GRETA Project Status

Paul Fallon Project Director Nuclear Science Division Lawrence Berkeley National Laboratory

.. based on presentation given to project review committees

Gamma Ray Energy Tracking Array U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Outline

- GRETA up to now
 - CD-0 to CD-1
- GRETA Project Plan
 - Science drivers (examples), properties and predicted performance
 - Plan to deliver GRETA
 - scope, design, schedule
- What's next

GRETA: A premier γ-ray tracking detector for FRIB

A high resolution, high efficiency γ-ray detector array is an essential instrument for FRIB, required to leverage the full scientific capabilities.

The Gamma-Ray Energy Tracking Array (GRETA) is the realization of a 4π tracking detector, capable of reconstructing the energy and three-dimensional position of γ -ray interactions within a compact sphere of high-purity germanium crystals.

It extends and completes the technical developments demonstrated by GRETINA, a 1π tracking detector optimized for rare isotope science

γ -ray detection plays a central role in nuclear physics

- Nuclei are complex many-body systems exhibiting diverse phenomena and much of what we know about them comes from measurements of excited states
- Of the many experimental tools and techniques developed for these studies, <u>high-resolution γ</u>-ray spectroscopy has proven to be the most powerful
- Advances in detector technology extend science reach
- Past arrays reached a limit
- Next step, a "Ge-shell", required new concepts and technologies

Gamma-Ray Energy Tracking

GRETA concept for a shell of closely packed Ge crystals

- Combines highly segmented, hyper-pure germanium crystals with advanced digital signal processing techniques
- Identify the position and energy of γ-ray interaction points within a compact "shell" of detectors
- Track γ-ray path both within and between detector elements, using the angle-energy relation of the Compton scattering process

Maximizes and Optimizes

Efficiency, Energy Resolution, Peak-to-Total

Path to GRETA

First discussed in the 1996 NSAC LRP

2002 NSAC LRP "The detection of γ -ray emissions from excited nuclei plays a vital and ubiquitous role in nuclear science ..."

Path to GRETA

First discussed in the 1996 NSAC LRP

2002 NSAC LRP "The detection of γ -ray emissions from excited nuclei plays a vital and ubiquitous role in nuclear science ..."

2002 LRP launched the construction of the γ ray tracking array GRETINA

GRETINA

Gamma-Ray Energy Tracking In-beam Nuclear Array

Constructed 2003-2011: \$20M funded by US DOE-Nuclear Physics Office Optimized for rare isotope science

 Covers ~¼ of 4π solid angle with 7 Quad Detector Modules

2012-present

- GRETINA science operations at NSCL and ANL
- Enhancements: Quad Detector Modules added – total of 12

GRETA builds from the technical and scientific success of GRETINA

2012-2017: GRETINA "Enhancements"

GRETINA enhancements have been supported by the U.S DOE-NP Office since completion of the project with 7 quad modules in 2011.

- Growth of the array through continued procurement of quad modules (and associated infrastructure) at a rate of ~ 1 per year
 - Purchase of Q8 Q12
 - Electronics (digitizers, trigger modules, cables and power for each module)
 - Supplementation of the computing cluster to support the increased data rates of the larger array

Firmware development and modifications

- Improved DAQ stability
- High-rate energy resolution performance improvements
- Refined timing performance

Signal decomposition and tracking

- In-depth coincidence scanning of Q4 at LBNL
- Extended capabilities in signal decomposition algorithms (single interaction, etc.)
- Enhanced simulation including the effects of signal decomposition

GRETINA Physics Campaigns: Overview

- First physics campaigns at NSCL and ANL (ATLAS/CARIBU) have already produced more than *35* physics papers (incl. 12 letters)
- Second NSCL campaign is just ended, with 24 PAC approved experiments (~3600 hours).
- Up next
 - Second ANL campaign starting Fall 2017
 - Third NSCL campaign 2019

Path to GRETA

GRETA

GRETA Science at FRIB

- FRIB beams will provide access to 1000s of nuclei
- GRETA will provide the sensitivity to maximize the physics opportunities at FRIB, with both fast-fragmentation and reaccelerated beams

