), & \boldsymbol{K}^{\prime}=\boldsymbol{k}_{1}^{\prime}+\boldsymbol{k}_{2}^{\prime} & \text { (after interaction) } \tag{2b}
\end{array}
$$

\Rightarrow the momentum structure is a priori a function of $\boldsymbol{k}, \boldsymbol{k}^{\prime}, \boldsymbol{K}, \boldsymbol{K}^{\prime}$, and one can write

$$
\left\langle\boldsymbol{k}_{1}^{\prime} \boldsymbol{k}_{2}^{\prime}\right| \hat{V}_{N N}\left|\boldsymbol{k}_{1} \boldsymbol{k}_{2}\right\rangle=\left\langle\boldsymbol{k}^{\prime} \boldsymbol{K}^{\prime}\right| \hat{V}_{N N}|\boldsymbol{k} \boldsymbol{K}\rangle .
$$

Invariance properties and conservation laws

(1) invariance by translation in time \Rightarrow conservation of energy and $\hat{V}_{N N}$ is Hermitean
(2) invariance by translation in space \Rightarrow conservation of total momentum
(3) invariance by a change of Galilean frame
(9) invariance by rotation \Rightarrow conservation of total angular momentum and the spin-space part of $\hat{V}_{N N}$ is a scalar
(3) invariance by space reflection \Rightarrow conservation of parity
(0) invariance by time reversal
((invariance by permutation
(8) $\hat{V}_{N N}$ commutes with $\hat{T}_{z}=\frac{1}{2}\left(\hat{\tau}_{1, z}+\hat{\tau}_{2, z}\right) \Rightarrow$ conservation of neutron and proton numbers

2) SYMMETRIES

Transformation properties of spin and isospin Pauli matrices

(1) Hermiticity (spin and isospin)

$$
\begin{equation*}
\hat{\sigma}_{i}^{\dagger}=\hat{\sigma}_{i} \quad \hat{\tau}_{i}^{\dagger}=\hat{\tau}_{i} \tag{3}
\end{equation*}
$$

(2) translation in space (spin and isospin): invariant
(3) change of Galilean frame (spin and isospin): invariant
(9) rotation (spin only): $\hat{\boldsymbol{\sigma}}_{i}$ transforms as a vector
(3) space reflection (spin only)

$$
\begin{equation*}
\hat{\Pi} \hat{\sigma}_{i} \hat{\Pi}^{-1}=\hat{\sigma}_{i} \tag{4}
\end{equation*}
$$

(0) time reversal (spin and isospin)

$$
\begin{align*}
& \hat{\mathcal{T}} \hat{\boldsymbol{\sigma}}_{i} \hat{\mathcal{T}}^{-1}=-\hat{\boldsymbol{\sigma}}_{i} \tag{5}\\
& \hat{\mathcal{T}} \hat{\boldsymbol{\tau}}_{i, x / z} \hat{\mathcal{T}}^{-1}=\hat{\boldsymbol{\tau}}_{i, x / z} \tag{6}\\
& \hat{\boldsymbol{\mathcal { T }}} \hat{\boldsymbol{\tau}}_{i, y} \hat{\mathcal{T}}^{-1}=-\hat{\boldsymbol{\tau}}_{i, y} \tag{7}
\end{align*}
$$

(0 permutation (spin and isospin): indices $1 \leftrightarrow 2$
(8) commutation relations for isospin operators:

$$
\begin{equation*}
\left[\hat{\tau}_{x}, \hat{\tau}_{y}\right]=2 i \hat{\tau}_{z} \quad(+ \text { circular permutations }) \tag{8}
\end{equation*}
$$

2) Symmetries

Consequences for the momentum structure

(1) Hermiticity:

$$
\begin{equation*}
\mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{K}^{\prime} ; \boldsymbol{k}, \boldsymbol{K}\right)=\mathcal{F}\left(\boldsymbol{k}, \boldsymbol{K} ; \boldsymbol{k}^{\prime}, \boldsymbol{K}^{\prime}\right)^{*} \tag{9}
\end{equation*}
$$

(2) invariance by translation in space

$$
\begin{equation*}
\mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{K}^{\prime} ; \boldsymbol{k}, \boldsymbol{K}\right)=\delta\left(\boldsymbol{K}^{\prime}-\boldsymbol{K}\right) \mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}, \boldsymbol{K}\right) \tag{10}
\end{equation*}
$$

(3) invariance by a change of Galilean frame

$$
\begin{equation*}
\mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}, \boldsymbol{K}\right)=\mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right) \tag{11}
\end{equation*}
$$

(9) invariance by rotation: $\mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)$ and $\hat{O}_{s}\left(\hat{\boldsymbol{\sigma}}_{1}, \hat{\boldsymbol{\sigma}}_{2}\right)$ are spherical tensors of the same rank, fully contracted to form a scalar Spherical tensors
(6) invariance by space reflection:

$$
\begin{equation*}
\hat{\Pi} \boldsymbol{k} \hat{\Pi}^{-1}=-\boldsymbol{k} \Rightarrow \mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)=\mathcal{F}\left(-\boldsymbol{k}^{\prime},-\boldsymbol{k}\right) \tag{12}
\end{equation*}
$$

$\Rightarrow \mathcal{F}$ involves products of an even number of momentum vectors

2) Symmetries

Consequences for the momentum structure

(6) invariance by time reversal + Hermiticity

$$
\begin{equation*}
\mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)=\mathcal{F}\left(-\boldsymbol{k},-\boldsymbol{k}^{\prime}\right) \tag{13}
\end{equation*}
$$

(1) invariance by permutation: same constraint as from space reflection

$$
\begin{equation*}
\hat{P}_{12} \boldsymbol{k} \hat{P}_{12}^{-1}=-\boldsymbol{k} \Rightarrow \mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)=\mathcal{F}\left(-\boldsymbol{k}^{\prime},-\boldsymbol{k}\right) \tag{14}
\end{equation*}
$$

\Rightarrow no additional constraint on \mathcal{F}
(8) commutation with \hat{T}_{z} : any $\mathcal{F}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)$ commutes with isospin operators
\Rightarrow no additional constraint on \mathcal{F}

3) SPIN-ISOSPIN OPERATOR BASIS

Group representation method ${ }^{1}$

Notations:

- $\mathcal{E}_{s}=$ Hilbert space of spin states of 1 nucleon $(s=1 / 2)$
$\Rightarrow \operatorname{dim} \mathcal{E}_{s}=2 s+1$
- $\mathcal{E}_{t}=$ Hilbert space of isospin states of 1 nucleon $(t=1 / 2)$
$\Rightarrow \operatorname{dim} \mathcal{E}_{t}=2 t+1$
- $\mathcal{E}=\mathcal{E}_{s} \otimes \mathcal{E}_{t}=$ Hilbert space of spin and isospin states of 1 nucleon
- $\mathcal{E}^{\otimes N}=$ Hilbert space of spin and isospin states of N nucleons
- $E=\left(\mathcal{E}^{\otimes N}\right)^{*} \otimes \mathcal{E}^{\otimes N}=$ vector space of linear operators acting on $\mathcal{E}^{\otimes N}$ (two-nucleon spin-isospin operators)

Remark: F^{*} is the dual space of the vector space F, that is the vector space of linear applications from F to \mathbb{R} (such as the scalar product)

[^0]
Group representation method

Main ideas:
(1) Build irreducible representations (irreps) D of the group $\mathrm{SU}(4)$ in the vector space E
(2) Decompose the restriction of D to the subgroup $\mathrm{SU}(2)_{s} \times \mathrm{SU}(2)_{t} \subset \mathrm{SU}(4)$ into irreps of $\mathrm{SU}(2)_{s} \times \mathrm{SU}(2)_{t}$ in the vector space E (using so-called branching rules ${ }^{2}$) \Rightarrow each such irrep is labeled by spin and isospin quantum numbers which are the ranks of the corresponding spin and isospin spherical-tensor operators

[^1]
3) SPIN-ISOSPIN OPERATOR BASIS

Application to two-nucleon spin-isospin operators

- Irrep of $\mathrm{SU}(4)$ in the spin-isospin space of 1 nucleon: fundamental representation $R_{1}={ }^{4}$ (of dimension $\left.(2 s+1)(2 t+1)=4\right)$
- Irreducible decomposition of the tensor product $R_{1}^{\otimes 2}=\square^{4} \otimes \square^{4}$ into irreps R_{2} of $\mathrm{SU}(4)$ in the spin-isospin space of 2 nucleons:

$$
\begin{equation*}
\stackrel{4}{\square} \otimes \stackrel{4}{\square}_{\square}^{\square}+\square^{6} \oplus \square^{10} \tag{15}
\end{equation*}
$$

- Branching rules: irreducible decomposition of \square^{6} and \square^{10} into irreps of $\mathrm{SU}(2)_{s} \times \mathrm{SU}(2)_{t}$ denoted by $\left(D_{S}, D_{T}\right)^{3}$

$$
\begin{equation*}
\square=\left(D_{0}, D_{1}\right) \oplus\left(D_{1}, D_{0}\right) \tag{16}
\end{equation*}
$$

$$
\square^{10}=\left(D_{0}, D_{0}\right) \oplus\left(D_{1}, D_{1}\right)
$$

${ }^{3} D_{J}$ is the irrep of $S U(2)$ in the vector space of angular-momentum states $|J M\rangle$ (of dimension $2 J+1$).

3) SPIN-ISOSPIN OPERATOR BASIS

Application to two-nucleon spin-isospin operator basis

- Using the property

$$
\begin{equation*}
\left(D_{s_{1}}, D_{T_{1}}\right) \otimes\left(D_{S_{2}}, D_{T_{2}}\right)=\left(D_{S_{1}} \otimes D_{S_{2}}, D_{T_{1}} \otimes D_{T_{2}}\right) \tag{17}
\end{equation*}
$$

and the Clebsch-Gordan series

$$
\begin{equation*}
D_{j_{1}} \otimes D_{j_{2}}=\bigoplus_{J=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} D_{J} \tag{18}
\end{equation*}
$$

decompose $R_{1}^{\otimes 2} \otimes R_{1}^{\otimes 2}$ into irreps of $\mathrm{SU}(2)_{s} \times \mathrm{SU}(2)_{t}$

$$
\begin{array}{rlr}
R_{1}^{\otimes 2} \otimes R_{1}^{\otimes 2}= & 4\left(D_{0}, D_{0}\right) \oplus 6\left(D_{1}, D_{0}\right) \oplus 2\left(D_{2}, D_{0}\right) & \text { (isoscalar, } T=0) \\
& \oplus 6\left(D_{0}, D_{1}\right) \oplus 9\left(D_{1}, D_{1}\right) \oplus 3\left(D_{2}, D_{1}\right) & \text { (isovector, } T=1) \\
& \oplus 2\left(D_{0}, D_{2}\right) \oplus 3\left(D_{1}, D_{2}\right) \oplus\left(D_{2}, D_{2}\right) & \text { (isotensor, } T=2) \tag{19}
\end{array}
$$

- Spin-isospin operator basis contains 4 spin-scalar-isospin-scalar operators, 6 spin-vector-isospin-scalar operators, ... and 1 rank-2-spin-rank-2-isospin operator

3) SPIN-ISOSPIN OPERATOR BASIS

Explicit form

Spin operators
Isospin operators

Rank S	Operators	Number	Rank T	Operators	Number
0	$\mathbb{1}, \hat{\sigma}_{1} \cdot \hat{\sigma}_{2}$	2	0	$\mathbb{1}, \hat{\tau}_{1} \cdot \hat{\tau}_{2}$	2
1	$\hat{\boldsymbol{\sigma}}_{1} \pm \hat{\boldsymbol{\sigma}}_{2}, \hat{\boldsymbol{\sigma}}_{1} \times \hat{\boldsymbol{\sigma}}_{2}$	3	1	$\hat{\tau}_{1} \pm \hat{\boldsymbol{\tau}}_{2}, \hat{\tau}_{1} \times \hat{\boldsymbol{\tau}}_{2}$	3
2	$\left\{\hat{\boldsymbol{\sigma}}_{1} \otimes \hat{\boldsymbol{\sigma}}_{2}\right\}_{2}$	1	2	$\left\{\hat{\boldsymbol{\tau}}_{1} \otimes \hat{\boldsymbol{\tau}}_{2}\right\}_{2}$	1

4) Momentum structure functions

Tensor products of vectors

(20c)
$20 / 57$

4) Momentum structure functions

Elementary tensor-product structures

Problem: determine all the independent (non redundant) tensor structures of fixed rank L from a given set of momentum vectors with repetitions allowed, called elementary structures

