Characterization of an n-type Segmented Inverted Coaxial Point Contact (ICPC) Detector

Heather Crawford Nuclear Science Division Lawrence Berkeley National Laboratory

2nd Position Sensitive Ge Detectors and Application Workshop -- September 12, 2017

- Overview of the n-type Segmented Inverted Coaxial HPGe Point Contact Detector
- Challenges: Energy resolution from the point contact signal
 - Drift time corrections
 - Azimuthal angle reconstruction
- Full position (*r* and *z*) reconstruction
- Next steps toward complete signal decomposition
- In-beam characterization work *under way*

- Overview of the n-type Segmented Inverted Coaxial HPGe Point Contact Detector
- Challenges: Energy resolution from the point contact signal
 - Drift time corrections
 - Azimuthal angle reconstruction
- Full position (*r* and *z*) reconstru
- Next steps toward complete sign
- In-beam characterization work -

- Overview of the n-type Segmented Inverted Coaxial HPGe Point Contact Detector
- Challenges: Energy resolution from the point contact signal
 - Drift time corrections
 - Azimuthal angle reconstruction
- Full position (*r* and *z*) reconstruction
- Next steps toward complete signal decomposition
- In-beam characterization work *under way*

Inverted Coaxial HPGe Point Contact Detector

Novel, large-volume gamma-ray tracking detector combining electrode segmentation and point-contact technology

- Combines benefits of segmented (GRETA/AGATA) and point contact (MAJORANA/ GERDA) detector technologies
- Strong variation in charge drift time and highly localized point contact weighting potential allows **direct identification of number of interactions**
- Signal shape at point contact allows precise determination of charge arrival time
- Segmentation of outer contacts provides determination of interaction time
- Knowledge of drift time allows precise determination of interaction position from segments signals
 - Predicted position resolution approximately $\sigma = 0.2mm$
 - Factor 3 -4 better than predicted for GRETINA

Inverted Coaxial HPGe Point Contact Detector

• Field, weighting potential and signal

.....

BERKELEY LAB

Cooper et al., NIMA 665, 25 (2011).

n-Type ICPC Prototype Detector

- Produced by Canberra France for David Radford (ORNL)
- 7 cm rear diameter; 8 cm length; 10 degree taper over 6 cm of length
- 20 individual segments
 - Point contact (full volume electrode) on the back
 - 8 wedges surrounding the point contact
 - 8 longitudinal slices on the sides
 - 2 concentric circular electrodes on the front
 - 1 contact in the bore hole (front)

n-Type ICPC Prototype Detector @ LBNL

- Supported by LDRD funding at LBNL, prototype was moved from ORNL to LBNL (88" cyclotron) for characterization work
- GRETINA scanning table and infrastructure, capabilities for inbeam testing have allowed a thorough investigation of the detector

Cooper et al., NIMA 665, 25 (2011).

n-Type ICPC Prototype Detector @ LBNL

- Supported by LDRD funding at LBNL, prototype was moved from ORNL to LBNL (88" cyclotron) for characterization work
- GRETINA scanning table and infrastructure, capabilities for inbeam testing have allowed a thorough investigation of the detector
- Characterization and signal decomposition development is ongoing...

- Along z (vertical), slices clearly show drift of charge from first interaction point toward PC
- Second hit (back) is located by wedge signals (net + neighbours)
- Drift time (segment time --> PC time) refines z information

- Overview of the n-type Segmented Inverted Coaxial HPGe Point Contact Detector
- Challenges: Energy resolution from the point contact signal
 - Drift time corrections
 - Azimuthal angle reconstruction
- Full position (*r* and *z*) reconstruction
- Next steps toward complete signal decomposition
- In-beam characterization work *under way*

Inverted Coaxial HPGe Point Contact Detector

- With long drift times, energy resolution losses due to trapping must be recovered through pulse shape analysis
 - Limit of performance is currently unknown
- Drift times vary from few ns up to of order 2 us with large variation

Charge Trapping in the n-type ICPC

- For n-type material electron trapping is significant even at standard impurity levels (without damage)
- Large variation in drift times, paths and the associated trapping strongly degrades the resolution (and peak shape)
- Can 'HPGe resolution' be recovered?

