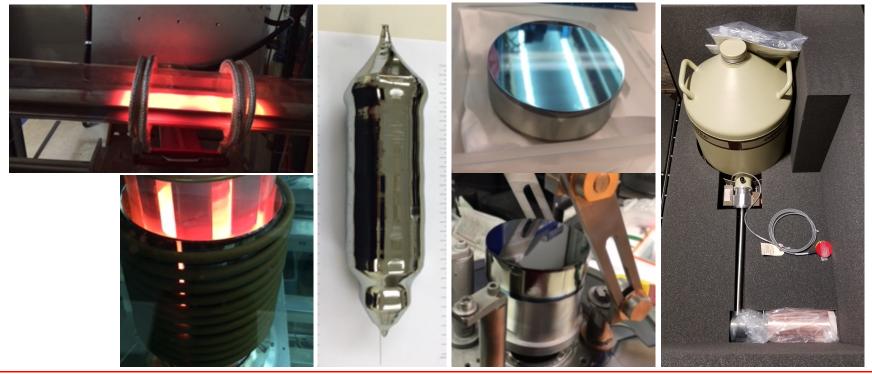


12 September 2017 Milan, Italy Advanced and Special Detector Programs from ORTEC – Historical and Next Step Perspective Elaine G. Roth

ORTEC Overview

ORTEC[®]

ORTEC was founded in 1960 by researchers from Oak Ridge National Labs to commercialize charged particle detectors


- Headquarters: Oak Ridge, TN with global sales and service offices
- Employees: 300+ worldwide
- Core focus: Ionizing radiation detection, identification and analysis instruments and systems
- **Ownership:** AMETEK, Inc., a leading global manufacturer of electronic instruments and electromechanical devices with 2015 sales of \$4.0 billion

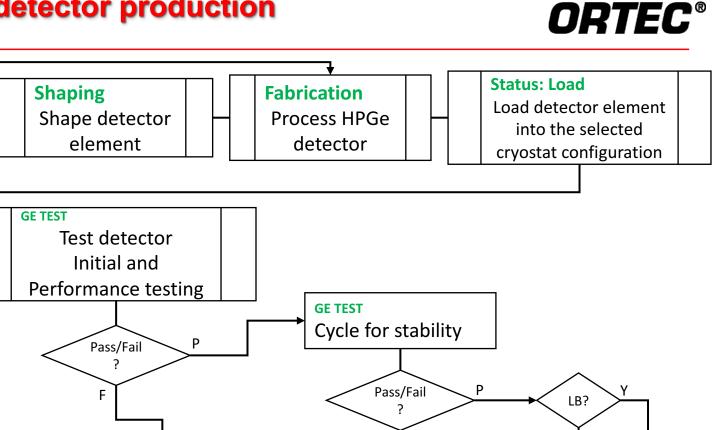
ORTEC's Detector Manufacturing

- Vertically integrated
 - High purity germanium crystal growth
 - HPGe shaping
 - HPGe fabrication
 - Detector assembly and testing
- Special and advanced detector systems design and fabrication
- Technology advancement detector development with 70 + years of experience with radiation detection and cryostat design and cooling

12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

ORTEC[®]

HP Germanium detector production


Crystal Growth

PUMP

Grow HPGe detector

element

Pump/Bake

F

Cycle time is measured in days, as opposed to hours

Υ

Pump / Bake?

Ν

12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

Ν

Disposition:

Complete for Shipment

Do LB Evaluation LB Evaluation

Overview

ORTEC's special detectors history

- Gamma Sphere
- First generation clovers
- Double sided Ge strip detectors
- Discrete element Array detectors
- Segmented

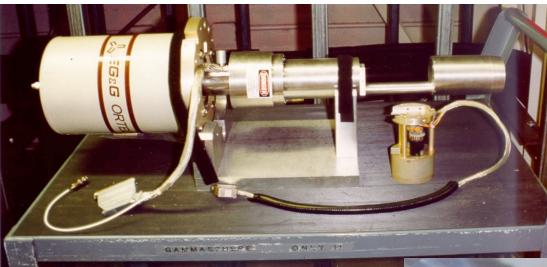
Current capabilities

- Next generation clovers
- Special point contact technology
- PopTop/Encapsulated
- Low background and very low background applications
- Double sided Ge strip detectors
- Advanced complex detector systems