Example for 2-nucleon case: scalar structures from momentum vectors at hand \boldsymbol{k} and \boldsymbol{k}^{\prime}

- using 2 vectors in the product: $\boldsymbol{k} \cdot \boldsymbol{k}, \boldsymbol{k} \cdot \boldsymbol{k}^{\prime}, \boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime}$
- using 3 vectors in the product: no non-vanishing structures (for example $\left(\boldsymbol{k} \times \boldsymbol{k}^{\prime}\right) \cdot \boldsymbol{k}=0$)
- using 4 vectors: no structures independent of those with fewer vectors (for example $\left(\boldsymbol{k} \times \boldsymbol{k}^{\prime}\right) \times\left(\boldsymbol{k} \times \boldsymbol{k}^{\prime}\right)=\boldsymbol{k} \cdot \boldsymbol{k}-\boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime}$, so it is not elementary)

4) Momentum structure functions

Independent elementary tensor structures (green: allowed by parity)

4) Momentum structure functions

Independent elementary tensor structures (green: allowed by parity)

5) Final expression

Henley-Miller classification

$$
\begin{equation*}
\left\langle\boldsymbol{k}_{1}^{\prime} \boldsymbol{k}_{2}^{\prime}\right| \hat{V}_{N N}\left|\boldsymbol{k}_{1} \boldsymbol{k}_{2}\right\rangle=\delta\left(\boldsymbol{K}^{\prime}-\boldsymbol{K}\right)\left(\left\langle\boldsymbol{k}^{\prime}\right| \hat{v}^{(\mathrm{I})}|\boldsymbol{k}\rangle+\left\langle\boldsymbol{k}^{\prime}\right| \hat{v}^{(\mathrm{II})}|\boldsymbol{k}\rangle+\left\langle\boldsymbol{k}^{\prime}\right| \hat{v}^{(\mathrm{III})}|\boldsymbol{k}\rangle+\left\langle\boldsymbol{k}^{\prime}\right| \hat{v}^{(\mathrm{IV})}|\boldsymbol{k}\rangle\right) \tag{21}
\end{equation*}
$$

- Class I: isospin invariant (isoscalar)
- Class II: charge symmetric $V_{n n}=V_{p p} \neq V_{n p}$ (isotensor)
- Class III: charge symmetry breaking but commutes with $\hat{\boldsymbol{T}}^{2}$ (isovector $\propto \hat{T}_{z}$)
- Class IV: full isospin symmetry breaking (remaining isovector)

5) Final expression

Class I (isospin invariant)

$$
\begin{align*}
\left\langle\boldsymbol{k}^{\prime}\right| \hat{\boldsymbol{v}}^{(\mathrm{I})}|\boldsymbol{k}\rangle= & \left(V_{C}^{(\mathrm{I})}+W_{C}^{(\mathrm{I})} \hat{\boldsymbol{\tau}}_{1} \cdot \hat{\boldsymbol{\tau}}_{2}\right) \mathbb{1}_{s}+\left(V_{S}^{(\mathrm{I})}+W_{S}^{(\mathrm{I})} \hat{\boldsymbol{\tau}}_{1} \cdot \hat{\boldsymbol{\tau}}_{2}\right) \hat{\boldsymbol{\sigma}}_{1} \cdot \hat{\boldsymbol{\sigma}}_{2} \\
& +\left(V_{L S}^{(\mathrm{I})}+W_{L S}^{(\mathrm{I})} \hat{\boldsymbol{\tau}}_{1} \cdot \hat{\boldsymbol{\tau}}_{2}\right) i\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right) \cdot\left(\hat{\boldsymbol{\sigma}}_{1}+\hat{\boldsymbol{\sigma}}_{2}\right) \\
& +\left[\left(V_{T}^{(\mathrm{I})}+W_{T}^{(\mathrm{I})} \hat{\boldsymbol{\tau}}_{1} \cdot \hat{\boldsymbol{\tau}}_{2}\right)\{\boldsymbol{q} \otimes \boldsymbol{q}\}_{2}+\left(V_{T}^{(\mathrm{I})}+W_{T}^{\prime(\mathrm{I})} \hat{\boldsymbol{\tau}}_{1} \cdot \hat{\boldsymbol{\tau}}_{2}\right)\{\boldsymbol{p} \otimes \boldsymbol{p}\}_{2}\right. \\
& \left.+\left(V_{L \sigma}^{(\mathrm{I})}+W_{L \sigma}^{(\mathrm{I})} \hat{\boldsymbol{\tau}}_{1} \cdot \hat{\boldsymbol{\tau}}_{2}\right)\left\{\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right) \otimes\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right)\right\}_{2}\right] \cdot\{\hat{\boldsymbol{\sigma}} \otimes \hat{\boldsymbol{\sigma}}\}_{2} \tag{22}
\end{align*}
$$

where all form factors V and W are real scalar functions of k, k^{\prime} and $\boldsymbol{k}^{\prime} \cdot \boldsymbol{k}$, symmetric under the exchange of \boldsymbol{k} and \boldsymbol{k}^{\prime}, and $\boldsymbol{q}=\boldsymbol{k}^{\prime}-\boldsymbol{k}, \boldsymbol{p}=\frac{1}{2}\left(\boldsymbol{k}^{\prime}+\boldsymbol{k}\right)$

