Recent results from searches for Supersymmetry at ATLAS

Boosting the sensitivity with the full 13 TeV dataset

Moritz Backes¹ (University of Oxford, UK) on behalf of the **ATLAS Collaboration**

Seminar at Laboratoire Leprince-Ringuet École Polytechnique, Université Paris-Saclay

24 April 2017

Open Questions of the Standard Model

 Hierarchy problem: Higgs mass subject to quadratically divergent loop corrections.
 Incredible fine-tuning

Grand unification: Standard Model coupling constants do not unify at high scales.
 → SM does not imply a Grand Unified Theory

 Dark matter: Cosmological data suggest presence of dark matter → No explanation within Standard Model

Never tired of analogies...

Never tired of analogies...

We need... Supersymmetry (SUSY)

- Fundamental symmetry between fermions and bosons introducing a set of new partner particles to the SM particles with half-spin difference.
- ✓ Opposite-sign loop corrections from SUSY particles. Quadratic divergencies cancel. → No (little) fine-tuning.
- ✓ If R-parity conserved: Lightest SUSY Particle (LSP) stable. → Natural candidate for dark matter.

R-parity = (-1)^{3(B-L)+2s}
SM particles: +1
SUSY particles: -1

✓ Unification of gauge couplings at M_{GUT} ≈ 10¹⁶ GeV

Not just any SUSY...

- Higgs boson discovery and strong experimental bounds have put vanilla SUSY under pressure
- Within the MSSM stop and gluino masses enter at **1 and 2 loop level** into the Higgs mass matrix, the Higgsino mass parameter µ **at tree level**
- → Search effort focus around "Natural SUSY" (e.g. <u>arXiv:1110.6926</u>) with relatively light gluinos, stops, higgsinos (remaining SUSY particles can be decoupled at high masses)

How to search for SUSY at the LHC

- If SUSY particles exist at LHC accessible energies:
 - ① R-parity conservation
 - Pair-production via strong / EW interaction
 - Direct or cascade decays to the stable lightest SUSY particle (LSP).
 - Many high p_T SM decay products + large E_{T,miss} (depending on the mass spectrum)
 - ② R-parity violation
 - Multi-jets / multi-leptons signatures from LSP decay to SM particles
 - Displaced vertices from late LSP decays
 - **③** Long-lived particles
 - Sparticles produced with long lifetimes due to mass degeneracy, small couplings, virtuality
 - Secondary decay vertex
- Search strategy @ 13 TeV:
 - → Early data: Gluino & 1st/2nd generation squark searches have the largest potential due to enhanced cross-sections
 - → Beyond ~10 fb⁻¹: Searches for 3rd generation squarks and EW production start to exceed Run-1 sensitivity

24/04/17

Tools & building blocks...

The ATLAS Experiment in Run-2

+ New innermost pixel layer
 (IBL) @ 3.3 cm from the beam line → additional 4th space-point measurement

- + Upgraded trigger/DAQ system (improved bandwidths 75 kHz →100 kHz @ L1 & 1-1.5 kHz @ HLT)
- + Improved offline reconstruction & analysis software

+ ...

The ATLAS Experiment in Run-2

nic end-cap and

SUSY searches rely strongly on new IBL:

- b-tagging crucial for many SUSY analyses: Improvements of a factor of 2 and more in light-flavour / c-jet rejection
- Searches for long-lived particles: Improved track / secondary vertex reconstruction

+ New innermost pixel layer
 (IBL) @ 3.3 cm from the beam line → additional 4th space-point measurement

24/04/17

25

Data-taking 2015/2016

- Record performance of the LHC in 2016:
 - 1680 hours of 13 TeV stable beams data-taking in 2016!
 - Peak instantaneous luminosity of 1.38 x 10³⁴ cm⁻² s⁻¹
 - Pile-up of up to **50** interactions per crossing
- Excellent Run-2 data-taking campaign for ATLAS:
 - 3.9 fb⁻¹ + 35.6 fb⁻¹ recorded in 2015 + 2016
 - In total 36.1 fb⁻¹ (i.e. 91.4%) good for SUSY searches!

