1 2-particle bound state problem in configuration space

Exercise 1 Provided code estimates matrix elements for a given potential (IPOT), fills Hamiltonian matrix and calculates negative eigenvalues (bound state binding energies). As the basis functions defined on Lagrange-Laguerre mesh are used. Matrix elements of the potential are calculated in two ways:

- 1. 'Exactly' using a Gauss-Laguerre quadrature e.q.(1) with many knots.
- 2. Approximately using Lagrange-mesh method (formulae's (19)) Your goals are:
- To calculate binding energies obtained using two methods variational (1) and Lagrange-mesh(2). Compare obtained results.
- Try to optimize the grid to reduce number of points (NMAX), by varying scaling parameter HAV.
- Print the wave function, by setting proper values of the grid size (RBMAX) and number of points (NB_points). Compare obtained wave functions: accurate (many basis functions, 30<NMAX<80) and optimized (NMAX<15)

To run the code: control the parameters in the input file 'input_matrix_elem.para' then execute ./Run_2bbs_exercise. Binding energies are printed on screen. Shape of the potential is printed into the file 'Potential.txt'. Calculated bound-state wave function is printed into the file 'bs_wave_function.txt'.

HAVNMAX TYPEALPHA BETA N_REG $COOR_TR$ # R_MIN R_MAX 30 51.0 0.0 0.51 0.4 0. 1. IPOT L_2C ENERGY # 5 0 1.0 # RB_MAX NB_PNT 20.0 100

Parameter IPOT is 1...6 and corresponds your group/session number!

2 2-particle scattering problem in configuration space

Exercise 2 Provided code calculates for a given potential (IPOT) and angular momentum L_2C scattering phaseshifts at provided energy (ENERGY). Lagrange-Laguerre mesh method ans Kohn variational principle are used.

Your goals are:

- To calculate scattering phaseshifts at several energies (0.001<ENERGY<10). How they evolve with energy?
- Try to optimize the grid by reducing number of points (NMAX) and by varying scaling parameter (HAV).
- Print the wave function, by setting proper values of the grid size (RBMAX) and number of points (NB_points). Compare obtained scattering wave functions: accurate (many basis functions, 30<NMAX< 80) and optimized (NMAX<15).
- Wave functions at different energies, how they evolve?
- Compare obtained wave function to one obtained for the bound state! To run the code: control the parameters

in the input file 'input_matrix_elem.para' then execute ./Run_2bsc_exercise Phaseshifts are printed on screen. Calculated scattering wave function is printed into the file sc_wave_function.txt'.

#	NMAX	TYPE	ALPHA	BETA	N_REG	$COOR_{-}TR$	HAV	RMIN	$R_{-}MAX$
	30	5	1.0	0.0	0.5	1	0.4	0.	1.
#	IPOT	L_2C	ENERGY						
•	5	0	1.0						
#	RB_MAX	NB_PNT							
	20.0	100							

Parameter IPOT is 1...6 and corresponds your group/session number!

2.1 Short overview of the formalism

2.1.1 Gaussian quadrature

	Type	Kind	w(x)	Interval
	Gauss – Legendre	1	1	[-1,1]
	$Chebychev1^{st}kind$	2	$\frac{1}{\sqrt{(1-x^2)}}$	(-1,1)
	Gegenbauer	3	$(1 - x^2)^{\alpha}$	[-1, 1]
Possible meshes:	Jacobi	4	$(1-x)^{\alpha}(1+x)^{\beta}$	[-1, 1]
	GeneralizedLaguerre	5	$x^{\alpha} \exp(-x)$	$[0,\infty)$
	GeneralizedHermite	6	$x^{\alpha} \exp(-x^2)$	$(-\infty,\infty)$
	Exponential	7	$\left[\frac{x}{2}\right]^{\alpha}$	[-1, 1]
	Rational	8	$x^{ar{lpha}}x^{eta}$	$[0,\infty)$
	Cosh	_	$\frac{1}{\cosh(x)}$	$(-\infty,\infty)$

Approximation of an integral using a Gauss quadrature:

$$\int_{a}^{b} f(x)w(x)dx \approx \sum_{i=1}^{N_{g}} w_{i}f(x_{i})$$
(1)

where w_i are special weights, w(x) a well chosen weighting function, whereas x_i are knots of the Gaussian quadrature. **Remark 3** Of course the (w_i, x_i) depends on the choice of the quadrature type and N_g .