5) Final expression

Classes II, III and IV

$$
\begin{align*}
& \left\langle\boldsymbol{k}^{\prime}\right| \hat{\boldsymbol{v}}^{(\mathrm{II})}|\boldsymbol{k}\rangle=\left[V_{C}^{(\mathrm{II})}+V_{S}^{(\mathrm{II})} \hat{\boldsymbol{\sigma}}_{1} \cdot \hat{\boldsymbol{\sigma}}_{2}+V_{L S}^{(\mathrm{II})} i\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right) \cdot\left(\hat{\boldsymbol{\sigma}}_{1}+\hat{\boldsymbol{\sigma}}_{2}\right)+\left(V_{T}^{(\mathrm{II})}\{\boldsymbol{q} \otimes \boldsymbol{q}\}_{2}\right.\right. \\
& \left.\left.+V_{T}^{\prime(\mathrm{II})}\{\boldsymbol{p} \otimes \boldsymbol{p}\}_{2}+V_{L \sigma}^{(\mathrm{II})}\left\{\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right) \otimes\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right)\right\}_{2}\right) \cdot\{\hat{\boldsymbol{\sigma}} \otimes \hat{\boldsymbol{\sigma}}\}_{2}\right]\{\hat{\boldsymbol{\tau}} \otimes \hat{\boldsymbol{\tau}}\}_{20} \tag{23}\\
& \left\langle\boldsymbol{k}^{\prime}\right| \hat{\boldsymbol{v}}^{\text {(III) }}|\boldsymbol{k}\rangle=\left[V_{C}^{\text {(III) }}+V_{s}^{\text {(III) }} \hat{\boldsymbol{\sigma}}_{1} \cdot \hat{\boldsymbol{\sigma}}_{2}+V_{L S}^{(\text {III })} i\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right) \cdot\left(\hat{\boldsymbol{\sigma}}_{1}+\hat{\boldsymbol{\sigma}}_{2}\right)+\left(V_{T}^{\text {(III) }}\{\boldsymbol{q} \otimes \boldsymbol{q}\}_{2}\right.\right. \\
& \left.\left.+V_{T}^{\prime(\text { III })}\{\boldsymbol{p} \otimes \boldsymbol{p}\}_{2}+V_{L \sigma}^{(I I I)}\left\{\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right) \otimes\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right)\right\}_{2}\right) \cdot\{\hat{\boldsymbol{\sigma}} \otimes \hat{\boldsymbol{\sigma}}\}_{2}\right] \underbrace{\left(\hat{\tau}_{1}+\hat{\boldsymbol{\gamma}}_{2}\right)_{0}}_{2 \hat{\tau}_{2}} \tag{24}\\
& \left\langle\boldsymbol{k}^{\prime}\right| \hat{\boldsymbol{V}}^{(\mathrm{IV})}|\boldsymbol{k}\rangle=i\left(\boldsymbol{k}^{\prime} \times \boldsymbol{k}\right) \cdot\left(V_{1}^{(\mathrm{IV})}\left(\hat{\boldsymbol{\sigma}}_{1}-\hat{\boldsymbol{\sigma}}_{2}\right)\left(\hat{\tau}_{1}-\hat{\boldsymbol{\tau}}_{2}\right)_{0}+V_{2}^{(\mathrm{IV})}\left(\hat{\boldsymbol{\sigma}}_{1} \times \hat{\boldsymbol{\sigma}}_{2}\right)\left(\hat{\tau}_{1} \times \hat{\boldsymbol{\tau}}_{2}\right)_{0}\right) \tag{25}
\end{align*}
$$

Remark: the Coulomb potential is a combination of classes I, II and III

PART 2: Introduction to chiral potentials

(1) From QCD to chiral EFT Lagrangian
(2) Derivation of the internucleon potential
(3) Regularization and Wilson renormalization

1) From QCD to chiral EFT

Fundamental interactions

- Strong interaction: quantum chromodynamics (QCD) by Politzer, Wilczek et Gross (Nobel prize in 2004); responsible for nuclear binding
- Electromagnetic and weak interactions: electroweak theory by Glashow, Salam and Weinberg (Nobel prize 1979); weak interaction responsible for β decay of nuclei; electrostatic (Coulomb) interaction responsible for limit of stability (fission of heavy nuclei)
- QCD non usable at the energy scale of atomic nuclei because relevant degrees of freedom are nucleons and pions, not quarks and gluons
\Rightarrow need for building effective interactions betweens degrees of freedom adapated to nuclear-structure scales

1) From QCD to chiral EFT

Chiral symmetry of QCD and pions

- Introduction to field theory

- Decoupling of light-quark (u,d, s) and heavy-quark (c, b, t) sectors
- $m_{u} c^{2} \approx 2.5 \mathrm{MeV}, m_{d} c^{2} \approx 5 \mathrm{MeV}$ and $m_{s} c^{2} \approx 101 \mathrm{MeV}$ \Rightarrow u et d quarks only (2 flavors)
- $m_{u}, m_{d} \ll m_{\text {hadrons }} \Rightarrow$ limit of vanishing mass in $\mathscr{L}_{\mathrm{QCD}}$: chiral symmetry ($\psi_{\text {quarks }} \rightarrow \gamma_{5} \psi_{\text {quarks }}, \gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$) and isospin symmetry (mixing of u and d fields; true if $m_{u}=m_{d}$)
- Spontaneous chiral-symmetry breaking (solution does not have symmetry of Lagrangian)
\Rightarrow massless Goldstone bosons associated = pions (mesons $\left.\pi^{0} \rightarrow u \bar{u} / d \bar{d}, \pi^{+} \rightarrow u \bar{d}, \pi^{+} \rightarrow u \bar{d}\right)$
- In fact $m_{\pi} \neq 0$ but small because chiral symmetry is approximate ($m_{u, d} \neq 0$ but small)
\Rightarrow pions reflect at the same time spontaneous and explicit breaking of chiral symmetry

1) From QCD to chiral EFT

Chiral effective-field theory

- Most general Lagrangian respecting all symmetries of underlying theory (QCD), especially chiral symmetry, using nucleon and pions field

$$
\begin{equation*}
\mathscr{L}_{\text {eff }}=\mathscr{L}_{N}+\mathscr{L}_{\pi}+\mathscr{L}_{\pi N} \tag{26}
\end{equation*}
$$

- Chiral perturbation theory:
- $\mathscr{L}_{\text {eff }}$ contains an infinite number of terms \Rightarrow need to order these terms according to decreasing importance
- Truncation of $\mathscr{L}_{\text {eff }}$ as a function of $\left(Q / \Lambda_{\chi}\right)^{\nu}$ where Q is a momentum transfer, $\Lambda_{\chi} \sim 1 \mathrm{GeV}$ the chiral-symmetry breaking scale, and ν an integer which depends on the number of interacting nucleons and the number of exchanged mesons
- At a given truncation order $\nu, \mathscr{L}_{\text {eff }}^{(\nu)}$ contains a finite number of terms

1) From QCD to chiral EFT

Hierarchy of chiral forces
R. Machleidt, D.R. Entem / Physics Reports 503 (2011) 1-75

$\mathrm{N}^{3} \mathrm{LO}$

$31 / 57$

2) DERIVATION OF THE INTERNUCLEON POTENTIAL

Definition

$V=i \mathcal{M}$ where \mathcal{M} is the scattering amplitude of the process (example of one-pion exchange two-nucleon potential)

In a potential description of interactions, the propagation time of the exchanged pions is neglected \Rightarrow instantaneous interaction

