Improving tracking at low energies and tracking efficiency

18th AGATA Week, Milano 2017

Outline

- Details of the Orsay Forward Tracking code
- Tracking results (performance & issues)
- Perspectives

Basic steps of OFT (1)

1. Create cluster pool

- Computes the maximum angular separation α_{max} between points in a cluster

$$\alpha_{\max} = \cos^{-1} \left(1 - \frac{2}{\left(\left(n_{\text{int}} + 2 \right) / 3 \right)^{0.9}} \right)$$

- Assigns interaction points i and j to the same cluster if their angular separation is < α (k_{max}= 7 interaction points per cluster)
- Loops on $\alpha < \alpha_{max}$ and find m different clusters (α_{min} =0.05, rad, $\delta\alpha$ =0.1 rad)

Basic steps of OFT (2)

2. Find most probable sequence of interaction points for each cluster

Which sequence satisfies best the Compton scattering rules?

$$er\cos = \Theta_{\theta} \sqrt{\left(\frac{\partial \cos \theta_{1}}{\partial x_{0}}\right)^{2} + \left(\frac{\partial \cos \theta_{1}}{\partial y_{0}}\right)^{2} + \left(\frac{\partial \cos \theta_{1}}{\partial z_{0}}\right)^{2} + \left(\frac{\partial \cos \theta_{1}}{\partial x_{1}}\right)^{2} + \left(\frac{\partial \cos \theta_{1}}{\partial y_{1}}\right)^{2} + \left(\frac{\partial \cos \theta_{1}}{\partial z_{1}}\right)^{2} + \left(\frac{\partial \cos \theta_{1}}{\partial x_{2}}\right)^{2} + \left(\frac{\partial \cos \theta_{1}}{\partial y_{2}}\right)^{2} + \left(\frac{\partial \cos \theta_{1}}{\partial z_{2}}\right)^{2} + \left(\frac{\partial \cos \theta_{1}}$$

3. Accept or reject clusters on the basis of (2xN-1)th root of L

Single interaction points

- Does the interaction point satisfy photoelectric conditions (interaction depth, energy)

Ge sphere approximation for very low energies

Low-energy efficiency

Fine tuning single interactions

0.02 0.15

Peak recovered at high energy but the single interactions account for 2/3 of the total background !

Energy (keV)	Fraction of core total absorption (%)
121	95
344	48
778	27
1408	21

How to validate single interaction points ?

- OFT standard: Probability (range in Ge) x Probability (photoelectric int.)
- Range only: distance *d* in Ge from source corresponds to 85,95-99 % absorption probability, i.e *d* ~2,3-4.6 interaction lengths λ
- New: use the data

Why?

How does a 45 keV photon interact at 1 cm?

What do the signals look like ?

Is it noise related ? Or is the effective segmentation different ?

Compromise between P/T and efficiency

In-beam improvement

Courteousy of A. Korichi

In-beam improvement

Courteousy of A. Korichi

Absolute Efficiency

(coincidence method)

Core efficiencies:

$$\begin{split} N_{det,singles} &= N_{emit} \ x \ AliveT \ x \ 1/(1 + \alpha_{tot1}) \ x \ efficiency(E_1) \\ N_{det,coinc} &= N_{emit} \ x \ AliveT \ x \ 1/(1 + \alpha_{tot1}) \ x \ efficiency(E_1) \ x \ 1/(1 + \alpha_{tot2}) \ x \ efficiency(E_2) \ x \ W(\theta) \ x \ (N-1)/N \end{split}$$

Absolute Efficiency

(coincidence method)

Core efficiencies:

23 AGATA capsules $N_{det,singles} = N_{emit} \times AliveT \times 1/(1+\alpha_{tot1}) \times efficiency(E_1)$ $N_{det,coinc} = N_{emit} \times AliveT \times 1/(1+\alpha_{tot1}) \times efficiency(E_1) \times 1/(1+\alpha_{tot2}) \times efficiency(E_2) \times W(\theta) \times (N-1)/N$

¹⁵²Eu, GANIL

Absolute Efficiency

(coincidence method)

¹⁵²Eu, GANIL23 AGATA capsules

Dependence on coincident energies and OFT parameters

¹⁵²Eu, GANIL 29 AGATA capsules

Dependence on coincident energies and OFT parameters

¹⁵²Eu, GANIL 29 AGATA capsules

What does « corrected » mean ?

Fine tuning the maximum clustering angle

Perspectives

- OFT works well
- Some improvements can be made: energy dependent σ_{θ} (or even use the χ^2 from PSA ?) evaluate Compton & single-interaction-point clusters at the same time
- Issue of the shape of the efficiency curve obtained from coincidence data which might not follow the shape of the singles curve
- Worse input quality than previously simulated
 => Fine tuning the parameters yields more efficiency at
 low energy and better P/T
- Need for better PSA