Mean Number of Interactions per Crossing

Trigger Performance Highlights

- ATLAS trigger and DAQ systems form the basis for a successful data-taking
- Major challenge in 2016: Maintain trigger performance in fierce luminosity & pile-up conditions
- Main physics triggers for SUSY searches: Generic E_{T,miss}, jet, lepton triggers

Di-electron triggers

HLT_e17_lhvloose_nod0

100

120

Offline electron E_{τ} [GeV]

140

Data

60

40

Z→ ee MC

80

20

1.4

1.2⊢

0.8

0.6

0.4

0.2

ATLAS Internal

Data 2016, √s = 13 TeV, 33.5 fb⁻¹

Trigger Efficiency

Detector Performance Highlights

Moritz Backes

Blueprint of a vanilla SUSY search

- 1 Build signal regions (SRs) based on requirements on signal / background discriminating variables to target specific SUSY event topologies. Optimised for discovery & exclusion.
- 2 Determine Standard Model background in the SRs:

Discriminating variables in a nutshell

 Plethora of observables used by SUSY searches to maximally exploit event information:

Reconstructed object multiplicities, momenta, energies, e.g. $N_{jet/b-tag/l/\gamma}$, p_T , $E_{T,miss}$, ...

Scale variables, e.g. $\mathbf{m}_{eff} = \Sigma p_T + E_{T,miss}$,

Angular variables, e.g. min $\Delta \Phi$ (jet, E_{T,miss}), ...

Mass variables, e.g. m_{ℓ} , $m_{T}^{b/l/j}$, $\Sigma m_{fat-jet}$, ...

Event shape variables, e.g. Aplanarity, ...

Hypothesis-based event variables e.g. m_{T2} , ...

More complex methods, e.g. new **recursive jigsaw reconstruction** [arxiv:1607.08307], ...

