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Outline

* Overview of the n-type Segmented Inverted Coaxial
HPGe Point Contact Detector

* Challenges: Energy resolution from the point
contact signal
* Drift time corrections

 Azimuthal angle reconstruction
* Full position (r and z) reconstruction
* Next steps toward complete signal decomposition
* In-beam characterization work - under way _——
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Inverted Coaxial HPGe Point Contact Detector

Novel, large-volume gamma-ray tracking detector combining electrode
segmentation and point-contact technology

« Combines benefits of segmented (GRETA/AGATA) and point contact (MAJORANA/
GERDA) detector technologies

* Strong variation in charge drift time and highly localized point contact weighting
potential allows direct identification of number of interactions

* Signal shape at point contact allows precise determination of charge arrival time
» Segmentation of outer contacts provides determination of interaction time

* Knowledge of drift time allows precise determination of
interaction position from segments signals
* Predicted position resolution approximately o = 0.2mm
* Factor 3 -4 better than predicted for GRETINA
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Inverted Coaxial HPGe Point Contact Detector

* Field, weighting potential and signal
generation calculations have shown the
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n-Type ICPC Prototype Detector

* Produced by Canberra France for David Radford
(ORNL)

* 7 cm rear diameter; 8 cm length; 10 degree taper
over 6 cm of length

* 20 individual segments

« Point contact (full volume electrode) on the
back

+ 8 wedges surrounding the point contact

8 longitudinal slices on the sides

2 concentric circular electrodes on the front

* 1 contact in the bore hole (front)
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n-Type ICPC Prototype Detector @ LBNL

 Supported by LDRD funding at
LBNL, prototype was moved
from ORNL to LBNL (88”
cyclotron) for characterization
work

* GRETINA scanning table and
infrastructure, capabilities for in-
beam testing have allowed a
thorough investigation of the
detector
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n-Type ICPC Prototype Detector @ LBNL

 Supported by LDRD funding at
LBNL, prototype was moved
from ORNL to LBNL (88”
cyclotron) for characterization
work

* GRETINA scanning table and
infrastructure, capabilities for in-
beam testing have allowed a
thorough investigation of the
detector

* Characterization and signal
decomposition development is
ongoing...
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A representative event...

Individual event data shows power of slow-drift combined with
segmentation

Along z (vertical), slices clearly show drift of charge from first
interaction point toward PC

Second hit (back) is located by wedge signals (net + neighbours)
Drift time (segment time --> PC time) refines z information
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Outline

Challenges: Energy resolution from the point
contact signal
* Drift time corrections

 Azimuthal angle reconstruction
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Inverted Coaxial HPGe Point Contact Detector

* With long drift times, energy

0.14 resolution losses due to trapping
must be recovered through pulse
shape analysis
0.10 * Limit of performance is currently

unknown
* Drift times vary from few ns up to of

order 2 us with large variation
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Charge Trapping in the n-type ICPC

* For n-type material

" uncollimated 99Co electron trapping is

g significant even at standard

i impurity levels (without
damage)

* Large variation in drift
times, paths and the
associated trapping

I strongly degrades the
. resolution (and peak
. . . . shape)
1300 1310 1320 1330 1340
Energy [keV] * Can ‘HPGe resolution’ be g
recovered? e
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Salathe et al., NIMA 868, 19 (2017).



Charge Trapping: Drift Time Correction

* To a first approximation,
charge trapping
increases linearly with
drift time

 Division of data into
(100ns) drift-time slices
and calculation of
centroid provides first
linear correction
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Charge Trapping: Drift Time Correction

* Simple linear correction
works well at low drift-
times, i.e. close to the
PC where electrons are
ultimately collected

* Divergence at long
drift-times shows clear
dependence of
resolution on other
parameters

Salathe et al., NIMA 868, 19 (2017).
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Radius [mm]

Charge Trapping: Azimuthal Angle Effect
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Charge Trapping: Azimuthal Angle Effect

* Beyond drift-time --
an approximate proxy
for depth (z) -- other
obvious parameters 300.0

350.0

)
are radius and 5 2500
azimuthal angle o
ST 2 200.0
* Strong variation in 2
the amount of § 1500
trapping is clearly ‘% 100.0
observed at different ¢
azimuthal angles 200 s
0.0 ‘;—f}” |
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Azimuthal Angle Reconstruction: Building a Basis

* An experimental basis for

6 ' ' ' azimuthal angle reconstruction
Segment 8 .
, was built
Segment 7
6 ! ! :
S | Segment6 . A ring of collimated vertical 37Cs
o ° [Segment measurements were taken in the
= detector at a radius of 24 mm, with
g— Segment 4 d .
2, 2.5 degree spacing
Segment 3 . Photopeak events satisfying A/E
2 " Segment cut were averaged to build a basis
1 at each angle, considering on the
Segment 1
0 e rear 8 wedge segments
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Source angle [degree]