Nuclear Structure	Nuclear Astrophysics	Tests of Fundamental Symmetries	Applications of Isotopes
Intellectual challenges from NRC Decadal Study 2013			
How does subatomic matter organize itself and	How did visible matter	Are fundamental interac-	How can the knowledge
			abou to borront booloty.
 Shell structure Superheavies Skins A. Pairing Symmetries Equation of state Limits of stability Weakly bound nuclei Mass surface 	 Shell structure Equation of state r-Process ¹⁵O(α,γ) ⁵⁹Fe s-process Limits of stability Mass surface rp-Process Weak interactions 	 12. Atomic electric ✓ dipole moment 15. Mass surface 17. Weak interactions 	10. Medical 11. Stewardship ✓

17 Benchmark programs introduced by the NSAC Rare-Isotope beam task force (2007)

GRETA will be used at multiple beam lines and energies

GRETA

GRETA will be used at multiple beam lines and energies

GRETA science case defines requirements

Key properties determining the performance of a γ -ray tracking array:

- full energy efficiency
- energy resolution
- position resolution
- background rejection (peak-to-total: P/T)
- count-rate capability

Full Energy Efficiency (Add-back)	≥ 30% at 1.33 MeV
Peak-to-Total	≥ 50% at 1.33 MeV
Intrinsic Ge Energy Resolution	≤ 2.5 keV at 1.33 MeV
Average Position Resolution	$\leq 2 \text{ mm } \sigma(x,y,z)$
Count Rate (crystal)	≥ 50,000 /sec

 "flexibility" to be used in multiple locations and for a wide range of beam energies and intensities, and hence have the capability to trade-off key properties (e.g. efficiency and P/T) to optimize science

GRETA science case defines requirements

Identified specific examples to benchmark GRETA requirements and establish the science reach

GRETA (Gamma-Ray Energy Tracking Array) Conceptual Design Report

2017

http://greta.lbl.gov/

Science example: fast beams (v ~ 50% c)

Science example: reaccelerated

Full Energy Efficiency (Add-back)	≥ 30% at 1.33 MeV
Peak-to-Total	≥ 50% at 1.33 MeV
Intrinsic Ge Energy Resolution	≤ 2.8 keV at 1.33 MeV
Average Position Resolution	$\leq 2 \text{ mm } \sigma(x,y,z)$
Count Rate (crystal)	≥ 50,000 /sec

Studies of octupole collectivity to guide searches for physics beyond the Standard

 4π GRETA combined with the FRIB reaccelerated beam intensity and energy provide a 100-fold or more increase in the intensity of transitions characterizing higher-spin states

Science example: high intensity beams, high γ multiplicities

Full Energy Efficiency (Add-back)	≥ 30% at 1.33 MeV
Peak-to-Total	≥ 50% at 1.33 MeV
Intrinsic Ge Energy Resolution	≤ 2.8 keV at 1.33 MeV
Average Position Resolution	$\leq 2 \text{ mm } \sigma(x,y,z)$
Count Rate (crystal)	≥ 50,000 /sec

GRETA science reach based on known performance

Detailed GEANT4 simulation for GRETINA (Lew Riley, Ursinus College)

Simulations reproduce source and in-beam spectra

- Essential tool to extract physics with GRETINA
- Provides basis for extrapolation to GRETA

The GRETA Project

Full GRETA System (4π solid angular coverage) has 30 Quad Detector Modules – each Module has 4 crystals. These 120 crystals covers 80% of a complete sphere.

The GRETA Project will deliver

- 18 Quad Detector Modules, which will be combined with the 12 Quad Detector Modules used in GRETINA
- New Electronics (digitizers, filter board), Computing (computer cluster, storage) for all 30 Detector Modules
- New mechanical structure for a full 30module sphere

Preliminary Key Performance Parameters (KPP)

- Objective KPPs are the project goals as supported in the proposed resource loaded schedule and cost
- GRETA Threshold KPPs define the minimum performance needed to to satisfy mission need and CD-4 project completion