complexity

ATLAS SUSY Searches: Status August '16

ATLAS SUSY Searches* - 95% CL Lower Limits Status: August 2016 $\sqrt{s} = 7.8$ ToV											
	Model	e, μ, τ, γ	⁄ Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	$\sqrt{3} = 7, 0 \text{ Iev} \sqrt{3} = 13 \text{ Iev}$	Reference				
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} (\text{compressed}) \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} (\text{compressed}) \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}\bar{g}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}$	$\begin{array}{c} 0\text{-}3 \ e, \mu / 1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (\text{SS}) \\ 1\text{-}2 \ \tau + 0\text{-}1 \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (\text{Z}) \\ 0 \\ \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets ℓ 0-2 jets 2 jets 2 jets 2 jets mono-jet	 b Yes Yes 	20.3 13.3 3.2 13.3 13.3 13.2 13.2 3.2 3.2 20.3 13.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2,00,525 (6-078 78 8 78 8 78 8 78 8 9 0 5066 00518				
3 rd gen ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0 - 1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	\$\vec{x}\$ 1.89 TeV m(\vec{x}^0)=0 GeV \$\vec{x}\$ 1.89 TeV m(\vec{x}^0)=0 GeV \$\vec{x}\$ 1.37 TeV m(\vec{x}^0)<300 GeV	T-2016-052 F-2016-05 600				
3 rd gen. squarks direct production	$ \begin{array}{l} \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{x}_1^0 \\ \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow t \bar{x}_1^{\pm} \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow b \bar{x}_1^{\pm} \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow b \bar{x}_1^{\pm} \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow b \bar{x}_1^0 \\ \bar{r}_1 \bar{r}_1, \bar{r}_1 \rightarrow c \bar{x}_1^0 \\ \bar{r}_1 \bar{r}_1 (natural GMSB) \\ \bar{r}_2 \bar{r}_2, \bar{r}_2 \rightarrow \bar{r}_1 + Z \\ \bar{r}_2 \bar{r}_1, \bar{r}_2 \rightarrow \bar{r}_1 + h \end{array} $	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 0\text{-}2\ e,\mu\\ 0\text{-}2\ e,\mu\\ 0\\ 2\ e,\mu\ (Z)\\ 3\ e,\mu\ (Z)\\ 1\ e,\mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 .7/13.3 .7/13.3 3.2 20.3 13.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1209 02, ATLAS-CC 1506. 116, ATLAS-CC 1604.07775 1403.5222 1403.5222 1506.08616 506.08616				
EW direct	$ \begin{split} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^* \tilde{\chi}_1^*, \tilde{\chi}_1^* \rightarrow \tilde{\ell}_{\nu}(\ell \tilde{\nu}) \\ \tilde{\chi}_1^* \tilde{\chi}_1^*, \tilde{\chi}_1^* \rightarrow \tilde{\ell}_{\nu}(\ell \tilde{\nu}) \\ \tilde{\chi}_1^* \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_{\nu} \tilde{\chi}_1^0(\ell \tilde{\nu}), \ell \tilde{\nu}_{L}^* \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_1^* \tilde{\chi}_2^0 \rightarrow W_{\nu}^0 2 \tilde{\chi}_1^0 \\ \tilde{\chi}_2^* \tilde{\chi}_2^0 \rightarrow W_{\nu}^0 h \tilde{\chi}_1^*, h \rightarrow b \tilde{b} / W W / \tau n \\ \tilde{\chi}_2^0 \tilde{\chi}_3^*, \tilde{\chi}_{2,3}^* \rightarrow \tilde{\ell}_R \ell \\ GGM (bino NLSP) weak prod. \\ GGM (bino NLSP) weak prod. \end{split} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \\ 2 \ \gamma \end{array}$	0 0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.5294 F-2016.096 1.2016.098 402.7029 110 05493 37.05493				
Long-lived particles	$ \begin{array}{l} \text{Direct } \tilde{X}_1^{\dagger} \tilde{X}_1^{-} \text{ prod., long-lived } \tilde{X} \\ \text{Direct } \tilde{X}_1^{\dagger} \tilde{X}_1^{-} \text{ prod., long-lived } \tilde{X} \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{Stable } \tilde{g} \text{ R-hadron} \\ \text{Metastable } \tilde{g} \text{ R-hadron} \\ \text{GMSB, stable } \tilde{\tau}, \tilde{X}_1^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau \\ \text{GMSB, } \tilde{\chi}_1^{0} \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_1^{0} \\ \tilde{g} \tilde{g}, \tilde{\chi}_1^{0} \rightarrow eev(e\mu\nu/\mu\nu) \\ \text{GGM } \tilde{g} \tilde{g}, \tilde{\chi}_1^{0} \rightarrow Z \tilde{G} \end{array} $	$ \begin{array}{c} \stackrel{\pm}{1} & \text{Disapp. trk} \\ \stackrel{\pm}{1} & \text{dE/dx trk} \\ 0 & \text{trk} \\ \text{dE/dx trk} \\ \frac{dE/dx trk}{2 \gamma} \\ 1 - 2 \mu \\ 2 \gamma \\ \text{displ. } ee/e\mu// \\ \text{displ. vtx + je} \end{array} $	1 jet 1-5 jets μμ ets	Yes Yes Yes Yes	20.3 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162				
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\mathcal{K}}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\mathcal{K}}_{1}^{*} \rightarrow W\tilde{\mathcal{K}}_{1}^{0} \mathcal{X}_{1}^{0} \rightarrow eev, e\mu v, \mu \\ \tilde{\mathcal{K}}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow W\tilde{\mathcal{K}}_{1}^{0} \mathcal{X}_{1}^{0} \rightarrow \tau r v_{e}, erv_{\tau} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{u}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{u}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{u}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow bs \\ \tilde{i}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow bs \\ \tilde{i}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow b\ell \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau \\ 2 \ e, \mu \ (SS) \\ \mu\nu & 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 & 2 \\ 1 \ e, \mu & 4 \\ 1 \ e, \mu & 4 \\ 0 & 2 \\ e, \mu \end{array}$	0-3 <i>b</i> 1-5 large- <i>R</i> je 1-5 large- <i>R</i> je 8-10 jets/0-4 8-10 jets/0-4 2 jets + 2 <i>l</i> 2 <i>b</i>	Yes Yes Yes ets - ets - t b - t b -	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 14.8 15.4 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 S-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2015-015				
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	κ 510 GeV m(χ̃ ⁰ ₁)<200 GeV	1501.01325				
	*Only a selection of the states or phenomena	e available n is shown.	nass limits	s on ne	w 1) ⁻¹ 1 Mass scale [TeV]					