2) DERIVATION OF THE INTERNUCLEON POTENTIAL

Calculation by the Feynman rules

In the heavy-baryon approximation $\left(m_{N} \gg m_{\pi}\right)$ and non relativistic limit, the dominant long-range part of the pion-nucleon Lagrangian is

$$
\begin{equation*}
\mathscr{L}_{\pi N}^{(A V)}=-\frac{g_{A}}{2 F_{\pi}} \bar{N}(\tau \cdot[(\sigma \cdot \nabla) \pi]) N \tag{27}
\end{equation*}
$$

$$
\begin{align*}
V_{N N}^{(A V)} & =i \underbrace{\left(-\frac{g_{A}}{2 F_{\pi}}\right)\left(\sigma_{1} \cdot \boldsymbol{q}\right) \tau_{1}^{a}}_{\text {left vertex }} \times \underbrace{\frac{i \delta_{a b}}{-\boldsymbol{q}^{2}-m_{\pi}^{2}}}_{\text {pion propagator }} \times \underbrace{\left(-\frac{g_{A}}{2 F_{\pi}}\right)\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{q}\right) \tau_{2}^{b}}_{\text {right vertex }} \tag{28}\\
& =-\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \frac{\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{q}\right)\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{q}\right)}{q^{2}+m_{\pi}^{2}} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \text { (one-pion exchange potential) } \tag{29}
\end{align*}
$$

3) REGULARIZATION AND WILSON RENORMALIZATION

Design of effective theories ${ }^{4}$

- Low-energy phenomena can be sensitive to short-distance physics, but not its details
- Freedom to redesign the short-distance interaction (Lagrangian, potential...) \Rightarrow effective theories describing any low-energy data with arbitrary precision
(1) Incorporate in the interaction the correct long-range behavior in the potential (supposed to be known from underlying theory, including parameters)
(2) Introduce a cutoff to exclude explicit high-momentum contributions and make interactions regular at $r=0$
(3) Add counterterms to the interaction to mimic the short-distance/high-momentum effects and remove the cutoff dependence

[^2]
3) REGULARIZATION AND WILSON RENORMALIZATION

Application to leading-order chiral potential

Renormalization applied to chiral effective Lagrangian yields at LO

$$
\begin{equation*}
\hat{V}_{N N}^{(L O)}=\hat{v}_{1 \pi}+\hat{v}_{c t}^{(0)} \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\text { long range: }\left\langle\boldsymbol{k}^{\prime}\right| \hat{v}_{1 \pi}|\boldsymbol{k}\rangle=-\left(\frac{g_{A}}{2 f_{\pi}}\right)^{2} \frac{\left(\hat{\sigma}_{1} \cdot \boldsymbol{q}\right)\left(\hat{\sigma}_{2} \cdot \boldsymbol{q}\right)}{q^{2}+m_{\pi}^{2}} \hat{\tau}_{1} \cdot \hat{\tau}_{2} f_{\Lambda}\left(k^{\prime}, k\right) \tag{31a}
\end{equation*}
$$

$$
\begin{equation*}
\text { short range: }\left\langle\boldsymbol{k}^{\prime}\right| \hat{v}_{c t}^{(0)}|\boldsymbol{k}\rangle=\left(C_{S}(\Lambda)+C_{T}(\Lambda) \hat{\sigma}_{1} \cdot \hat{\sigma}_{2}\right) f_{\Lambda}\left(k^{\prime}, k\right) \tag{31b}
\end{equation*}
$$

typical cutoff function: $f_{\Lambda}\left(k^{\prime}, k\right)=e^{-\left(k^{\prime 6}+k^{6}\right) / \Lambda^{6}}$
$C_{S}(\Lambda)$ and $C_{T}(\Lambda)$ constants are to be fitted to some low-energy data (typically scattering data at specific energies) for a given cutoff ${ }^{5}$

[^3]
COMPUTER SESSION

Renormalization of Schrödinger equation

Renormalization applied to the Schrödinger equation of a spinless particle in a local, central potential

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{2 \mu r^{2}} \mathbf{L}^{2}\right] \psi(\mathbf{r})+V(r) \psi(\mathbf{r})=E \psi(\mathbf{r}) \tag{32}
\end{equation*}
$$

Setting $\psi(\mathbf{r})=\frac{u_{\ell}(r)}{r} Y_{\ell}^{m}(\hat{r})$ we get

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}\right) u_{\ell}(r)+V(r) u_{\ell}(r)=E u_{\ell}(r) \tag{33}
\end{equation*}
$$

Work to do

- Compute eigenvalues E for a given "bare" potential $V(r)$ whose long-range behavior is known
- Replace $V(r)$ with an effective potential $V_{\text {eff }}(r)$ having the same long-range form and counterterms with 2 constants
- Fit the 2 parameters to the least-bound state energy
- Plot relative error on remaining eigenvalues for bound states as a function of energy (Lepage plot)

SUMMARY

PART 3: SRG transformation of $\hat{V}_{N N}$ for nuclear-structure calculations

(1) Renormalization by similarity transformation
(2) Application to the potential
(3) Evolution of other operators

1) RENORMALIZATION BY SIMILARITY TRANSFORMATION

Effective potentials for nuclear-structure calculations

- Non observable character of a potential \hat{V} and a Hamiltonian \hat{H} : only the eigenvalues of \hat{H} are observables (can be measured), neither its matrix elements nor its eigenvectors
- Reduction to a restricted Hilbert space for practical reasons: need for a transformation preserving the spectrum of \hat{H}

1) RENORMALIZATION BY SIMILARITY TRANSFORMATION

SRG method ${ }^{6}$

- Idea: succession of infinitesimal, unitary transformations \hat{U}_{s} of a Hamiltonian \hat{H} to bring it into a simpler form for subsequent nuclear-structure calculations (Wegner 1994, Glazek et Wilson 1993)
- "Flow equation" for the transformed Hamiltonian $\hat{H}_{s}=\hat{U}_{s} \hat{H} \hat{U}_{s}^{\dagger}, \hat{U}_{s=0}=\mathbb{1}$