Drift time [us]

Azimuthal Angle Reconstruction
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* A fit of individual events to the available
basis signals, using a x> minimization,
and then a linear interpolation between
grid points allows reliable azimuthal
angle determination
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Source angle [degree]

Drift time [us]

Azimuthal Angle Reconstruction
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* A fit of individual events to the available
basis signals, using a x> minimization,
and then a linear interpolation between
grid points allows reliable azimuthal

angle determination
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Azimuthal Angle Reconstruction

* Drift time correction
curves were determined
for each angular position
- variation is significant,
several percent deviation
between correction
curves

Drift time correction factor
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Drift time [ps]

Reconstructed angle [degree]

Charge Trapping: Drift and Angle Correction
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shows performance
of angle-drift time
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Outline

Full position (r and z) reconstruction
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File index

Radial Position Reconstruction

Collimated 37Cs scans from the center to the outside of the
crystal at specific angles were used to build up the r basis

Signals from the front and longitudinal segments included; basis

was built indexed by observed net segment, ¢ and drift time
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Radial Position Reconstruction

* Radial reconstruction is
performed following ¢
determination

File index

* Least-squares x> minimization and
interpolation between basis points
determines r position

* Good performance achieved with
(at this point) single iteration of
fitting step, except in region very
near point contact (r = o)

index

File

BERKELEY LAB
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Radial Position Reconstruction

« 60Co flood field
measurement from the front
of the crystal show fairly
uniform illumination of
crystal after r reconstruction
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* Minimal artifacts are 00

observed - some intensity 400

dips at longitudinal segment 200

boundaries, likely due to 0
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File index

Depth (z) Reconstruction

* With ¢ and r reconstruction, determination of z is ‘simply’ a
look-up table to map drift time to depth

* Challenges near the PC arise due to double-valued z vs drift
time relationship

File index

0 10 20 30 40 50 60 70

0 200 400 600 800 1000 1200 1400 1600
Reconstructed height [mm]

Drift time [ns]

80

A
|

rreeereer

BERKELEY LAB



Height [mm]

Pencil Beams: Attenuation in HPGe

* Overall position reconstruction approach is well-understood

* Performance for single-site interactions is good - better than
1 mm in @, of order 1 mm in r, z from scanning results through

most of crystal volume
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Outline

Next steps toward complete signal decomposition
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Amplitude [a.u.]

Next Steps Toward Full Signal Decomposition

 Main effort to date has been on single-site events (A/E cut, and
segment multiplicity = 1)

* Next steps are to extend position reconstruction to include (a)
charge sharing events and (b) multi-site events
* Number of interactions will be constrained by point contact signal

1o Charge pulse Current pulse. and number of net charge segments
1ol 1 . | ¢ Maintain azimuthal, and then r
/ £ g
08| F Lo reconstruction approach, but iterate
osl | Al over solution(s) as multiple interactions
0al Pl i are added
. ' i! . . . .
02| ol i1 ]+ Add PC signal to the basis as additional f\\
,/' J ‘}I" \ ‘ : 2 essials
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Outline

In-beam characterization work - under way _——

BERKELEY LAB




In-Beam Test of Position Resolution

84Kr(2C, 4n)9>Mo - 84Kr at 395 MeV onto 45ug/cm? C target
HE g

92Mo residues recoil at v/c ~ 0.09

Doppler broadening is dominated by effective position resolution
(opening angle)

Placement of detector within ~6cm (at 9o°) of target position
allows measurement of position resolution with precision < 0.5 mm
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In-Beam Test of Position Resolution

84Kr(2C, 4n)9>Mo - 84Kr at 395 MeV onto 45ug/cm? C target
HE g

92Mo residues recoil at v/c ~ 0.09

Doppler broadening is dominated by effective position resolution
(opening angle)

Placement of detector within ~6cm (at 9o°) of target position
allows measurement of position resolution with precision < 0.5 mm
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First Look...

* Point contact data nicely
shows Doppler shift as a
function of angle

e First attempt at
reconstruction for single-
site events gives ~ 12 keV
FWHM for ICPC
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First Look...

* Point contact data nicely &~ 180°
shows Doppler shift as a

. Beam I

function of angle — o

* First attempt at 350
reconstruction for single- 300
site events gives ~ 12 keV
FWHM for ICPC

* Scaling from previous
results with GRETINA,
ICPC position resolution
is promising
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Summary

n-type segmented ICPC prototype characterization
measurements have been underway at LBNL for last 18
months

Energy resolution after correction for position of
interaction (primarily drift time and ¢) has reached
3 keV at 1332 keV - resolution is recovered

Full position (¢, r and z) reconstruction for single-site
events has been achieved with promising first results

Next steps toward complete signal decomposition are
understood

In-beam characterization data is also available,
promising results thus far... stay tuned!
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Normalized counts [a.u.]

Drift Time - Simulation vs. Experiment
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