24/04/17

New SUSY results with full 2015/2016 dataset

Inclusive searches for gluinos and squarks:

- 0-*l* + 2-6 jets + E_{T,miss} [<u>ATLAS-CONF-2017-022</u>]
- 0/1-l + 3-4 b-jets + E_{T,miss} [<u>ATLAS-CONF-2017-021</u>]
- **(1)** Searches for direct production of 3rd generation squarks:
 - 0-*l* + b-jets + E_{T,miss} [<u>ATLAS-CONF-2017-029</u>]
 - 1-2-l or 3-l + b-jets + E_{T,miss} (h/Z bosons in decay chain) [ATLAS-CONF-2017-019]

① Searches for RPV scenarios and long-lived particles:

- Stop resonance search [ATLAS-CONF-2017-025]
- 1-*l* + 8-12 jets + no E_{T,miss} [<u>ATLAS-CONF-2017-013</u>]
- Displaced vertex search [ATLAS-CONF-2017-026]
- Disappearing track signature (search for long-lived charginos) [ATLAS-CONF-2017-017]
- All results available on the ATLAS SUSY public webpage:
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u>

Part 1 of 3

Inclusive searches for gluinos and squarks

Inclusive O-I Search: Overview

Inclusive O-I Search: Backgrounds

Dominant backgrounds estimated in 4 CRs for each SR → extrapolation to VRs/SRs with transfer factors (TFs)

Moritz Backes

Inclusive O-I Search: Results

- Background estimates validated in large amount of validations regions for the major background processes
- No significant deviations from the Standard Model expectation in both streams

Inclusive O-I Search: Interpretations

Moritz Backes

Inclusive O-I Search: Interpretations

24/04/17

Moritz Backes

Multi b-jet Search: Overview

- Defining feature: ≥ 3 b-jets + 0/1 lepton + E_{T,miss} final state
- Main benchmarks are gluino-mediated stop/sbottom production
- ① 10 Inclusive signal regions optimised for discovery:
 - Selection: ≥ 3-8 jets using N_{b-tag}, m_{eff}, m_T, E_{T,miss}, Σm_{large-R jets} to target compressed, intermediate, & large mass splittings

② Binned orthogonal signal regions optimised for exclusion:

- Selection: Ranging from low to high (m_{eff} & N_{jet}) to cover broad range of mass spectra
- Combined fit over all bins to enhance exclusion power

Multi b-jet Search: Backgrounds

- Dominant background tt+jets estimated with semi datadriven approach in dedicated 1-lepton control regions + extrapolation to validation and signal regions
- Other backgrounds (tt+X, Z+jets, single-top, di-boson)
 from simulation
- Multi-jets background negligible
- → No evidence of significant background mis-modeling in the validation regions

Multi b-jet Search: Results

24/04/17

Multi b-jet Search: Interpretation

extended by ~100 GeV w.r.t. 14.8 fb⁻¹ analysis – observed **beyond 1.9 TeV** extended by ~200 GeV w.r.t. 14.8 fb⁻¹ analysis – observed limit **beyond 1.95 TeV**

Part 2 of 3

Searches for 3rd Generation Squarks

Stop 0-1 Search: Overview

24/04/17

Stop 0-1 Search: Overview

Stop 0-1 Search: Overview

p

Signal Region E

- Targets gluino-mediated stop production with highly boosted top quarks
- Δm(gluino,stop) large, Δm(stop,LSP)= 5 GeV
- Requirements on 1st/2nd leading **large-R jet mass**
- Tight $E_{T,miss}$, H_T and $E_{T,miss}/\sqrt{H_T}$ selections

Background Estimation

- Dominant backgrounds:
 - $Z(\rightarrow vv)$ + heavy flavour jets [2 ℓ CR]
 - **tī** [1ℓ CR], **tī+Ζ(→νν)** [1ℓ+1γ CR]
- Subdominant backgrounds:
 - W + heavy flavour jets [1ℓ CR],
 - single-top [1ℓ CR]
 - Multi-jets [Multi-jets CR]
- Semi data-driven background estimation with simulated based extrapolation to VRs & SRs
 - Lepton in 1ℓ CRs → jet
 - Leptons in 2l CR \rightarrow p_{Tmiss}
 - Photon $\rightarrow p_{Tmiss}$

