Latest results from the IKP Compton camera

R. Hirsch, T. Steinbach, B. Birkenbach, B. Bruyneel, J. Eberth, H. Hess, L. Lewandowski, P. Reiter IKP, Universität zu Köln

> R. Gernhäuser, L. Maier, M. Schlarb, B. Weiler, M. Winkel **E12, TU München**

> > 12.09.2017

PSeGe workshop, Milano, 2017

1

Overview

Compton camera principle

Experimental setup

- Detector setup
- Digital electronics
- Achieved results
 - Coincidence mode
 - High efficiency mode

Outlook

- Simulation
- New HPGe Detector

Compton camera principle

Imaging requires:

- Energy E_{γ}
- Energy loss due to Compton scattering E_1
- Interaction points and sequence
- Multiple events

$$\cos\left(\theta\right) = 1 + m_e c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

Compton camera principle

Imaging requires:

- Energy E_{γ}
- Energy loss due to Compton scattering E_1
- Interaction points and sequence
- Multiple events

$$\cos\left(\theta\right) = 1 + m_e c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

Compton camera principle

50 events

5000

events

Imaging requires:

- Energy E_{γ}
- Energy loss due to Compton scattering E_1
- Interaction points and sequence
- Multiple events

$$\cos\left(\theta\right) = 1 + m_e c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

Angular Resolution Measure (ARM)

 θ_{ARM} minimal angular distance

- Compton cone intersection
- Known source position

$$\theta_{\rm ARM} = \theta_{geo} - \theta$$

$$\cos\left(\theta\right) = 1 + m_e c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

Angular Resolution Measure (ARM)

 θ_{ARM} minimal angular distance

- Compton cone intersection
- Known source position

$$\theta_{\rm ARM} = \theta_{geo} - \theta$$

Detector setup

Double-sided silicon strip detector (DSSD)

- 60x40x1 mm³
- 1 mm strips
- n-doped side
 - 32 charge-sensitive preamplifiers
- p-doped side
 - 4 GASSIPLEX chips
 - multiplexed energy information of 15 strips

Detector setup

Highly segmented HPGe detector

- AGATA detector S001
- h=89mm Ø=80mm
- 71.1% efficency
- 36 segments
- 10° symmetric hexagonal tapered
- Sub segment spacial resolution due to pulse-shape analysis (PSA)

Pulse-shape analysis

Digital electronics

Pixie-16 modules from XIA

- 16 channels per module
- 12-bit ADC

0

000

() () () () ()

- 100-MHz sampling rate
- Custom firmware
- Data Converter to AGAPRO

www.xia.com

Coincidence mode DSSD + HPGe

Coincidence mode DSSD + HPGe

HPGe stand-alone mode

Near-field imaging

Cone intersection with a sphere

- Near-field imaging
- Full solid angle coverage
- No solid angle dependence
- Walking algorithm
- S. J. Wilderman et al., IEEE Transactions on Nuclear Science 45 (3) (1998) 957–962.

Sinusoidal map projection lines of longitude

- Sinusoidal map projection
- Area conserving
- Straight forward calculation

$$x = \phi \cdot \cos\left(\theta\right)$$

 $y = \theta$

Near-field imaging

Cone intersection with a sphere

- Near-field imaging
- Full solid angle coverage
- No solid angle dependence
- Walking algorithm
- S. J. Wilderman et al., IEEE Transactions on Nuclear Science 45 (3) (1998) 957–962.

Angle difference

 $|\theta_{geo} - \theta|$

2D representation of the sphere surface

- Sinusoidal map projection
- Area conserving
- Straight forward calculation

$$x = \phi \cdot \cos\left(\theta\right)$$

 $y = \theta$

Walking algorithm : Brute force : 78 calculations 100 calculations

Walking algorithm example

 θ_{ARM} calculations

Imaging

Multiplicity = 2

0

ົດ

2

1

3

Multiplicity

4

5

Source: Na-22 (75 kBq) Time of measurement: 30 min Distance: Source ↔ HPGe: 33 cm Efficiency: 6.9 % (corrected for activity and geometry)

Compton image

Interaction point sequence

Segment multiplicity = 2

Most probable interaction sequence

- Higher energy deposition at the first Interaction position $E_1 > E_2$
- Exception E_1 > Compton edge at ~1060 keV

Angular resolution = 31.8°

Tracking

- Point source
- Accumulation point roughly known
- Change interaction point sequence if:
 - $|\theta_{ARM}| > 35^{\circ}$
 - $|\theta_{ARM}|$ is reduced

Angular resolution vs. efficiency

No distance cut

Efficiency: 6,9 %

Next neighbor cut

Efficiency: 2,1 %

Summary

- Coincidence mode
 - Angular resolution 4.6°
 - Low efficiency (1.7x10⁻⁵)

- High-Efficiency mode
 - Higher efficiency (up to 6.9%)
 - Lower angular resolution (between 19° and 14°)

EPJ A publication

The European Physical Journal volume 53 · number 2 · february · 2017 ized by European Physical Societ Hadrons and Nuclei Eur. Phys. J. A (2017) 53: 23 THE EUROPEAN DOI 10.1140/epja/i2017-12214-9 **PHYSICAL JOURNAL A** From: Compton imaging with a highly-segme position-sensitive HPGe detector by T. Steinbach et al. Special Article – Tools for Experiment and Theory Compton imaging with a highly-segmented, position-sensitive **HPGe** detector T. Steinbach¹, R. Hirsch¹, P. Reiter^{1,a}, B. Birkenbach¹, B. Bruyneel¹, J. Eberth¹, R. Gernhäuser², H. Hess¹. L. Lewandowski¹, L. Maier², M. Schlarb², B. Weiler², and M. Winkel² ¹ Institut für Kernphysik, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany ² Physik Department, Technische Universität München, D-85748 Garching, Germany Deringer Received: 11 October 2016 / Revised: 19 January 2017 Published online: 10 February 2017 – © Società Italiana di Fisica / Springer-Verlag 2017 Communicated by D. Pierroutsakou Abstract. A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ -ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA)

of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8° and 19.1° , depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular

resolution of 4.6° was determined for the same γ -ray energy.

Geant4 simulation

Geant4 simulation

- Both operation modes
- Energy depositions at interaction points
- Interaction sequence tracking
 - Energy depositions multiplicity = 2 Energy: 1275 ± 5 keV

Interaction sequence probability HPGe stand-alone mode

New HPGe-Detektor

Canberra EGC-36

- Closed-ended coaxial shape
- 36 Segments
- h=89mm Ø=80mm
- Average signal risetime 26 ns
- 109% efficiency

For comparison: Efficiency of AGATA/S001 71.1%

Energy resolution

Crosstalk measurement

0 F6F1-0.001E6E1-0.002D6segment -0.003 slope D1 C6C1-0.004B6B1-0.005A6A1-0.006A1A6B1B6C1 C6D1F6D6E1E6F1hit segment

Crosstalk parameter matrix

Average: slope = -0.0013

ADL3 – Weighting potentials

Core electrode

Segment C3

Summary and Outlook

- IKP Compton camera
 - Successful operation
 - Two operation modes

- New detector
 - Implementation
 - Preparation Data Library
- Development of Geant4 simulation
- Implement advanced imaging algorithms

Thank you for your attention!

R. Hirsch, T. Steinbach, B. Birkenbach, B. Bruyneel, J. Eberth, H. Hess, L. Lewandowski, P. Reiter IKP, Universität zu Köln

> R. Gernhäuser, L. Maier, M. Schlarb, B. Weiler, M. Winkel **E12, TU München**

PSeGe workshop, Milano, 2017