System	Parameter	Threshold KPP	Objective KPP
Detectors	Procurement and Acceptance	Accept 16 Quad Detector Modules	18 Quad Modules
Electronics	Signal Digitization	Deliver digital signal processing electronics to instrument 30 Quad Detector Modules. Provide preamplifier waveforms at \geq 100 Mega samples/s	Same
Computing	Event Processing	2000 signal decomposition calculations per crystal/s	4000 per crystal/s
Mechanical	Support Frame	Assemble the complete mechanical support capable of mounting 30 Quad Detector Modules with required tolerance and precision	Same
Array	Integrated sytems performance	Array energy resolution ≤ 3.0 keV	Same

Resolving power provides a quantitative measure of array capabilities and performance

The science reach of a γ -ray tracking array can be expressed in terms of the effective resolving power (RP)

Depends on Efficiency (ϵ); Peak-to-Total (P/T); Resolution (δE)

How resolving power works

Key parameters: M.A. Deleplanque et al., NIM A 430 292 (1999) Efficiency (ϵ); Peak-to-Total (P/T); Resolution (δ E)

How resolving power changes with the number of detectors

Reduced resolving power directly equates to increased running time

Threshold KPP's support full GRETA program For a "2-module-reduction" (30 to 28), GRETA can meet its science capabilities, but will require longer running times per measurement

Conceptual Design

The proposed baseline design for GRETA is described in the Conceptual Design Report

- Detector Geometry and Segmentation
- Digital Electronics
- Computing
- Mechanical

 R&D and technology down-selects (alternatives) were carried out as part of the GRETINA project and verified during its operation

GRETA (Gamma-Ray Energy Tracking Array) Conceptual Design Report

2017

http://greta.lbl.gov/

Science case drives the functional requirements

 Science case for GRETA (outlined in CDR and white paper) determines the required array performance
 CDR Ch. 4.2

Full Energy Efficiency (Add-back) Intrinsic Energy Resolution Average Position Resolution Count Rate (per crystal) $\geq 30\%$ at 1.33 MeV ≤ 2.5 keV at 1.33 MeV $\leq 2 \text{ mm } \sigma_{x,y,z}$ $\geq 50,000/\text{second}$ $\geq 50\%$ at 1.33 MeV		-
Intrinsic Energy Resolution Average Position Resolution Count Rate (per crystal) $\leq 2.5 \text{ keV at } 1.33 \text{ MeV}$ $\leq 2 \text{ mm } \sigma_{x,y,z}$ $\geq 50,000/\text{second}$ $\geq 50\% \text{ at } 1.33 \text{ MeV}$	Full Energy Efficiency (Add-back)	\geq 30% at 1.33 MeV
Average Position Resolution $\leq 2 \text{ mm } \sigma_{x,y,z}$ Count Rate (per crystal) $\geq 50,000/\text{second}$ Peak-to-Total $\geq 50\%$ at 1 33 MeV	Intrinsic Energy Resolution	\leq 2.5 keV at 1.33 MeV
Count Rate (per crystal) \geq 50,000/secondPeak-to-Total \geq 50% at 1 33 MeV	Average Position Resolution	$\leq 2 \text{ mm } \sigma_{x,y,z}$
Peak-to-Total $> 50\%$ at 1.33 MeV	Count Rate (per crystal)	\geq 50,000/second
= 50% the 1.55 trie 1.55	Peak-to-Total	\geq 50% at 1.33 MeV

- Most demanding cases in each aspect were identified and evaluated
 - Fast beams (towards the neutron drip line ⁶⁰Ca)
 - Reaccelerated beams (Coulomb Excitation ²²⁰Ra)
 - Intense beams (High multiplicity ¹⁰⁸Cd)

