1 2-particle bound state problem in configuration space

Exercise 1 Provided code estimates matrix elements for a given potential (IPOT), fills Hamiltonian matrix and calculates negative eigenvalues (bound state binding energies). As the basis functions defined on Lagrange-Laguerre mesh are used. Matrix elements of the potential are calculated in two ways:

1. 'Exactly' using a Gauss-Laguerre quadrature e.q.(1) with many knots.
2. Approximately using Lagrange-mesh method (formulae's (19))

Your goals are:

- To calculate binding energies obtained using two methods variational (1) and Lagrange-mesh(2). Compare obtained results.
- Try to optimize the grid to reduce number of points (NMAX), by varying scaling parameter HAV.
- Print the wave function, by setting proper values of the grid size ($R B M A X$) and number of points (NB_points). Compare obtained wave functions: accurate (many basis functions, $30<N M A X<80$) and optimized (NMAX<15)

To run the code: control the parameters in the input file 'input_matrix_elem.para' then execute ./Run_2bbs_exercise.
Binding energies are printed on screen. Shape of the potential is printed into the file 'Potential.txt'. Calculated bound-state wave function is printed into the file 'bs_wave_function.txt'.

\#	NMAX	TYPE	ALPHA	BETA	N_REG	COOR_TR	HAV	R_MIN	R_MAX
	30	5	1.0	0.0	0.5	1	0.4	0.	
\#	IPOT	L_2C	ENERGY						
	5	0	1.0						
\#	$\begin{aligned} & R B_{-} M A X \\ & 20.0 \end{aligned}$	$\begin{aligned} & N B_{-} P . \\ & 100 \end{aligned}$							

Parameter IPOT is $1 \ldots 6$ and corresponds your group/session number!

2 2-particle scattering problem in configuration space

Exercise 2 Provided code calculates for a given potential (IPOT) and angular momentum L_2C scattering phaseshifts at provided energy (ENERGY). Lagrange-Laguerre mesh method ans Kohn variational principle are used.

Your goals are:

- To calculate scattering phaseshifts at several energies ($0.001<E N E R G Y<10$). How they evolve with energy?
- Try to optimize the grid by reducing number of points (NMAX) and by varying scaling parameter (HAV).
- Print the wave function, by setting proper values of the grid size (RBMAX) and number of points (NB_points). Compare obtained scattering wave functions: accurate (many basis functions, $30<N M A X<80$) and optimized (NMAX<15).
- Wave functions at different energies, how they evolve?
- Compare obtained wave function to one obtained for the bound state! To run the code: control the parameters in the input file 'input_matrix_elem.para' then execute ./Run_2bsc_exercise
Phaseshifts are printed on screen. Calculated scattering wave function is printed into the file sc_wave_function.txt'.

```
# NMAX TYPE ALPHA BETA N_REG COOR_TR HAV R_MIN R_MAX
    30 5 5 1.0 
# IPOT L_2C ENERGY
    5 0 1.0
# RB_MAX NB_PNT
    20.0 100
```

Parameter IPOT is $1 \ldots 6$ and corresponds your group/session number!

2.1 Short overview of the formalism

2.1.1 Gaussian quadrature

Type	Kind	$w(x)$	Interval
	Gauss - Legendre	1	1
Possible meshes:	Chebychev1 ${ }^{\text {st }}$ kind	2	$\frac{1}{\sqrt{\left(1-x^{2}\right)}}$
Gegenbauer	3	$(1-1,1]$	
(1-1)	$(-1)^{\alpha}$	$[-1,1]$	
Jacobi	4	$(1-x)^{\alpha}(1+x)^{\beta}$	$[-1,1]$
GeneralizedLaguerre	5	$x^{\alpha} \exp (-x)$	$[0, \infty)$
GeneralizedHermite	6	$x^{\alpha} \exp \left(-x^{2}\right)$	$(-\infty, \infty)$
Exponential	7	$\left[\frac{x}{2}\right]^{\alpha}$	$[-1,1]$
Rational	8	$x^{\alpha} x^{\beta}$	$[0, \infty)$
Cosh	-	$\frac{1}{\cosh (x)}$	$(-\infty, \infty)$

Approximation of an integral using a Gauss quadrature:

$$
\begin{equation*}
\int_{a}^{b} f(x) w(x) d x \approx \sum_{i=1}^{N_{g}} w_{i} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

where w_{i} are special weights, $w(x)$ a well chosen weighting function, whereas x_{i} are knots of the Gaussian quadrature.
Remark 3 Of course the $\left(w_{i}, x_{i}\right)$ depends on the choice of the quadrature type and N_{g}.

[^0]
2.1.2 How one gets an optimal $\left(w_{i}, x_{i}\right)$?

