
1 2-particle bound state problem in configuration space

Exercise 1 Provided code estimates matrix elements for a given potential (IPOT), fills Hamiltonian matrix and
calculates negative eigenvalues (bound state binding energies). As the basis functions defined on Lagrange-Laguerre
mesh are used. Matrix elements of the potential are calculated in two ways:

1. ’Exactly’ using a Gauss-Laguerre quadrature e.q.(1) with many knots.

2. Approximately using Lagrange-mesh method (formulae’s (19))

Your goals are:

• To calculate binding energies obtained using two methods variational (1) and Lagrange-mesh(2). Compare
obtained results.

• Try to optimize the grid to reduce number of points (NMAX), by varying scaling parameter HAV.

• Print the wave function, by setting proper values of the grid size (RBMAX) and number of points (NB points).
Compare obtained wave functions: accurate (many basis functions, 30<NMAX<80) and optimized (NMAX<15)

To run the code: control the parameters in the input file ’input matrix elem.para’ then execute ./Run 2bbs exercise.

Binding energies are printed on screen. Shape of the potential is printed into the file ’Potential.txt’. Calculated
bound-state wave function is printed into the file ’bs wave function.txt’.

.

# NMAX TYPE ALPHA BETA N REG COOR TR HAV R MIN R MAX

30 5 1.0 0.0 0.5 1 0.4 0. 1.

# IPOT L 2C ENERGY

5 0 1.0

# RB MAX NB PNT

20.0 100

Parameter IPOT is 1...6 and corresponds your group/session number!

2 2-particle scattering problem in configuration space

Exercise 2 Provided code calculates for a given potential (IPOT) and angular momentum L 2C scattering phaseshifts
at provided energy (ENERGY). Lagrange-Laguerre mesh method ans Kohn variational principle are used.
Your goals are:

• To calculate scattering phaseshifts at several energies (0.001<ENERGY<10). How they evolve with energy?

• Try to optimize the grid by reducing number of points (NMAX) and by varying scaling parameter (HAV).

• Print the wave function, by setting proper values of the grid size (RBMAX) and number of points (NB points).
Compare obtained scattering wave functions: accurate (many basis functions, 30<NMAX< 80) and optimized
(NMAX<15).

• Wave functions at different energies, how they evolve?

• Compare obtained wave function to one obtained for the bound state! To run the code: control the parameters

in the input file ’input matrix elem.para’ then execute ./Run 2bsc exercise

Phaseshifts are printed on screen. Calculated scattering wave function is printed into the file sc wave function.txt’.
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.

# NMAX TYPE ALPHA BETA N REG COOR TR HAV R MIN R MAX

30 5 1.0 0.0 0.5 1 0.4 0. 1.

# IPOT L 2C ENERGY
5 0 1.0

# RB MAX NB PNT

20.0 100

Parameter IPOT is 1...6 and corresponds your group/session number!
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2.1 Short overview of the formalism

2.1.1 Gaussian quadrature

Possible meshes:

Type Kind w(x) Interval

Gauss− Legendre 1 1 [−1, 1]
Chebychev1stkind 2 1√

(1−x2)
(−1, 1)

Gegenbauer 3 (1− x2)α [−1, 1]
Jacobi 4 (1− x)α(1 + x)β [−1, 1]
GeneralizedLaguerre 5 xα exp(−x) [0,∞)
GeneralizedHermite 6 xα exp(−x2) (−∞,∞)

Exponential 7
[
x
2

]α
[−1, 1]

Rational 8 xαxβ [0,∞)
Cosh − 1

cosh(x) (−∞,∞)

1

Approximation of an integral using a Gauss quadrature:

∫ b
a
f(x)w(x)dx ≈

Ng∑
i=1

wif(xi) (1)

where wi are special weights, w(x) a well chosen weighting function, whereas xi are knots of the Gaussian quadrature.

Remark 3 Of course the (wi, xi) depends on the choice of the quadrature type and Ng.

1Here a column Kind represent an integer index used as argument in subroutine cdgqf to pick between different Gauss-quadratures.
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2.1.2 How one gets an optimal (wi, xi)?

