Status and expected performance of the SIGMA detector

Jonathan Wright University of Liverpool

Outline

- Introduction / motivation
- SIGMA design
- Fields / charge transport models
- Drift time distributions
- Position sensitivity study
- Summary

Introduction

High performance γ ray tracking and imaging detector Excellent energy resolution especially at low energies

SIGMA The Segmented Inverted-coaxial GerMAnium Detector

State-of-the-art position sensitivity

Large volume, high efficiency HPGe detector

Medical Imaging

Applications

Nuclear Decommissioning

Environmental Monitoring

SIGMA Design

Detector Design

- P-type germanium invertedcoaxial detector
- N-type being investigated by LBNL/ORNL *
- Point contact technology
- Currently being manufactured by MIRION

* M. Salathe et. al, Nucl. Instr. Meth. A 868 (2017) 19-26

Point Contact Technology

- Small, point-like contact with wrap around outer contact
- Low capacitance (~1 pF) due to small physical size of point-like contact
- Low $C \Rightarrow low noise \Rightarrow improved \Delta E$
 - ~0.5 keV at $E_{\gamma} = 122 \text{ keV}^*$
 - 1.6 keV at $E_{\gamma} = 1332 \text{ keV}^*$
- Examples \Rightarrow BeGe, SAGe-well, etc

BeGe n^+ n SAGe Well n^+

* L.J. Harkness-Brennan et. al, Nucl. Instr. Meth. A 760 (2014) 28-39

Segmentation Scheme

- 19 segments with 20 signals per event
 - Fewer digital readouts than current tracking detectors (AGATA, GRETA)
- 8 azimuthal segments (1-8) $\Rightarrow \varphi$ resolution
- 8 longitudinal rings (8-16) \Rightarrow z resolution
- 2 concentric segments (17, 18) \Rightarrow r resolution
- Core (19) and point contact (red)

Inverted-coaxial

Much longer drift paths \Rightarrow increased drift times upto 2 μ s

* R.Cooper et. al, Nucl. Instr. Meth. A 665 (2011) 25-32

Field Simulations

Field Simulations

- Electric field simulations done using an adaptation of the FieldGen software (ORNL)
- Fields calculated by solving the Poisson equation

$$\frac{d^2\Phi}{dx^2} + \frac{d^2\Phi}{dy^2} + \frac{d^2\Phi}{dz^2} = \frac{-\rho(x,y,z)}{\epsilon_0}$$

Weak fields & long drift paths ⇒
 long drift times to point contact

Weighting Potentials

- Shockley-Ramo theorem
- Voltage on electrode of interest set to 1 V
- All other electrodes set to 0 V

$$i = q \overrightarrow{v} \cdot \overrightarrow{E}$$

 $Q = q\Delta\varphi_0$

Charge Transport

- Charge transport calculated using adaptation of SigGen software (ORNL)
- Calculations account for polarity, temperature, crystallographic axis, crystal impurity, etc
- Short range field near point contact gives sharp rise in charge pulses
- Easy to distinguish multiple interactions

Drift Time Distributions

Drift Paths of Electrons

- Final terminating electrode of electrons as function of position
- Relative importance of each segment
- Gates on hit segment and drift time enable interaction positions to be localised to narrow region

Drift time calculation

- Point contact trace flat for most of trace
- Hit segment rises early -> enabling better determination of t₀
- Drift time calculated as time from 5% of hit segment to 95% point contact
- These are preliminary limits, true limits will be tested when real detector arrives

Position Sensitivity Study

Pulse Shape Analysis

- Interactions occurring in different locations result in different charge pulses
- Comparing experimental pulses to a simulated database enables better position sensitivity

Pulse Shape Database

- Pulses generated for every position on a 1 mm x 1 mm x 3 degree grid
- 200 x 10 ns samples per pulse
- Data output at each position contains
 - 20 pulses
 - Drift times
 - x,y,z & r,phi,z coords
 - Hit segment number

	-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* * * * * * * * * * * *
(x x x x x x x x x x x x x x x x x x x	*****
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****
<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>	****
<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>	*****
<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>	****
<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>	*****
<pre>(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>	******
***************************************	××

××××××××××××××××××××××××××××××××××××××	

Position Resolution Study

1. Select pulse from basis

Position Resolution Study

1. Select pulse

2. Add realistic noise to all pulses - $V_{p-p} \sim 1 \text{ mV}^*$ for point contact, $V_{p-p} \sim 5-20 \text{ mV}$ for outer segments,

- 1. Select pulse
- 2. Add noise

$$\chi^{2} = \sum_{i,j} |S_{i,j}^{m} - S_{i,j}^{s}|^{2}$$

3. Run through grid search algorithm, performing chi2 minimisation to find most likely interaction position

- Addition of azimuthal segs significantly improves phi resolution
- Addition of remaining sigs slightly improves resolution but increases time to perform search
- Drift time and hit segment cuts help reduce search time

<u>Phi deviation as a function of</u> <u>interaction position</u>

- 1. Select pulse
- 2. Add noise
- 3. Grid search algorithm
- 4. Measure average deviation from known position for 10 independent samples per basis position
 FWHM = 0.41 mm averaged throughout detector

$$FWHM = 2.35\sigma = 2.35\sqrt{\frac{\sum_{N} \Delta_{x,y,z}^2}{N}}$$

<u>FWHM as a function of</u> <u>interaction position</u>

Grid Size Issue

- In reality, interactions
 can occur in between
 grid points
- Events will jump to nearest basis point

Grid Size Issue

 Max error when interaction occurs in centre of grid ~0.71 mm

Grid Size Issue

- Max error when interaction occurs in centre of grid ~0.71 mm
- Reducing basis grid size removes error
- FWHM remains ~0.4
 mm with smaller grid
 size of 0.1 x 0.1 mm

Summary

- A novel detector has been designed and characterised through simulation
- A test model will be tested in the lab upon arrival
- Sub mm position resolution predicted
- Tracking and Imaging performance to be investigated

Collaborators

J.P.Wright^[1], L.J.Harkness-Brennan^[1], A.J.Boston^[1], D.S.Judson^[1], M.Labiche^[2], P.J.Nolan^[1], R.D.Page^[1], F.Pearce^[1], D.C.Radford^[3], J.Simpson^[2], C.Unsworth^[1]

^[1] University of Liverpool, UK
 ^[2] STFC Daresbury, UK
 ^[3] Oak Ridge National Laboratory, USA

Thank you

Any Questions?