Charge Trapping: Drift Time Correction

- To a first approximation, charge trapping increases linearly with drift time
- Division of data into (100ns) drift-time slices and calculation of centroid provides first linear correction

BERKELEY LAB

Charge Trapping: Drift Time Correction

- Simple linear correction works well at low drifttimes, i.e. close to the PC where electrons are ultimately collected
- Divergence at long drift-times shows clear dependence of resolution on other parameters

BERKELEY LAB

Charge Trapping: Azimuthal Angle Effect

 Beyond drift-time -- an approximate proxy for depth (z) -- other obvious parameters are radius and azimuthal angle

30

20

10

0

-10

-20

-30

0

10

20

30

40 50 60

Height [mm]

Radius [mm]

 $\langle 100 \rangle$

 $\langle 110 \rangle$

70

1.6

1.2

0.8 [µs]

0.4

0.2

0.0

Drift

Charge Trapping: Azimuthal Angle Effect

- Beyond drift-time -an approximate proxy for depth (z) -- other obvious parameters are radius and azimuthal angle
- Strong variation in the amount of trapping is clearly observed at different azimuthal angles

Azimuthal Angle Reconstruction: Building a Basis

- An experimental basis for azimuthal angle reconstruction was built
 - A ring of collimated vertical ¹³⁷Cs measurements were taken in the detector at a radius of 24 mm, with 2.5 degree spacing
 - 2. Photopeak events satisfying A/E cut were averaged to build a basis at each angle, considering on the rear 8 wedge segments

Azimuthal Angle Reconstruction

 A fit of individual events to the available basis signals, using a χ² minimization, and then a linear interpolation between grid points allows reliable azimuthal angle determination

Salathe et al., NIMA 868, 19 (2017)

Azimuthal Angle Reconstruction

- A fit of individual events to the available basis signals, using a χ² minimization, and then a linear interpolation between grid points allows reliable azimuthal angle determination
- Measures the angle 'observed' at the rear of the crystal, i.e. the angle of the main part of the charge carrier drift

Salathe et al., NIMA 868, 19 (2017).

Azimuthal Angle Reconstruction

 Drift time correction curves were determined for each angular position

 variation is significant, several percent deviation between correction curves

Charge Trapping: Drift and Angle Correction

- Uncollimated ^{6o}Co measurement (from the crystal front) shows performance of angle-drift time correction
- For single-site events, obtained
 ~3.44 keV at
 1332 keV with only these corrections

- Overview of the n-type Segmented Inverted Coaxial HPGe Point Contact Detector
- Challenges: Energy resolution from the point contact signal
 - Drift time corrections
 - Azimuthal angle reconstruction
- Full position (*r* and *z*) reconstruction
- Next steps toward complete signal decomposition
- In-beam characterization work *under way*

Radial Position Reconstruction

- Collimated ¹³⁷Cs scans from the center to the outside of the crystal at specific angles were used to build up the *r* basis
- Signals from the front and longitudinal segments included; basis was built indexed by observed net segment, φ and drift time

Radial Position Reconstruction

- Radial reconstruction is performed following φ determination
- Least-squares χ² minimization and interpolation between basis points determines *r* position
- Good performance achieved with (at this point) single iteration of fitting step, except in region very near point contact (r = 0)

Radial Position Reconstruction

- ⁶°Co flood field measurement from the front of the crystal show fairly uniform illumination of crystal after *r* reconstruction (for a given φ)
- Minimal artifacts are observed – some intensity dips at longitudinal segment boundaries, likely due to charge sharing events dominating in those regions (not yet treated fully)