Let consider characteristic polynomial $L_{N_{g}}(x)$ of the order N_{g} for the integral with a given weight function $w(x)$:

$$
\begin{equation*}
\int_{a}^{b} L_{N_{g}}(x) w(x) d x \tag{2}
\end{equation*}
$$

By definition

$$
\begin{equation*}
\int_{a}^{b} L_{i}(x) L_{j}(x) w(x) d x=\delta_{i, j} \tag{3}
\end{equation*}
$$

For any polynomial $p_{n}(x)$ of the order $n<N_{g}$:

$$
\begin{equation*}
\int_{a}^{b} p_{n}(x) L_{N_{g}}(x) w(x) d x \equiv 0 ; \quad \text { if } n<N_{g} \tag{4}
\end{equation*}
$$

since any $p_{n}(x)$ might be expressed as a linear combination of $L_{i}(x)$ with $i=0,1, \ldots, N_{g}-1$.

Theorem 4 If we pick the N_{g} nodes x_{i} to be the zeros of $L_{N_{g}}(x)$, then there exist N_{g} weights w_{i} which make the Gauss-quadrature computed integral exact for all polynomials $h_{n}(x)$ of degree $n=2 N_{g}-1$ or less. Furthermore, all these nodes x_{i} will lie in the open interval (a, b).
So let find the N_{g} roots x_{i} of the $L_{N_{g}}(x)$, i.e.

$$
\begin{equation*}
L_{N_{g}}(x)=c \prod_{i=1}^{N_{g}}\left(x-x_{i}\right) \tag{5}
\end{equation*}
$$

and from these roots construct N_{g} independent polynomials $f_{i}(x)$ of order $N_{g}-1$:

$$
\begin{equation*}
f_{i, N_{g}}(x)=c_{i} \frac{L_{N_{g}}(x)}{\left(x-x_{i}\right)}, \tag{6}
\end{equation*}
$$

thus by definition $f_{i, N_{g}}(x)$ are orthogonal to $L_{N_{g}}(x)$ in the interval (a, b). Then any polynomial $p_{n}(x)$ of order $n \leq N_{g}-1$ is easily expressed by $f_{i, N_{g}}(x)$ using Lagrange interpolation:

$$
\begin{equation*}
p_{n}(x)=\sum_{i=1}^{N_{g}} \frac{p_{n}\left(x_{i}\right)}{f_{i, N_{g}}\left(x_{i}\right)} f_{i, N_{g}}(x) \tag{7}
\end{equation*}
$$

Now let take any polynomial $h_{n}(x)$ of order $n \leqslant 2 N_{g}-1$. One may always express:

$$
\begin{equation*}
h_{n}(x)=a_{n-N_{g}}(x) L_{N_{g}}(x)+r_{n-N_{g}-1}(x) \tag{8}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\int_{a}^{b} h_{n}(x) w(x) d x=\int_{a}^{b} r_{n-N_{g}-1}(x) w(x) d x=\sum_{i=1}^{N_{g}} \frac{r_{n-N_{g}-1}\left(x_{i}\right)}{f_{i, N_{g}}\left(x_{i}\right)} \int_{a}^{b} f_{i, N_{g}}(x) w(x) d x \tag{9}
\end{equation*}
$$

Let see that gives Gauss quadrature rule with knots x_{i} :

$$
\begin{aligned}
\int_{a}^{b} h_{n}(x) w(x) d x & =\int_{a}^{b}\left[a_{n-N_{g}}(x) L_{N_{g}}(x)+r_{n-N_{g}-1}(x)\right] w(x) d x \\
& \approx \sum_{i=1}^{N_{g}} w_{i} a_{n-N_{g}}\left(x_{i}\right) L_{N_{g}}\left(x_{i}\right)+\sum_{i=1}^{N_{g}} w_{i} r_{n-N_{g}-1}\left(x_{i}\right) \\
& =\sum_{j=1}^{N_{g}} w_{i} r_{n-N_{g}-1}\left(x_{i}\right)
\end{aligned}
$$

It is obvious that one can adjust N_{g} weights w_{i} to make calculation of N_{g} integrals $\int_{a}^{b} f_{i, N_{g}}(x) w(x) d x$ exact. Comparing the last two equations one can see that the last equation becomes exact, if w_{i} is chosen to be:

$$
\begin{equation*}
w_{i}=\frac{\int_{a}^{b} f_{i, N_{g}}(x) w(x) d x}{f_{i, N_{g}}\left(x_{i}\right)} \tag{10}
\end{equation*}
$$