$$
\begin{align*}
& \hat{U}_{s} \text { unitarity: } \hat{U}_{s}^{-1}=\hat{U}_{s}^{\dagger} \Rightarrow \hat{U}_{s} \frac{d \hat{U}_{s}^{\dagger}}{d s}=-\frac{d \hat{U}_{s}}{d s} \hat{U}_{s}^{\dagger} \tag{34}\\
& \begin{aligned}
\frac{d \hat{H}_{s}}{d s} & =\frac{d \hat{U}_{s}}{d s} \hat{H} \hat{U}_{s}^{\dagger}+\hat{U}_{s} \hat{H}^{d} \frac{d \hat{U}_{s}^{\dagger}}{d s} \\
& =-\hat{U}_{s} \frac{d \hat{U}_{s}^{\dagger}}{d s} \underbrace{\hat{U}_{s} \hat{H} \hat{U}_{s}^{\dagger}}_{\hat{H}_{s}}+\underbrace{\hat{U}_{\hat{H}} \hat{H}}_{\hat{H}_{s} \hat{U}_{s}} \frac{d \hat{U}_{s}^{\dagger}}{d s} \\
& =\left[\hat{\eta}_{s}, \hat{H}_{s}\right] \quad \text { where } \hat{\eta}_{s}=-\hat{U}_{s} \frac{d \hat{U}_{s}^{\dagger}}{d s}=\frac{d \hat{U}_{s}}{d s} \hat{U}_{s}^{\dagger}
\end{aligned}
\end{align*}
$$

- Generator of the transformation: Hermitean operator \hat{G}_{s} defined by

$$
\begin{equation*}
\hat{\eta}_{s} \equiv\left[\hat{G}_{s}, \hat{H}_{s}\right] \tag{36}
\end{equation*}
$$

${ }^{6}$ R. J. Furnstahl, Nucl. Phys. B (Suppl.) 228 (2012).

1) RENORMALIZATION BY SIMILARITY TRANSFORMATION

Choice of the generator

Flow equation of \hat{H}_{s} in terms of \hat{G}_{s}

$$
\begin{equation*}
\frac{d \hat{H}_{s}}{d s}=\left[\left[\hat{G}_{s}, \hat{H}_{s}\right], \hat{H}_{s}\right] \tag{37}
\end{equation*}
$$

With an appropriate choice of the generator \hat{G}_{s} defined by $\hat{\eta}_{s} \equiv\left[\hat{G}_{s}, \hat{H}_{s}\right]$, one can tailor the final form of the Hamiltonian $\hat{H}_{\infty}=\lim _{s \rightarrow \infty} \hat{H}_{s}$

- $\hat{G}_{s}=\hat{T}$ (relative kinetic energy): the Hamiltonian is driven to a diagonal form (see computer session)
- $\hat{G}_{s}=\left(\begin{array}{cc}\hat{P} \hat{H}_{s} \hat{P} & 0 \\ 0 & \hat{Q} \hat{H}_{s} \hat{Q}\end{array}\right)$, where \hat{P} and \hat{Q} are projectors such that $\hat{P}+\hat{Q}=1$
and $\hat{P} \hat{Q}=\hat{Q} \hat{P}=0$: the Hamiltonian is driven to a block-diagonal form (useful to decouple low- and high-momentum states)

2) Application to the potential

Evolution of the potential: simple numerical example
$H=T+V$ with $T=\left(\begin{array}{ll}3 & 0 \\ 0 & 9\end{array}\right)$ and $V=\left(\begin{array}{ll}6 & 4 \\ 4 & 6\end{array}\right) \quad$ (spectrum of $\mathrm{H}: 7$ and 17)
Transformation of hamiltonian matrix : $H(s)=U(s) H U(s)^{\dagger}$
SRG flow equation for the transformed potential matrix $V(s) \equiv H(s)-T$

$$
\frac{d V(s)}{d s}=[[T, V(s)], T+V(s)]
$$

with $V(s)=\left(\begin{array}{ll}V_{11}(s) & V_{12}(s) \\ V_{12}(s) & V_{22}(s)\end{array}\right)$, hence the nonlinear order-1 differential system

$$
\left\{\begin{array}{l}
\frac{d V_{11}}{d s}=-12 V_{12}^{2}(s) \\
\frac{d V_{22}}{d s}=12 V_{12}^{2}(s) \\
\frac{d V_{12}}{d s}=-6 V_{12}(s)\left(6+V_{22}(s)-V_{11}(s)\right)
\end{array}\right.
$$

$$
\text { with }\left\{\begin{array}{l}
V_{11}(0)=6 \\
V_{22}(0)=6 \\
V_{12}(0)=4
\end{array}\right.
$$

2) Application to the potential

Evolution of the potential: simple numerical example

Numerical solution using the Runge-Kutta method of order 4

$43 / 57$

2) Application to the potential

Induced interactions

- Flow equation in operator form
- Practical calculations require a choice of basis
- In basis of physical states of A nucleons (Slater determinants for example, see lecture by Ph. Quentin), SRG evolution of N-body interactions with $N<A$ induce $N+1$-interactions, $N+2$-interactions...

$$
\begin{align*}
\frac{d V_{s}}{d s} & =[[\underbrace{\sum a^{\dagger} a}_{\text {1-body } \hat{G}_{s}}, \underbrace{\sum a^{\dagger} a^{\dagger} a a}_{\text {2-body } \hat{H}_{s}}], \underbrace{\sum a^{\dagger} a^{\dagger} a a}_{\text {2-body } \hat{H}_{s}}] \\
& =\cdots+\underbrace{\sum a^{\dagger} a^{\dagger} a^{\dagger} \text { aaa }}_{3-\text {-body }}+\cdots \tag{38}
\end{align*}
$$

- In practical calculations, truncation of normal ordered right-hand side ${ }^{7}$
${ }^{7}$ See, e.g., P. Roth et al., Phys. Rev. Lett. 109, 052501 (2009).

3) Evolution of other operators

Determination of the unitary transformation \hat{U}_{s}

- By flow equation: according to the relation between $\hat{\eta}_{s}$ and \hat{U}_{s}

$$
\eta_{s}=\frac{d \hat{U}_{s}}{d s} \hat{U}_{s}^{\dagger}
$$

and the definition of the generator

$$
\hat{\eta}_{s} \equiv\left[\hat{G}_{s}, \hat{H}_{s}\right],
$$

and using unitarity of \hat{U}_{s}, one can deduce the flow equation

$$
\begin{equation*}
\frac{d \hat{U}_{s}}{d s}=\left[\hat{G}_{s}, \hat{H}_{s}\right] \hat{U}_{s} \tag{39}
\end{equation*}
$$