¹Here a column Kind represent an integer index used as argument in subroutine cdgqf to pick between different Gauss-quadratures.

2.1.2 How one gets an optimal (w_i, x_i) ?

Let consider characteristic polynomial $L_{N_q}(x)$ of the order N_g for the integral with a given weight function w(x):

$$\int_{a}^{b} L_{N_g}(x)w(x)dx \tag{2}$$

By definition

$$\int_{a}^{b} L_{i}(x)L_{j}(x)w(x)dx = \delta_{i,j}$$
(3)

For any polynomial $p_n(x)$ of the order $n < N_g$:

$$\int_{a}^{b} p_n(x) L_{N_g}(x) w(x) dx \equiv 0; \quad \text{if } n < N_g$$

$$\tag{4}$$

since any $p_n(x)$ might be expressed as a linear combination of $L_i(x)$ with $i = 0, 1, ..., N_g - 1$.

Theorem 4 If we pick the N_g nodes x_i to be the zeros of $L_{N_g}(x)$, then there exist N_g weights w_i which make the Gauss-quadrature computed integral exact for all polynomials $h_n(x)$ of degree $n = 2N_g - 1$ or less. Furthermore, all these nodes x_i will lie in the open interval (a, b).

So let find the N_g roots x_i of the $L_{N_g}(x)$, i.e.

$$L_{N_g}(x) = c \prod_{i=1}^{N_g} (x - x_i)$$
(5)

and from these roots construct N_g independent polynomials $f_i(x)$ of order $N_g - 1$:

$$f_{i,N_g}(x) = c_i \frac{L_{N_g}(x)}{(x - x_i)},$$
(6)

thus by definition $f_{i,N_g}(x)$ are orthogonal to $L_{N_g}(x)$ in the interval (a,b). Then any polynomial $p_n(x)$ of order $n \leq N_g - 1$ is easily expressed by $f_{i,N_g}(x)$ using Lagrange interpolation:

$$p_n(x) = \sum_{i=1}^{N_g} \frac{p_n(x_i)}{f_{i,N_g}(x_i)} f_{i,N_g}(x)$$
(7)

Now let take any polynomial $h_n(x)$ of order $n \leq 2N_g - 1$. One may always express:

$$h_n(x) = a_{n-N_g}(x)L_{N_g}(x) + r_{n-N_g-1}(x)$$
(8)

Then:

$$\int_{a}^{b} h_{n}(x)w(x)dx = \int_{a}^{b} r_{n-N_{g}-1}(x)w(x)dx = \sum_{i=1}^{N_{g}} \frac{r_{n-N_{g}-1}(x_{i})}{f_{i,N_{g}}(x_{i})} \int_{a}^{b} f_{i,N_{g}}(x)w(x)dx \tag{9}$$

Let see that gives Gauss quadrature rule with knots x_i :

$$\int_{a}^{b} h_{n}(x)w(x)dx = \int_{a}^{b} \left[a_{n-N_{g}}(x)L_{N_{g}}(x) + r_{n-N_{g}-1}(x)\right]w(x)dx$$
$$\approx \sum_{i=1}^{N_{g}} w_{i}a_{n-N_{g}}(x_{i})L_{N_{g}}(x_{i}) + \sum_{i=1}^{N_{g}} w_{i}r_{n-N_{g}-1}(x_{i})$$
$$= \sum_{j=1}^{N_{g}} w_{i}r_{n-N_{g}-1}(x_{i})$$