Array performance determines system requirements

ELECTRONICS SYSTEM REQUIREMENTS Deliver digital signal processing electronics to instrument 30 Quad Detector DETECTOR SYSTEMS REQUIREMENTS Modules, capable of digitizing detector preamplifier signals at 100 MHz • Deliver 18 Quad (4-crystal) Detector Modules with geometry, segmentation sampling frequency, over a dynamic range up to 25 MeV, maintaining the and mechanical tolerances consistent with existing GRETINA detectors. intrinsic detector energy resolution of \leq 2.5 keV (FWHM) at 1.33 MeV. • Ensure integral (differential) non-linearity $\leq \pm 0.01\%$ (1%) as measured • Ensure an average photopeak efficiency of 0.15% and 0.16% at 1.33 MeV for in the final energy spectrum with a nominal gain of 0.3 keV/channel over A-type and B-type crystal geometries respectively. 10 MeV. • Ensure an intrinsic detector resolution of ≤ 2.5 keV (FWHM) at 1.33 MeV. • Ensure synchronous ADC sampling across the array. • Ensure signal (preamplifier) rise-time < 50 ns and noise $\sigma < 7$ keV (full • Provide a global timestamping mechanism to allow event reconstruction bandwidth). including external detector systems. Provide real-time energy and timing filters and waveform windowing. • Provide a trigger system capable producing a fast trigger output (< 500 ns) to Detectors auxiliary detectors, identifying physics events for readout and incorporating trigger inputs from external detector systems. Full Energy Efficiency (Add-back) > 30% at 1.33 MeV Intrinsic Energy Resolution \leq 2.5 keV at 1.33 MeV Array Average Position Resolution $\leq 2 \text{ mm } \sigma_{x,y,z}$ \geq 50,000/second Count Rate (per crystal) Peak-to-Total > 50% at 1.33 MeV Computing **COMPUTING SYSTEMS REQUIREMENTS** MECHANICAL SYSTEMS REOUIREMENTS Support an incoming data rate of 32 MB/crystal/s, corresponding to a triggered data readout rate of 4000 γ -ray decompositions/crystal/s. • Provide computing resources to perform 480,000 signal decomposition calculations per second.

- Support global event building and disk I/O at 500 MB/s.
- Provide local data storage of order 1 PB for experimental operations.
- Provide controls and monitors for approximately 50,000 channels with a nominal latency of 200 ms.

- Provide a detector support structure capable of holding up to 30 detector modules, rotating, and translating perpendicular to the beam axis.
- · Provide precise and reproducible placement of detector modules in all mounting positions, with tolerances and accuracy matching those obtained in GRETINA.
- Provide a detector liquid nitrogen filling system and a detector/electronics liquid cooling system.
- Ensure design compatibility with planned host sites and auxiliary instruments.

Electronics

Mechanical

GRETA Project WBS: Technical Subsystems

Why is the GRETA Module a Quad?

Geodesic Tiling

12 pentagons and ...

Number of hexagons	Number of different hexagonal shapes	
80	2 (20, 60)	
110	3 (20, 30, 60)	
120	2 (60, 60)	
150	3 (30, 60, 60)	
180	3 (60, 60, 60)	AGATA
200	4 (20, 60, 60, 60)	
		One Module type

GS

Detector Module

Electronics Systems

- Digitizer Modules & Interface Box
 - Instrument all segments and central contacts for 120 crystals
- Signal Filter Boards
 - Data Processing for 120 crystals
- Trigger System
 - Trigger decision for GRETA & external detectors
- Timing System
 - Synchronous timing for all
- Key Interfaces
 - Detector Modules
 - Computing Systems

Utilize lessons learned on GRETINA in all new designs

Proposed Conceptual Design

Separate ADC and Energy Filter (FPGA) – New approach Trigger and timing could be based on GRETINA design scaled to GRETA

Digitizer Module Design

Design will allow digitizer to be placed as close as possible to the detectors, minimizing transmission length of analog signals.

- Identified as the most challenging ES Subsystem
- Design starts early & ~30% of ES Design budget
- Schedule provides a full year + contingency for design of the Digitizer Module

- Digitizer Module
 - Compact and low-power ADC components with good linearity performance
 - High-bandwidth fiber links for high data transfer rate to meet throughput requirements
 - Provide "fast" and "slow" trigger information to the array trigger system

Signal Filter Board

Example of COTS with 4 FPGAs per Module Possible to implement 1 Detector Module per Board

- Commercial-off-the-Shelf (COTS) hardware
- Scalable design
- Meets the data throughput requirement
- Utilize existing GRETINA VHDL code base as launching platform
- ~20% of ES Design Budget
 - Use of COTS hardware
 - Reduces fabrication risk
 - Provides upgrade path
 - Allows Firmware development independent of Digitizer development