$\Rightarrow \hat{U}_{s}$ evolved at the same time as \hat{H}_{s}

- By diagonalization of \hat{H}_{s} : eigenstates $\left|\Psi_{i}(s)\right\rangle$

$$
\begin{equation*}
\hat{U}_{s}=\sum_{i}\left|\Psi_{i}(s)\right\rangle\left\langle\Psi_{i}(0)\right| \tag{40}
\end{equation*}
$$

3) Evolution of other operators

Transformed operators

Let \hat{O} be a Hermitean operator (observable). After SRG evolution up to s, the transformed operator is given by

$$
\begin{equation*}
\hat{O}_{s}=\hat{U}_{s} \hat{O} \hat{U}_{s}^{\dagger} \tag{41}
\end{equation*}
$$

It can be calculated directly by matrix multiplication once \hat{U}_{s} is calculated, or evolved along with the Hamiltonian according to a similar flow equation

$$
\begin{equation*}
\frac{d \hat{O}_{s}}{d s}=\left[\left[\hat{G}_{s}, \hat{H}_{s}\right], \hat{O}_{s}\right] \tag{42}
\end{equation*}
$$

Computer session

SRG transformation of a matrix

Let $H=T+V$ be a symmetric real matrix of order n, where T is diagonal.

- Reproduce the above numerical example.
- Compute the matrix $P(0)$ of eigenvectors of the initial matrix H.
- Calculate the unitary transformation matrix $U(s)$ for an arbitrary value of s.
- Compute the matrix $P(s)$ of eigenvectors of evolved Hamiltonian matrix $H(s)$.
- Establish the relation between $U(s), P(s)$ and $P(0)$ and check it numerically.

Vectors as rank-1 tensors

- A triplet $\left(v_{1}, v_{2}, v_{3}\right)$ is said to be a vector of \mathbb{R}^{3} with respect to rotations if it transforms as follows under rotation in a fixed frame

$$
\left(\begin{array}{l}
v_{1}^{\prime} \tag{4}\\
v_{2}^{\prime} \\
v_{3}^{\prime}
\end{array}\right)=R\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

where R is the rotation matrix

- Spherical components of a vector \boldsymbol{v} of Cartesian components (v_{x}, v_{y}, v_{z})

$$
\begin{align*}
v_{\mp 1} & = \pm \frac{1}{\sqrt{2}}\left(v_{x} \mp i v_{y}\right) \tag{44a}\\
v_{0} & =v_{z} \tag{44b}
\end{align*}
$$

${ }^{8}$ See lecture by H. Molique at this school (Friday June 30)

Appendix A

Vectors as rank-1 tensors

- Example: spherical harmonics $Y_{1}=\left(Y_{1}^{-1}, Y_{1}^{0}, Y_{1}^{1}\right)$

$$
\left(\begin{array}{c}
Y_{1}^{-1}\left(\theta^{\prime}, \varphi^{\prime}\right) \\
Y_{1}^{0}\left(\theta^{\prime}, \varphi^{\prime}\right) \\
Y_{1}^{1}\left(\theta^{\prime}, \varphi^{\prime}\right)
\end{array}\right)=R\left(\begin{array}{c}
Y_{1}^{-1}(\theta, \varphi) \\
Y_{1}^{0}(\theta, \varphi) \\
Y_{1}^{1}(\theta, \varphi)
\end{array}\right)
$$

The three spherical components of Y_{1} are Y_{1}^{m} with $-1 \leqslant m \leqslant 1$.

Appendix A

Spherical tensors

Rank-2 tensors

- Rank-2 tensor from two vectors: $T_{2} \equiv\{\boldsymbol{u} \otimes \boldsymbol{v}\}_{2}$ has $2 \times 2+1=5$ spherical components $T_{2 \mu}$

$$
T_{2 \mu}=\sum_{\mu_{1}, \mu_{2}} C_{1 \mu_{1} 1 \mu_{2}}^{2 \mu} u_{\mu_{1}} v_{\mu_{2}}= \begin{cases}u_{ \pm 1} v_{ \pm 1} & \text { if } \mu= \pm 2 \tag{45}\\ \frac{1}{\sqrt{2}}\left(u_{ \pm 1} v_{0}+u_{0} v_{ \pm 1}\right) & \text { if } \mu= \pm 1 \\ \frac{1}{\sqrt{6}}\left(u_{+1} v_{-1}+u_{-1} v_{+1}+2 u_{0} v_{0}\right) & \text { if } \mu=0\end{cases}
$$

- Group-theoretical definition: set of 5 numbers that transform under a rotation \mathcal{R} in the same way as the spherical harmonic $Y_{2}^{m}(\theta, \varphi)$, namely according to

$$
\begin{equation*}
Y_{2}^{m}\left(\theta^{\prime}, \varphi^{\prime}\right)=\sum_{m^{\prime}=-2}^{2}\left[D_{m m^{\prime}}^{(2)}(\mathcal{R})\right]^{*} Y_{2}^{m^{\prime}}(\theta, \varphi) \tag{46}
\end{equation*}
$$

where $D_{m m^{\prime}}^{(2)}(\mathcal{R})$ is the element (m, m^{\prime}) of the so-called Wigner rotation matrix, defined by $D_{m m^{\prime}}^{(\ell)}=\langle\ell m| \hat{\mathcal{R}}\left|\ell m^{\prime}\right\rangle$ where $\hat{\mathcal{R}}$ is the rotation operator

INTRODUCTION TO FIELD THEORY

Lagrange formulation of classical Mechanics

1) ONE-PARTICLE SYSTEM

- Degrees of freedom q_{i} (length or angle) and time derivatives $\dot{q}_{i}=\frac{d q_{i}}{d t}$ considered to be independent variables
- Lagrange function or Lagrangian $L=$ difference between kinetic and potential energies

$$
\begin{equation*}
L\left(q_{i}, \dot{q}_{i}, t\right) \equiv T-V \tag{47}
\end{equation*}
$$

- Action for fixed end-points

$$
\begin{equation*}
S=\int_{t_{1}}^{t_{2}} L\left(q_{i}(t), \dot{q}_{i}(t), t\right) d t \tag{48}
\end{equation*}
$$

Appendix B

Introduction to field theory

Lagrange formulation of classical Mechanics

1) ONE-PARTICLE SYSTEM

- Equations of motion result from variational principle: the action is stationary around the path in space-time corresponding to the solution

\Rightarrow Euler-Lagrange equations

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\left(\frac{\partial L}{\partial q_{i}}\right)=0 \tag{49}
\end{equation*}
$$