24/04/17

soft

Stop O-I Search: Results

Moritz Backes

Stop 0-I Search: Interpretation

Putting it into context

Stop Z / Higgs Search: Overview

• Search targeting direct stop production with a **Z or Higgs bosons** in the decay chain:

- Searches for t₂ can improve sensitivity in the regions m_{stop,1} ~ m_t + m_{LSP} → Difficult to access due to similarities with Standard Model tt production
- 2 analysis streams with 3 signal regions each to target large, intermediate, small mass differences:
 - 3-ℓ + 1 b-jet stream (targeting $Z \rightarrow \ell^+ \ell^-$ decay): Use of Z boson with p_T^{ℓ} requirements
 - 1/2-ℓ + 4 b-jets stream (targeting h→bb decay): Use of p_T^{bb} and m_{bb} ~ m_h requirements

Stop Z / Higgs Search: Backgrounds

• 3-*l* + 1 b-jet stream:

- tt+Z & multi-boson (dominant, dedicated CRs),
- multi-jets (subdominant data-driven matrix-method),
- tt+W/H & rare SM
 processes (minor, from simulation)
- 1/2-*l* + 4 b-jets stream:
 - tt (dominant, dedicated CRs & VRs)
 - single-t & tt+H & rare SM processes (minor, from simulation)

24/04/17

Stop Z / Higgs Search: Results

Moritz Backes

Stop Z / Higgs Search: Interpretation

24/04/17

Moritz Backes

s Search: Interpretation

24/04/17

Stop Z /

Searches for RPV SUSY & Long-lived Particles

Stop RPV Search

- Motivation: If stops have R-parity violating decays (e.g. stop → jj) no / little sensitivity from E_{T,miss}-based searches → stops could still be light
- Dedicated search for 2 resonances in 4-jet final states targeting decays of stop to a pair of jets

Stop RPV Search - Backgrounds

- Major background: **Multi-jets** production
- Reduced by further requirements using e.g.:
 - mass asymmetry: $A = |m_1 m_2| / (m_1 + m_2)$
 - Angle θ* of jet pairs with beamline in restframe
- "ABCD-method" in A and |cosθ*| to estimate shape & normalisation in a data-driven way

Stop RPV Search - Results

 No evidence for resonances in average di-jet mass

 Stop decays to two quarks excluded between
 100 - 410 GeV stop mass

 Stop decays to bs quark pair excluded between 100 - 610 GeV of stop mass

RPV 11 Search – Overview

- Search for new physics in lepton + multi-jets (up to ≥12 jets) final state
- Defining feature: No m_T or E_{T,miss} requirements
- → Final state has been actively asked for by the theory community, e.g. [arXiv:1310.5758]
- RPV SUSY simplified models with gluino and stop pair production used as benchmark:

1-lepton + multi-jets selections

- 1 e / μ > 30 GeV with tight ID and isolation requirements (to counter fakes)
- 3 analysis streams with jet $p_T > 40/60/80$ GeV
- Events in each stream categorized:
 - N_{jets}: 5-7 jets used to *build background model* only, 8 ≥12 jets used as signal regions
 - ② N_{b-tags}: 0,1,2,3,≥4

RPV 1 Search: Backgrounds

- Dominant backgrounds: $t\bar{t}+jets @$ high $N_{b-jet} and V+jets @$ low $N_{b-jet} \rightarrow data-driven$ estimate
- Basic concept: Parameterised extrapolation of N_{b-tag} spectrum from medium to high N_{jet}

- → Simultaneous fit of shape & normalisation in all considered bins:
 - Discovery setup: Only N_{b-tag} ==0, ≥3 bins considered as SRs. Orthogonal bins with small signal contamination used to constrain background model.
 - Exclusion setup: All N_{jet} / N_{b-tag} bins used to constrain model.
- Other backgrounds: multi-jets (data-driven matrix-method estimate), diboson / single-top / tt+X (from simulation mostly < 10%)