Since $f_{i, N_{g}}(x)$ are polynomials of order $N_{g}-1$ and $f_{i, N_{g}}(x) f_{j, N_{g}}(x)$ are the polynomials of order $2 N_{g}-2$:

$$
\begin{aligned}
\int_{a}^{b} f_{i, N_{g}}(x) f_{j, N_{g}}(x) w(x) d x & =\sum_{i=1}^{N_{g}} w_{i} f_{i, N_{g}}\left(x_{i}\right) f_{j, N_{g}}\left(x_{j}\right)=\delta_{i, j} w_{i}\left[f_{i, N_{g}}\left(x_{i}\right)\right]^{2} \\
& =\delta_{i, j} f_{i, N_{g}}\left(x_{i}\right) \int_{a}^{b} f_{i, N_{g}}(x) w(x) d x
\end{aligned}
$$

3 Langrange mesh method

Based on the Gauss quadrature and the Lagrange interpolation one can construct a very efficient numerical method to solve integro-differential equations, called Lagrange mesh method [1].

We start by constructing a square-integrable basis in the domain $[a, b]$:

$$
\begin{equation*}
f_{i}(x)=c_{i}\left(\frac{x}{x_{i}}\right)^{n} \frac{L_{N_{g}}(x)}{\left(x-x_{i}\right)} \sqrt{w(x)} \tag{11}
\end{equation*}
$$

with $L_{N_{g}}(x)$

$$
\begin{equation*}
L_{N_{g}}(x)=c \prod_{i=1}^{N_{g}}\left(x-x_{i}\right) \tag{12}
\end{equation*}
$$

Fig. 2. Lagrange-Laguerre functions (3.52) for $\alpha=0$ and $N=4$.

Figure 1:
as previously eq.(3) characteristic polynomial associated with a weighting function $w(x) ; c_{i}$ are chosen in such a way that:

$$
\begin{equation*}
\int_{a}^{b} f_{i}(x) f_{i}(x) d x=1 \tag{13}
\end{equation*}
$$

If the Gauss-quadrature approximation is used with N_{g} points and weighting function $w(x)$:

$$
\begin{equation*}
\int_{a}^{b} f_{i}(x) f_{j}(x) d x \approx \sum_{k=1}^{N_{g}} w_{k} \frac{f_{i}\left(x_{k}\right) f_{j}\left(x_{k}\right)}{w\left(x_{k}\right)}=\delta_{i, j} w_{i}\left[\frac{f_{i}\left(x_{i}\right)}{\sqrt{w\left(x_{i}\right)}}\right]^{2} \tag{14}
\end{equation*}
$$

The last approximation becomes an exact expression if $2 N_{g}-1-2\left(N_{g}-1+n\right) \geq 0$; i.e. $n \leq 1 / 2$. For this case:

$$
\begin{equation*}
w_{i}=\left[\frac{f_{i}\left(x_{i}\right)}{\sqrt{w\left(x_{i}\right)}}\right]^{-2} \tag{15}
\end{equation*}
$$

and the defined basis functions $f_{i}(x)$ are orthogonal:

$$
\begin{equation*}
\int_{a}^{b} f_{i}(x) f_{j}(x) d x=\delta_{i, j} \tag{16}
\end{equation*}
$$

4 Evaluation of the matrix elements using Langrange mesh method

In order to construct the matrix elements corresponding to the Operator $\widehat{O}(x)$ one has to estimate:

$$
\begin{equation*}
O_{i j}=\left\langle f_{i}\right| \widehat{O}\left|f_{j}\right\rangle=\int_{a}^{b} f_{i}(x) \widehat{O}(x) f_{j}(x) d x \tag{17}
\end{equation*}
$$

By using Gauss-quadrature approximation with N_{g} points and weighting function $w(x)$, one has:

$$
\begin{aligned}
O_{i j} & =\int_{a}^{b} f_{i}(x) \widehat{O}(x) f_{j}(x) d x \\
& \approx \sum_{k=1}^{N_{g}} w_{k} \frac{f_{i}\left(x_{k}\right)\left[\widehat{O}\left(x_{k}\right) f_{j}\left(x_{k}\right)\right]}{w\left(x_{k}\right)}=w_{i} \frac{f_{i}\left(x_{i}\right)\left[\widehat{O}\left(x_{i}\right) f_{j}\left(x_{i}\right)\right]}{w\left(x_{i}\right)}
\end{aligned}
$$

Projection of a given wave function $\phi(r)=F(r) / r$ on the Lagrange-mesh basis:

$$
\begin{aligned}
F(r) & \approx \sum_{i=1}^{N_{g}} C_{i} f_{i}(r) \\
C_{i} & =\left\langle f_{i} \mid F\right\rangle=\int_{0}^{\infty} \frac{F(r)}{r} \frac{f_{i}(r)}{r} r^{2} d r \approx \sum_{k=1}^{N_{g}} w_{k} \frac{f_{i}\left(x_{k}\right) F\left(x_{k}\right)}{w\left(x_{k}\right)}=w_{i} \frac{f_{i}\left(x_{i}\right) F\left(x_{i}\right)}{w\left(x_{i}\right)}=\frac{F\left(x_{i}\right)}{f_{i}\left(x_{i}\right)}
\end{aligned}
$$

Example: to solve radial Schrődinger equation one needs to estimate matrix elements of the potential $V_{i j}$ as well as of the total energy $E_{i j}$. For this problem it is practical to use Lagrange meshes defined on the infinite domain $[0, \infty)$ like Lagrange-Laguerre one.