GRETA Computing – scaling from GRETINA

GRETINA cluster installation for first NSCL physics campaign

- ×3 crystals
- ×4 readout rate/crystal
- remove bandwidth limitations associated with VME readout bus
- higher performance computing cluster, global event builder, file store

Computing Systems

- 40 Gb point-to-point network link/switch
- HPC: ~120 nodes, ~5000 cores (Intel Knights Landing chip)
- 1 PB RAID Storage (local)

1 PB Storage: High IO bandwidth

GRETA Frame and Support Structure

- 30 Quad modules in 4π compact geometry
- translation and rotation capability
- removable section for a ring of five downstream Quad Detectors.

GRETA Frame and Support Structure

Majority of mechanical support will leverage existing designs

- Hemisphere, Translation & Rotation
- Positioning Detectors
- Alignment
- Installation & Removal

GRETA Support Structure Flexibility

- Ring of five Quads in (top view)
 - To accommodate interfaces with spectrometers where the target-magnet distance is constrained GRETA will include an option to remove the forward ring of Quad modules (akin to GRETINA frame)
 - Position target ~ 33cm closer to the first ion-optical elements for specific classes of experiments

Ring of five Quads removed with their Support Structure elements

Detectors and Interfaces: Target Location Access

- For experiments where larger beam pipes are required (dispersion matching at the HRS) or significant infrastructure must be fed through to the target position (LH₂ target), *Quad Modules would need to be removed or pulled back*.
- In a fully-populated GRETA geometry, only access to target position (center of array) is through pentagon holes.
- Pentagon hole limits pipe diameter to 5cm

Detectors and Interfaces: Triplet End-Cap

- Demand to maintain high-efficiency of array drives inclusion of a Triplet Module end-cap for GRETA.
- With removal of only 5 crystals surrounding a pentagon hole, ~12 cm diameter pipe can be accommodated.
- Maintains efficiency while expanding and ensuring scientific capabilities.

Project Organization

Project Advisory Committees

NSD Director

GRETA Management Advisory Committee Thomas Glasmacher (FRIB) David Dean (ORNL) Kawtar Hafidi (ANL)

GRETINA/GRETA User Community

Over 200 active Users

GRETINA/GRETA Users Executive Committee (GUEC)

Heather Crawford, chair (LBNL) Hiro Iwasaki (MSU/NSCL) Darek Seweryniak (ANL) Lew Riley (Ursinus) Mark Riley (FSU)

GUEC is the link between the scientific community and the GRETA project

Coordinates working groups Organize meetings, newsletters

Technical and Community Input

Phased approach to optimize delivery of a γ -ray tracking array capability for FRIB

Next Steps – upcoming year

- Completed conceptual design phase
 - o CD-1 review held April 25-27
 - Successful, positive endorsements, and recommendations required for CD-1 have been done
 - o CD-1 approval anticipated soon
- Following CD-1, key next step: Requirements and Interfaces for detailed design
- FY18 funding not yet set (large range of possibilities), nevertheless it is critical to keep moving forward and as such
 - GRETA project plans to focus on system requirements and interface control documentation and to engage the community
 - Working towards a timeframe for community input/feedback of 6-9 months – via GUEC and working group (implies workshops Fall/Winter)
 - TAC to provide advice and recommendations on design approach

Summary

- GRETA was identified a key detector for scientific discovery at FRIB and ATLAS/CARIBU
 - scientific case has been reviewed and endorsed
 - proposed design is based on proven technology and demonstrated performance (GRETINA)
 - phased schedule optimizes delivery of a tracking array capability for FRIB
- "passed" CD-1 review (conceptual design; preliminary scope, performance, cost, and schedule), expecting CD-1 approval soon
- FY18: focus on system requirements and interface control documentation

Other Mechanical Systems: Cooling

Liquid cooling system will be used for detector preamp cooling, and expanded to Digitizer modules for temperature-sensitive components

- Detector LN₂ cooling system will be an expansion of the GRETINA fill system
- New manifold design will be required with changes to the support structure