It is obvious that one can adjust N_g weights w_i to make calculation of N_g integrals $\int_a^b f_{i,N_g}(x)w(x)dx$ exact. Comparing the last two equations one can see that the last equation becomes exact, if w_i is chosen to be:

$$w_{i} = \frac{\int_{a}^{b} f_{i,N_{g}}(x)w(x)dx}{f_{i,N_{g}}(x_{i})}$$
(10)

Since $f_{i,N_g}(x)$ are polynomials of order $N_g - 1$ and $f_{i,N_g}(x)f_{j,N_g}(x)$ are the polynomials of order $2N_g - 2$:

$$\begin{split} \int_{a}^{b} f_{i,N_{g}}(x) f_{j,N_{g}}(x) w(x) dx &= \sum_{i=1}^{N_{g}} w_{i} f_{i,N_{g}}(x_{i}) f_{j,N_{g}}(x_{j}) = \delta_{i,j} w_{i} \left[f_{i,N_{g}}(x_{i}) \right]^{2} \\ &= \delta_{i,j} f_{i,N_{g}}(x_{i}) \int_{a}^{b} f_{i,N_{g}}(x) w(x) dx \end{split}$$

3 Langrange mesh method

Based on the Gauss quadrature and the Lagrange interpolation one can construct a very efficient numerical method to solve integro-differential equations, called Lagrange mesh method [1].

We start by constructing a square-integrable basis in the domain [a, b]:

$$f_i(x) = c_i \left(\frac{x}{x_i}\right)^n \frac{L_{N_g}(x)}{(x-x_i)} \sqrt{w(x)}$$
(11)

with $L_{N_q}(x)$

$$L_{N_g}(x) = c \prod_{i=1}^{N_g} (x - x_i)$$
(12)

Figure 1:

as previously eq.(3) characteristic polynomial associated with a weighting function w(x); c_i are chosen in such a way that:

$$\int_{a}^{b} f_{i}(x)f_{i}(x)dx = 1.$$
(13)

If the Gauss-quadrature approximation is used with N_g points and weighting function w(x):

$$\int_{a}^{b} f_{i}(x)f_{j}(x)dx \approx \sum_{k=1}^{N_{g}} w_{k} \frac{f_{i}(x_{k})f_{j}(x_{k})}{w(x_{k})} = \delta_{i,j}w_{i} \left[\frac{f_{i}(x_{i})}{\sqrt{w(x_{i})}}\right]^{2}$$
(14)

The last approximation becomes an exact expression if $2N_g - 1 - 2(N_g - 1 + n) \ge 0$; i.e. $n \le 1/2$. For this case:

$$w_i = \left[\frac{f_i(x_i)}{\sqrt{w(x_i)}}\right]^{-2} \tag{15}$$

and the defined basis functions $f_i(x)$ are orthogonal:

$$\int_{a}^{b} f_{i}(x)f_{j}(x)dx = \delta_{i,j}$$
(16)

4 Evaluation of the matrix elements using Langrange mesh method

In order to construct the matrix elements corresponding to the Operator $\widehat{O}(x)$ one has to estimate:

$$O_{ij} = \left\langle f_i \left| \widehat{O} \right| f_j \right\rangle = \int_a^b f_i(x) \widehat{O}(x) f_j(x) dx \tag{17}$$

By using Gauss-quadrature approximation with N_g points and weighting function w(x), one has:

$$O_{ij} = \int_{a}^{b} f_{i}(x)\widehat{O}(x)f_{j}(x)dx$$
$$\approx \sum_{k=1}^{N_{g}} w_{k} \frac{f_{i}(x_{k})\left[\widehat{O}(x_{k})f_{j}(x_{k})\right]}{w(x_{k})} = w_{i} \frac{f_{i}(x_{i})\left[\widehat{O}(x_{i})f_{j}(x_{i})\right]}{w(x_{i})}$$