RPV 1 Search: Validation

- Scaling of N_{iets} normalisation validated in data and simulation:
 - \checkmark tt di-lepton selection (data validation)
 - \checkmark tt di-lepton selection (MC closure)
 - \checkmark tt+jets + lepton (MC closure)

- γ+jets control selection (data validation)
- ✓ multi-jets selection (data validation)
- ✓ W+jets / Z+jets (MC closure)

Moritz Backes

RPV 1 Search: Results

24/04/17

RPV 1 Search: Results

RPV 11 Search: Interpretation

Displaced Vertex Search - Overview

- Search for long-lived massive particles in the lifetime range $O(10^{-2}) O(10)$ ns
- Split-SUSY inspired simplified model as benchmark

 Long-lived gluinos form bound colour singlet states with SM particles (R-hadron) → decay in the inner tracker volume

- Experimental signature: Displaced vertex (R
 ~ 1-100 mm) with high track multiplicity (≥5)
 and high mass (>10 GeV) + E_{T,miss}
- Use of specialised large radius track reconstruction with extended d₀/z₀ windows to reconstruct displaced vertices within R,|z| < 30 cm

Displaced Vertex Search - Backgrounds

- Hadronic interactions with detector material → Produces displaced vertices:
 - Background significantly reduced by removing material-rich regions from fiducial volume (maps based on minimum bias data) → Discards 42% of detector volume
 - Residual contribution estimated with exponential fit at low m_{DV} + extrapolation to high m_{DV}
- Close-by short-lived SM particle decays → Merge into common vertex thus passing N_{trk} and m_{DV} cuts
 - Estimated by merging vertices from distinct events randomly
- Accidental crossing of low mass vertices and tracks
 → Used in vertex reconstruction thus passing N_{trk} and
 m_{DV} requirements
 - Estimate by adding pseudo-track to vertices in a control region
- → Several dedicated signal-depleted validation regions used for cross-checks

Displaced Vertex Search - Results

10⁴

 10^{3}

 10^{2}

10⊧

ATLAS Preliminarv

 $\sqrt{s} = 13 \text{ TeV}, L = 32.7 \text{ fb}^{-1}$

 $\widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}_{1}^{0}, m_{z^{0}} = 100 \text{ GeV}$

 $m_{\pi} = 1400 \text{ GeV} (\pm 1 \sigma_{\text{exp}})$

Observed

----- Expected

1400 GeV gluino-pair production

 $m_{\pi} = 2000 \text{ GeV} (\pm 1 \sigma_{exp})$

- No event is observed in the SR: Consistent • with the background expectation of 0.2 ± 0.2 events
- Exclude long-lived gluinos up to **2.3 TeV** with • lifetimes of ~ $O(10^{-2})$ - O(10) ns

Disappearing Track Search: Overview

- If lightest chargino & neutralino are almost pure Wino (e.g. in **A**nomaly **M**ediated **S**USY **B**reaking)
 - Mass degeneracy: $\Delta m(\chi^{\pm}_{1}, \chi^{0}_{1})$ ~ 160 MeV
 - Chargino long-lived: τ ~ 0.2 ns
 - Sizable decay length: ct ~ 6 cm
- Chargino decays into ultra-soft pion and neutralino
- Experimental signature to discriminate against SM backgrounds:
 - Disappearing track
 - Large E_{T,miss} from LSP
- Run-1 search was sensitive to disappearing tracks with decay lengths starting from 30 cm ~ 1 ns
- → New insertable pixel B-layer (IBL) installed during long shutdown opens up window to shorter life-times (ct ~ 12 cm) for the very first time!

24/04/17

Disappearing Track Search: Overview

- pMSSM reinterpretation of 8 TeV ATLAS SUSY searches [JHEP 10 (2015) 134] showed that Run-1 analysis excluded ~30% of Wino-like models
- ~70% of the Wino-LSP models included in the pMSSM scan have lifetimes of 0.15-0.25 ns
- → A very generic lifetime range in MSSM!
- → Strong motivation to search for disappearing track signals with shorter decay lengths!