INTRODUCTION TO FIELD THEORY

Lagrange formulation of classical Mechanics

2) MANY-PARTICLE SYSTEM: INFINITE CHAIN OF POINTLIKE MASSES

- Equilibrium solution: $q_{n}=n \Delta x$
- Lagrangian: $L\left(q_{n}, \dot{q}_{n}\right)=\sum_{n=-\infty}^{\infty}\left[\frac{1}{2} m \dot{q}_{n}^{2}-\frac{1}{2} k\left(q_{n}-q_{n+1}\right)^{2}\right]$
- Notation: $q_{n}=\varphi(n \Delta x, t)$ where the real, scalar function φ gives the abscissa on the x axis at time t (called a real, scalar field)

Introduction to field theory

Lagrange formulation of classical Mechanics

3) Continuum limit

- $\Delta x \rightarrow 0$
- Order 1 Taylor expansion

$$
\begin{gather*}
q_{n+1}(t)-q_{n}(t)=\varphi((n+1) \Delta x, t)-\varphi(n \Delta x, t) \approx \Delta x\left(\frac{\partial \varphi}{\partial x}\right)_{x=n \Delta x} \tag{50}\\
\sum_{n=-\infty}^{\infty} \frac{1}{2} k\left(q_{n}-q_{n+1}\right)^{2} \approx \frac{1}{2} \rho c^{2} \int_{-\infty}^{\infty}\left(\frac{\partial \varphi}{\partial x}\right)^{2} d x \tag{51}
\end{gather*}
$$

where $\rho=\frac{m}{\Delta x}$ and $c=\sqrt{\frac{k}{m}} \Delta x$. Similarly for the kinetic term

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{1}{2} k \dot{q}_{n}^{2} \approx \frac{1}{2} \rho \int_{-\infty}^{\infty}\left(\frac{\partial \varphi}{\partial t}\right)^{2} d x \tag{52}
\end{equation*}
$$

Introduction to field theory

Lagrange formulation of classical Mechanics

3) Continuum Limit

- Lagrangian becomes an integral over the coordinate variable x

$$
\begin{equation*}
L(t)=\int_{-\infty}^{\infty} \mathscr{L}\left(\varphi, \partial_{x} \varphi, \partial_{t} \varphi\right) d x \tag{53}
\end{equation*}
$$

where \mathscr{L} is a Lagrangian density (often improperly called Lagrangian)

$$
\begin{equation*}
\mathscr{L}\left(\varphi, \partial_{x} \varphi, \partial_{t} \varphi\right)=\frac{1}{2} \rho\left(\frac{\partial \varphi}{\partial t}\right)^{2}-\frac{1}{2} \rho c^{2}\left(\frac{\partial \varphi}{\partial x}\right)^{2} \tag{54}
\end{equation*}
$$

- Euler-Lagrange equation becomes, with implicit summation over repeated indices $\mu \in\{x, t\}$

$$
\begin{equation*}
\partial_{\mu}\left(\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \varphi\right)}\right)-\frac{\partial \mathscr{L}}{\partial \varphi}=0 \tag{55}
\end{equation*}
$$

that is

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}}=\frac{\partial^{2} \varphi}{\partial x^{2}} \quad \text { (longitudinal wave equation) } \tag{56}
\end{equation*}
$$

INTRODUCTION TO FIELD THEORY

Lagrangian for the Dirac equation

- Dirac equation as a relativistc equation of motion for a free spin- $1 / 2$ single particle

$$
\begin{equation*}
i \hbar \gamma^{\mu} \partial_{\mu} \Psi(\underline{x})-m c \Psi(\underline{x})=0 \tag{57}
\end{equation*}
$$

where $\Psi(\underline{x})$ is the wavefunction of the particle (4-component spinor), $\underline{x}=\left(x^{\mu}, \mu=0, \ldots 3\right)=(c t, x, y, z)$ is a 4-vector, and $\gamma^{\mu}(\mu=0,1,2,3)$ are the Dirac 4×4 matrices

$$
\gamma^{0}=\left(\begin{array}{cc}
l_{2} & \mathbf{0} \\
\mathbf{0} & I_{2}
\end{array}\right) \quad \gamma^{k}=\left(\begin{array}{cc}
\mathbf{0} & \sigma^{k} \\
-\sigma^{k} & \mathbf{0}
\end{array}\right) \quad \begin{gathered}
\left(I_{2}=2 \times 2 \text { unit matrix },\right. \\
\left.\sigma^{k}=\text { Pauli matrix, } k=x, y, z\right)
\end{gathered}
$$

- Lagrangian density

$$
\begin{equation*}
\mathscr{L}\left(\Psi, \bar{\Psi}, \partial_{\mu} \Psi, \partial_{\mu} \bar{\Psi}\right)=\frac{i \hbar}{2}\left[\bar{\Psi} \gamma^{\mu}\left(\partial_{\mu} \Psi\right)-\left(\partial_{\mu} \bar{\Psi}\right) \gamma^{\mu} \Psi\right]-m c \bar{\psi} \psi \tag{58}
\end{equation*}
$$

where $\bar{\psi}$ is the conjugate spinor (field independent of Ψ)

$$
\begin{equation*}
\bar{\psi}=\psi^{\dagger} \gamma^{0} \tag{59}
\end{equation*}
$$

REFERENCES

[1] J. Dobaczewski, "Interactions, symmetry breaking and effective fields", lecture at the Ecole Joliot-Curie de Physique Nucléaire (2002).
[2] E. Epelbaum, "Nuclear Forces from chiral effective field theory", lecture at the 2009 Joliot-Curie School of Nuclear Physics. LLink to EJC 09
[3] R. Machleidt and D. R. Entem, Phys. Rep. 503 (2011). [4] R.J. Furnstahl, "Renormalization Group in Nuclear Physics", Nucl. Phys. B (Suppl.) 228 (2012).
[5] G. P. Lepage, "How to renormalize the Schrödinger equation", arXiv:nucl-th/9706029v1 (1997). Link to arXiv

[^0]: ${ }^{1}$ Method due to Phillips and Schat, Phys. Rev. C 88, 034002 (2013).

[^1]: ${ }^{2}$ See, e.g, Hecht and Pang, J. Math. Phys. 10, 1571 (1969).

[^2]: ${ }^{4}$ See G. P. Lepage lecture notes, "How to renormalize the Schrödinger equation", arXiv:nucl-th/9706029v1 (1997).

[^3]: ${ }^{5}$ E. Epelbaum et al., Nucl. Phys. A747 (2005)