Let consider characteristic polynomial LNg (x) of the order Ng for the integral with a given weight function w(x):∫ b

a

LNg (x)w(x)dx (2)

By definition ∫ b

a

Li(x)Lj(x)w(x)dx = δi,j (3)

For any polynomial pn(x) of the order n < Ng:∫ b

a

pn(x)LNg (x)w(x)dx ≡ 0; if n < Ng (4)

since any pn(x) might be expressed as a linear combination of Li(x) with i = 0, 1, ..., Ng − 1.

Theorem 4 If we pick the Ng nodes xi to be the zeros of LNg
(x), then there exist Ng weights wi which make the

Gauss-quadrature computed integral exact for all polynomials hn(x) of degree n = 2Ng − 1 or less. Furthermore, all
these nodes xi will lie in the open interval (a, b).

So let find the Ng roots xi of the LNg (x), i.e.

LNg (x) = c

Ng∏
i=1

(x− xi) (5)

and from these roots construct Ng independent polynomials fi(x) of order Ng − 1:

fi,Ng (x) = ci
LNg

(x)

(x− xi)
, (6)

thus by definition fi,Ng (x) are orthogonal to LNg (x) in the interval (a, b). Then any polynomial pn(x) of order
n ≤ Ng − 1 is easily expressed by fi,Ng

(x) using Lagrange interpolation:

pn(x) =

Ng∑
i=1

pn(xi)

fi,Ng (xi)
fi,Ng (x) (7)

Now let take any polynomial hn(x) of order n 6 2Ng − 1. One may always express:

hn(x) = an−Ng
(x)LNg

(x) + rn−Ng−1(x) (8)

Then: ∫ b

a

hn(x)w(x)dx =

∫ b

a

rn−Ng−1(x)w(x)dx =

Ng∑
i=1

rn−Ng−1(xi)

fi,Ng
(xi)

∫ b

a

fi,Ng
(x)w(x)dx (9)

Let see that gives Gauss quadrature rule with knots xi :

∫ b

a

hn(x)w(x)dx =

∫ b

a

[
an−Ng

(x)LNg
(x) + rn−Ng−1(x)

]
w(x)dx

≈
Ng∑
i=1

wian−Ng
(xi)LNg

(xi) +

Ng∑
i=1

wirn−Ng−1(xi)

=

Ng∑
j=1

wirn−Ng−1(xi)
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It is obvious that one can adjust Ng weights wi to make calculation of Ng integrals
∫ b
a
fi,Ng

(x)w(x)dx exact.
Comparing the last two equations one can see that the last equation becomes exact, if wi is chosen to be:

wi =

∫ b
a
fi,Ng

(x)w(x)dx

fi,Ng (xi)
(10)

Since fi,Ng (x) are polynomials of order Ng − 1 and fi,Ng (x)fj,Ng (x) are the polynomials of order 2Ng − 2:

∫ b

a

fi,Ng
(x)fj,Ng

(x)w(x)dx =

Ng∑
i=1

wifi,Ng
(xi)fj,Ng

(xj) = δi,jwi
[
fi,Ng

(xi)
]2

= δi,jfi,Ng
(xi)

∫ b

a

fi,Ng
(x)w(x)dx
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3 Langrange mesh method

Based on the Gauss quadrature and the Lagrange interpolation one can construct a very efficient numerical method
to solve integro-differential equations, called Lagrange mesh method [1].

We start by constructing a square-integrable basis in the domain [a, b]:

fi(x) = ci

(
x
xi

)n LNg (x)

(x−xi)

√
w(x) (11)

with LNg (x)

LNg
(x) = c

Ng∏
i=1

(x− xi) (12)

Figure 1:

as previously eq.(3) characteristic polynomial associated with a weighting function w(x); ci are chosen in such a
way that: ∫ b

a

fi(x)fi(x)dx = 1. (13)

If the Gauss-quadrature approximation is used with Ng points and weighting function w(x):

∫ b

a

fi(x)fj(x)dx ≈
Ng∑
k=1

wk
fi(xk)fj(xk)

w(xk)
= δi,jwi

[
fi(xi)√
w(xi)