Using Gauss-quadrature approximation with N_{g} points:

$$
\begin{equation*}
E_{i j}=\int_{0}^{\infty} \frac{f_{i}(r)}{r} E \frac{f_{j}(r)}{r} r^{2} d r \approx \sum_{k=1}^{N_{g}} w_{k} \frac{f_{i}\left(x_{k}\right)\left[E f_{j}\left(x_{k}\right)\right]}{w\left(x_{k}\right)}=\delta_{i, j} E \tag{18}
\end{equation*}
$$

Local potential:

$$
\begin{equation*}
V_{i j}=\int_{0}^{\infty} \frac{f_{i}(r)}{r} V(r) \frac{f_{j}(r)}{r} r^{2} d r \approx \sum_{k=1}^{N_{g}} w_{k} \frac{f_{i}\left(x_{k}\right)\left[V\left(x_{k}\right) f_{j}\left(x_{k}\right)\right]}{w\left(x_{k}\right)}=\delta_{i, j} V\left(x_{i}\right) \tag{19}
\end{equation*}
$$

4.1 Calculation of the scattering phase-shifts by Lagrange-mesh method:

One has to solve Schrödinger equation for a provided potential V and at a given scattering energy $E_{c m}$. It is:

$$
\left(E_{c m}-\widehat{H}_{l}(r)-V_{l}(r)\right) \psi_{l, k}(r)=0
$$

where

$$
\widehat{H}_{l}(r)=\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}-\frac{\hbar^{2}}{2 \mu} \frac{l(l+1)}{r^{2}}
$$

One knows, that radial wave-function should satisfy the boundary condition:

$$
\begin{array}{ll}
\psi_{l, k}(r) & \underset{r \rightarrow 0}{\longrightarrow} 0 \\
\psi_{l, k}(r) & \underset{r \rightarrow \infty}{\longrightarrow} \widehat{j}_{l}(k r)+\tan (\delta) \widehat{n}_{l}(k r)
\end{array}
$$

where $k=\frac{2 \mu}{\hbar^{2}} E_{c m}$ is scatttering momentum, whereas $\widehat{j}_{l}(k r)$ and $\widehat{n}_{l}(k r)$ are respectively Riccati-Bessel and RiccatiNeumann functions.

We search wave function in the form:

$$
\begin{equation*}
\psi_{l, k}(r)=\sum_{i=1}^{N g} C_{i} f_{i}(r)+\widehat{j}_{l}(k r)+\tan (\delta) \widehat{n}_{l}(k r) F_{c u t}(r) \tag{20}
\end{equation*}
$$

where $F_{\text {cut }}(r)$ is some smooth function used to regularize divergence of $\widehat{n}_{l}(k r)$ at $r \rightarrow 0$, such that:

$$
\begin{array}{ll}
F_{c u t}(r) \widehat{n}_{l}(k r) & \underset{r \rightarrow 0}{\longrightarrow} 0 \\
F_{c u t}(r) \widehat{n}_{l}(k r) & \underset{r \rightarrow \infty}{\longrightarrow} \widehat{n}_{l}(k r)
\end{array}
$$

Solution: By plugging expression eq.(20) into radial Schrödinger equation and projecting on each of Lagrangemesh functions $f_{i}(r)$,

$$
\begin{equation*}
\int d r f_{i}(r) \quad\left(E_{c m}-\hat{H}_{l}(r)-V_{l}(r)\right) \psi_{l, k}(r)=0 \tag{21}
\end{equation*}
$$

we get $N g$ equations for $N g+1$ unknowns ($N g$ coefficients C_{i} and $\left.\tan (\delta)\right)$. These $N g$ equations are supplemented by the Kohn-variational principle:

$$
\begin{equation*}
\tan (\delta)=-\frac{2 \mu}{\hbar^{2} k} \int \widehat{j}_{l}(k r) V_{l}(r) \psi_{l, k}(r) d r \tag{22}
\end{equation*}
$$

References

[1] D. Baye, Phys. Rep. 565 (2015) 1.

[^0]: ${ }^{1}$ Here a column Kind represent an integer index used as argument in subroutine cdgqf to pick between different Gauss-quadratures.