Projection of a given wave function $\phi(r) = F(r)/r$ on the Lagrange-mesh basis:

$$F(r) \approx \sum_{i=1}^{N_g} C_i f_i(r)$$

$$C_i = \langle f_i | F \rangle = \int_0^\infty \frac{F(r)}{r} \frac{f_i(r)}{r} r^2 dr \approx \sum_{k=1}^{N_g} w_k \frac{f_i(x_k) F(x_k)}{w(x_k)} = w_i \frac{f_i(x_i) F(x_i)}{w(x_i)} = \frac{F(x_i)}{f_i(x_i)}$$

Example: to solve radial Schrödinger equation one needs to estimate matrix elements of the potential V_{ij} as well as of the total energy E_{ij} . For this problem it is practical to use Lagrange meshes defined on the infinite domain $[0,\infty)$ like Lagrange-Laguerre one.

Using Gauss-quadrature approximation with N_g points:

$$E_{ij} = \int_0^\infty \frac{f_i(r)}{r} E \frac{f_j(r)}{r} r^2 dr \approx \sum_{k=1}^{N_g} w_k \frac{f_i(x_k) \left[E f_j(x_k) \right]}{w(x_k)} = \delta_{i,j} E$$
(18)

Local potential:

$$V_{ij} = \int_0^\infty \frac{f_i(r)}{r} V(r) \frac{f_j(r)}{r} r^2 dr \approx \sum_{k=1}^{N_g} w_k \frac{f_i(x_k) \left[V(x_k) f_j(x_k) \right]}{w(x_k)} = \delta_{i,j} V(x_i)$$
(19)

4.1 Calculation of the scattering phase-shifts by Lagrange-mesh method:

One has to solve Schrödinger equation for a provided potential V and at a given scattering energy E_{cm} . It is:

$$(E_{cm} - \widehat{H}_l(r) - V_l(r))\psi_{l,k}(r) = 0$$

where

$$\widehat{H}_{l}(r) = \frac{\hbar^{2}}{2\mu} \frac{d^{2}}{dr^{2}} - \frac{\hbar^{2}}{2\mu} \frac{l(l+1)}{r^{2}}$$

One knows, that radial wave-function should satisfy the boundary condition:

$$\begin{split} \psi_{l,k}(r) & \xrightarrow[r \to 0]{} 0 \\ \psi_{l,k}(r) & \xrightarrow[r \to \infty]{} \hat{j}_l(kr) + \tan(\delta) \hat{n}_l(kr) \ , \end{split}$$

where $k = \frac{2\mu}{\hbar^2} E_{cm}$ is scattering momentum, whereas $\hat{j}_l(kr)$ and $\hat{n}_l(kr)$ are respectively Riccati-Bessel and Riccati-Neumann functions.

We search wave function in the form:

$$\psi_{l,k}(r) = \sum_{i=1}^{Ng} C_i f_i(r) + \hat{j}_l(kr) + \tan(\delta) \hat{n}_l(kr) F_{cut}(r)$$
(20)

where $F_{cut}(r)$ is some smooth function used to regularize divergence of $\hat{n}_l(kr)$ at $r \to 0$, such that:

$$\begin{array}{ll} F_{cut}(r) \widehat{n}_l(kr) & \underset{r \to 0}{\longrightarrow} 0 \\ F_{cut}(r) \widehat{n}_l(kr) & \underset{r \to \infty}{\longrightarrow} \widehat{n}_l(kr) \end{array},$$

Solution: By plugging expression eq.(20) into radial Schrödinger equation and projecting on each of Lagrangemesh functions $f_i(r)$,

$$\int dr f_i(r) \quad (E_{cm} - \hat{H}_l(r) - V_l(r))\psi_{l,k}(r) = 0$$
(21)

we get Ng equations for Ng + 1 unknowns (Ng coefficients C_i and $tan(\delta)$). These Ng equations are supplemented by the Kohn-variational principle:

$$\tan(\delta) = -\frac{2\mu}{\hbar^2 k} \int \hat{j}_l(kr) V_l(r) \psi_{l,k}(r) dr$$
(22)

References

[1] D. Baye, Phys. Rep. **565** (2015) 1.