]2
(14)

The last approximation becomes an exact expression if 2Ng − 1− 2(Ng − 1 + n) ≥ 0; i.e. n ≤ 1/2. For this case:

wi =

[
fi(xi)√
w(xi)

]−2
(15)

and the defined basis functions fi(x) are orthogonal:

∫ b
a
fi(x)fj(x)dx = δi,j (16)
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4 Evaluation of the matrix elements using Langrange mesh method

In order to construct the matrix elements corresponding to the Operator Ô(x) one has to estimate:

Oij =
〈
fi

∣∣∣Ô∣∣∣ fj〉 =

∫ b

a

fi(x)Ô(x)fj(x)dx (17)

By using Gauss-quadrature approximation with Ng points and weighting function w(x), one has:

Oij =

∫ b

a

fi(x)Ô(x)fj(x)dx

≈
Ng∑
k=1

wk
fi(xk)

[
Ô(xk)fj(xk)

]
w(xk)

= wi
fi(xi)

[
Ô(xi)fj(xi)

]
w(xi)

Projection of a given wave function φ(r) = F (r)/r on the Lagrange-mesh basis:

F (r) ≈
Ng∑
i=1

Cifi(r)

Ci = 〈fi |F 〉 =

∫ ∞
0

F (r)

r

fi(r)

r
r2dr ≈

Ng∑
k=1

wk
fi(xk)F (xk)

w(xk)
= wi

fi(xi)F (xi)

w(xi)
=
F (xi)

fi(xi)

Example: to solve radial Schrődinger equation one needs to estimate matrix elements of the potential Vij as
well as of the total energy Eij .For this problem it is practical to use Lagrange meshes defined on the infinite domain
[0,∞) like Lagrange-Laguerre one.

Using Gauss-quadrature approximation with Ng points:

Eij =

∫ ∞
0

fi(r)

r
E
fj(r)

r
r2dr ≈

Ng∑
k=1

wk
fi(xk) [Efj(xk)]

w(xk)
= δi,jE (18)

Local potential:

Vij =

∫ ∞
0

fi(r)

r
V (r)

fj(r)

r
r2dr ≈

Ng∑
k=1

wk
fi(xk) [V (xk)fj(xk)]

w(xk)
= δi,jV (xi) (19)

4.1 Calculation of the scattering phase-shifts by Lagrange-mesh method:

One has to solve Schrödinger equation for a provided potential V and at a given scattering energy Ecm. It is:

(Ecm − Ĥl(r)− Vl(r))ψl,k(r) = 0

where

Ĥl(r) =
~2

2µ

d2

dr2
− ~2

2µ

l(l + 1)

r2

One knows, that radial wave-function should satisfy the boundary condition:

ψl,k(r) −→
r→0

0

ψl,k(r) −→
r→∞

ĵl(kr) + tan(δ)n̂l(kr) ,
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where k = 2µ
~2Ecm is scatttering momentum, whereas ĵl(kr) and n̂l(kr) are respectively Riccati-Bessel and Riccati-

Neumann functions.
We search wave function in the form:

ψl,k(r) =

Ng∑
i=1

Cifi(r) + ĵl(kr) + tan(δ)n̂l(kr)Fcut(r) (20)

where Fcut(r) is some smooth function used to regularize divergence of n̂l(kr) at r → 0, such that:

Fcut(r)n̂l(kr) −→
r→0

0

Fcut(r)n̂l(kr) −→
r→∞

n̂l(kr) ,

Solution: By plugging expression eq.(20) into radial Schrödinger equation and projecting on each of Lagrange-
mesh functions fi(r), ∫

drfi(r) (Ecm − Ĥl(r)− Vl(r))ψl,k(r) = 0 (21)

we get Ng equations for Ng+ 1unknowns (Ng coefficients Ci and tan(δ)). These Ng equations are supplemented
by the Kohn-variational principle:

tan(δ) = − 2µ
~2k

∫
ĵl(kr)Vl(r)ψl,k(r)dr (22)
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