Analysis	All LSPs	Bino-like	Wino-like	Higgsino-like
0-lepton + 2–6 jets + $E_{\rm T}^{\rm miss}$	32.1%	35.8%	29.7%	33.5%
0-lepton + 7–10 jets + $E_{\rm T}^{\rm miss}$	7.8%	5.5%	7.6%	8.0%
$0/1$ -lepton + $3b$ -jets + $E_{\rm T}^{\rm miss}$	8.8%	5.4%	7.1%	10.1%
1 -lepton + jets + $E_{\rm T}^{\rm miss}$	8.0%	5.4%	7.5%	8.4%
Monojet	9.9%	16.7%	9.1%	10.1%
SS/3-leptons + jets + $E_{\rm T}^{\rm miss}$	2.4%	1.6%	2.4%	2.5%
$\tau(\tau/\ell) + \text{jets} + E_{\text{T}}^{\text{miss}}$	3.0%	1.3%	2.9%	3.1%
0-lepton stop	9.4%	7.8%	8.2%	10.2%
1-lepton stop	6.2%	2.9%	5.4%	6.8%
$2b$ -jets + $E_{\rm T}^{\rm miss}$	3.1%	3.3%	2.3%	3.6%
2-leptons stop	0.8%	1.1%	0.8%	0.7%
Monojet stop	3.5%	11.3%	2.8%	3.6%
Stop with Z boson	0.4%	1.0%	0.4%	0.5%
$tb + E_{\rm T}^{\rm miss}$, stop	4.2%	1.9%	3.1%	5.0%
ℓh , electric last power		rah	0	0
2-lepto(WOSt power	0.7%	1.6%		
$2-\tau$, electron for Wino	-LSPs !	5%	0.2%	0.2%
3-leptons, electro	0.8%	8%	1.1%	0.6%
4-leptons	0.5%	1.170	0.6%	0.5%
Disappearing Track	11.4%	0.4%	29.9%	0.1%
Long-lived particle	0.1%	0.1%	0.0%	0.1%
$H/A \rightarrow \tau^+ \tau^-$	1.8%	2.2%	0.9%	2.4%
Total	40.9%	$\overline{40.2\%}$	$\overline{45.4\%}$	38.1%

24/04/17

Disappearing Track Search: Overview

Electroweak production channel

Gluino-mediated production channel

ISR jet + **E**_{T,miss} + **disappearing track**

Multi-jet + E_{T,miss} + disappearing track

Disappearing Track Search: Backgrounds

24/04/17

Disappearing Track Search: Backgrounds

Disappearing Track Search: Results

- No significant deviations from the Standard Model expectation
- Limits set in EW and strong production channels:
 - EW Production: Significant improvement w.r.t.
 Run-1 at lower lifetimes
 - Strong production: Reaching to 1.4 (1.1) TeV in chargino mass for lifetimes of 1.0 (0.2) ns

Putting it into context

Moritz Backes

Summary & Outlook

- Huge thanks to the LHC and injector teams for the **fantastic performance in 2016**
- ATLAS has produced 8 new SUSY search results using the full 2015 + 2016 dataset of up to 36.1 fb⁻¹ at 13 TeV:
 - 2 inclusive searches for squarks and gluinos
 - 2 searches for 3rd generation squarks
 - 2 searches for RPV SUSY
 - 2 searches for long-lived particles
- No significant deviations from SM
- Significant boost in sensitivity excluding gluino masses in some scenarios beyond 2 TeV!
- Still only the tip of the iceberg
- Stay **fine-tuned** until further notice!

Summary & Outlook

- Huge thanks to the LHC and injector teams for the **fantastic performance in 2016**
- ATLAS has produced 8 new SUSY search results using the full 2015 + 2016 dataset of up to 36.1 fb⁻¹ at 13 TeV:
 - 2 inclusive searches for squarks and gluinos
 - 2 searches for 3rd generation squarks
 - 2 searches for RPV SUSY
 - 2 searches for long-lived particles
- No significant deviations from SM
- Significant boost in sensitivity excluding gluino masses in some scenarios beyond 2 TeV!
- This seminar covers only the tip of the iceberg
- Stay fine-tuned until further notice!

24/04/17