BERKELEY LAE

Depth (z) Reconstruction

- With φ and r reconstruction, determination of z is 'simply' a look-up table to map drift time to depth
- Challenges near the PC arise due to double-valued *z* vs drift time relationship

Pencil Beams: Attenuation in HPGe

- Overall position reconstruction approach is well-understood
- Performance for single-site interactions is good better than 1 mm in φ, of order 1 mm in r, z from scanning results through most of crystal volume

70 60 50 Height [mm] 40 30 20 10 0 0 5 10 15 20 25 30 Radius [mm]

- Single pencil beam shows r with FWHM of
 - ~ 2.5-3 mm;
- *z* profile matches well attenuation length in Ge

- Overview of the n-type Segmented Inverted Coaxial HPGe Point Contact Detector
- Challenges: Energy resolution from the point contact signal
 - Drift time corrections
 - Azimuthal angle reconstruction
- Full position (*r* and *z*) reconstruction
- Next steps toward complete signal decomposition
- In-beam characterization work *under way*

Next Steps Toward Full Signal Decomposition

- Main effort to date has been on single-site events (A/E cut, and segment multiplicity = 1)
- Next steps are to extend position reconstruction to include (a) charge sharing events and (b) multi-site events
 - Number of interactions will be constrained by point contact signal

- and number of net charge segments
 - Maintain azimuthal, and then r reconstruction approach, but iterate over solution(s) as multiple interactions are added
 - Add PC signal to the basis as additional constraint on $\chi^2\,\text{fit}$

- Overview of the n-type Segmented Inverted Coaxial HPGe Point Contact Detector
- Challenges: Energy resolution from the point contact signal
 - Drift time corrections
 - Azimuthal angle reconstruction
- Full position (*r* and *z*) reconstruction
- Next steps toward complete signal decomposition
- In-beam characterization work *under way*

In-Beam Test of Position Resolution

- 8_4 Kr(12 C, 4n) ${}^{9^2}$ Mo 8_4 Kr at 395 MeV onto 45µg/cm² C target
- ⁹²Mo residues recoil at v/c ~ 0.09
- Doppler broadening is dominated by effective position resolution (opening angle)
- Placement of detector within ~6cm (at 90°) of target position allows measurement of position resolution with precision < 0.5 mm

In-Beam Test of Position Resolution

- 8_4 Kr(12 C, 4n) ${}^{9^2}$ Mo 8_4 Kr at 395 MeV onto 45µg/cm² C target
- ⁹²Mo residues recoil at v/c ~ 0.09
- Doppler broadening is dominated by effective position resolution (opening angle)
- Placement of detector within ~6cm (at 90°) of target position allows measurement of position resolution with precision < 0.5 mm

Measurement performed for GRETINA engineering run – at 18 cm distance, $\sigma = 2$ mm in GRETINA translates to ~ 8keV FWHM for 2 MeV peak(s)

First Look...

- Point contact data nicely shows Doppler shift as a function of angle
- First attempt at reconstruction for singlesite events gives ~ 12 keV FWHM for ICPC

First Look...

- Point contact data nicely shows Doppler shift as a function of angle
- First attempt at reconstruction for singlesite events gives ~ 12 keV FWHM for ICPC
- Scaling from previous results with GRETINA, ICPC position resolution is promising

Summary

- n-type segmented ICPC prototype characterization measurements have been underway at LBNL for last 18 months
- Energy resolution after correction for position of interaction (primarily drift time and φ) has reached 3 keV at 1332 keV – resolution is recovered
- Full position (φ , *r* and *z*) reconstruction for single-site events has been achieved with promising first results
- Next steps toward complete signal decomposition are understood
- In-beam characterization data is also available, promising results thus far... stay tuned!

Acknowledgements

Marco Salathe, Ren Cooper and David Radford (ORNL)

Thank you!

Drift Time – Simulation vs. Experiment