Advance Special Detector History

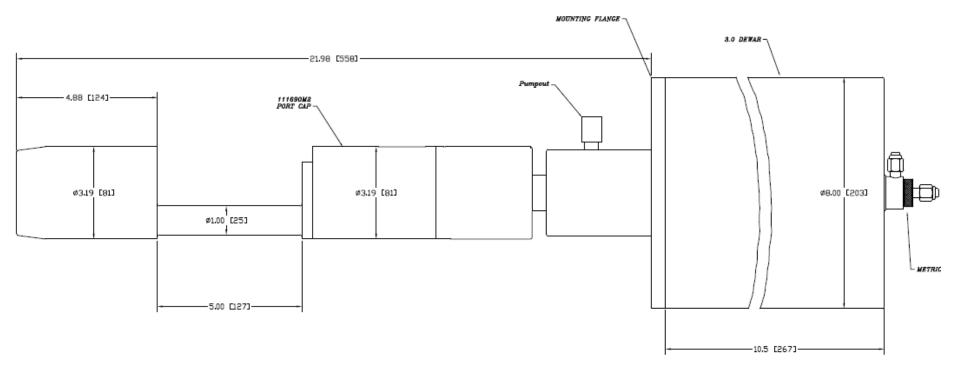
Advance Detector	First Unit built	Number of Units built	Application Examples
Gamma Sphere	Early 1990s	110+	Nuclear Physics, beamlines
Clover Detectors	Mid 1990s	20+	Nuclear Physics, Health Physics
Point Contact (coaxial, semi-planar)	2009	50+	Neutrino and Dark Matter, High Resolution Spectrometry, Safeguards
PopTop/Encapsulated	Mid 1980s	Hundreds	Multi-detector (limited space) or multi- orientation, electro-mechanical coolers
Double Sided Strip Detectors	Early 2000	Several	Nuclear physics, Beamlines, Imaging, Medical
Shields, Low Background Hardware	1970s	Hundreds	Low count rate, Underground low background studies
Segmented	2000	Several	Spin Spectroscopy, Tracking, Doppler Shift
Arrays	Early 1990s	Several	Synchrotrons and beamlines, EXAFs

Gamma Sphere History


Key Feature	Application Benefit
70% rel. eff. HPGe	Good efficiency at higher energies
N-type coaxial	Minimize resolution degradation due to neutron damage, annealing capability
Small, multi-orientation dewar	Spherical, compact count geometry
Detector neck	Positioning of "guard" detector to reject Compton scatter

- 24 years of operation
- Currently resides at Argonne National Lab (ANL), USA
- Custom cryostat:
 - 3L dewar
 - Remote preamp
 - Detector neck for BGO detector
 - Remote temperature readout PRTD100 (special option)
 - Annealing capable (special option)
- On average 100-105 detectors are operation out of 110 (10 spares)
 - Exceeded original lifetime (low return/service rate)
 - Annealing and vacuum service performed on-site
 - Detectors annealed every 1-2 years (depending on position to the center)

Gamma Sphere Pictures


GammaSphere at Argonne National Lab Featured in the movie Incredible Hulk

12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

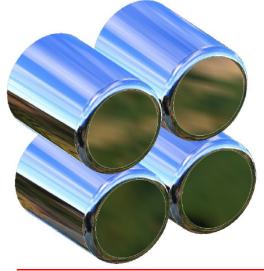
Gamma Sphere Drawing

Gamma Sphere outline drawing

ORTEC[®]

Key Feature	Application Benefit
20 to 35+% rel. eff. HPGe	Good resolution compared to a single large detector Good medium to higher energy efficiency 120-150% total rel. eff. per clover in Add-Back mode
4 HPGe detectors in Clover geometry	Close packing to minimize dead space to allow:Scattering informationHigher throughput
N-type coaxial	Minimize resolution degradation due to neutron damage, annealing capability
Small, multi-orientation dewar Or	Spherical, compact count geometry
Larger fixed orientation dewar	180 degree annihilation count geometry
Detector neck (optional)	Positioning of "guard" detector to reject Compton scatter

- 20+ years of experience with 20+ functional units in the field.
- A few units with segmented technology
- Multiple references available upon request

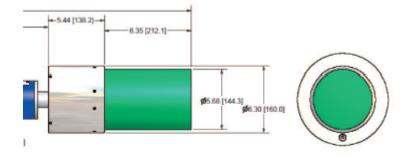


What is a CLOVER detector?

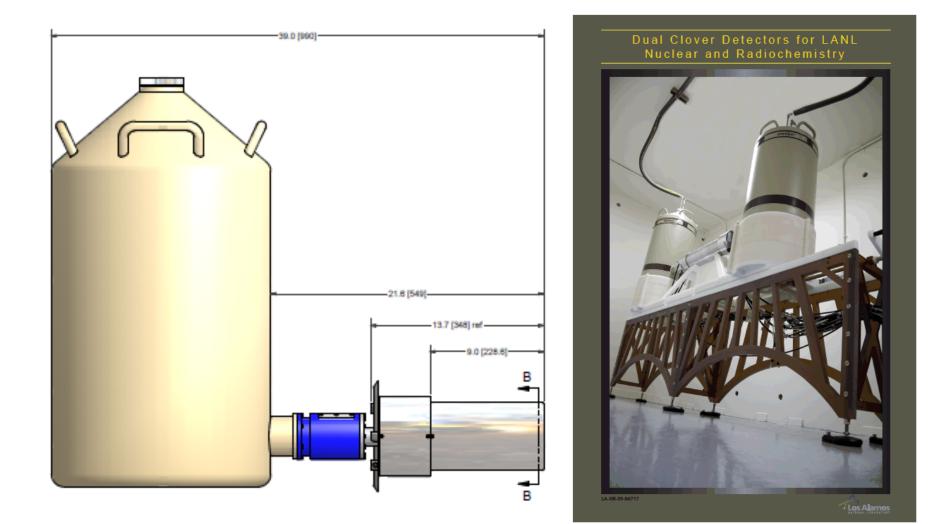
- Arrangement of a group of discrete detectors that are stacked in close proximity to each other
 - *Typically a small spacing is desired between these discrete detector elements

- Enclosed by a single endcap
- Share a common vacuum environment

*If these same discrete detector elements are shaped by slicing off the tangent edges, they may be arranged to achieve closer packing, achieving a smaller footprint


ORTEC[®]

CLOVER detector may have:


- 1) Square endcap without a taper
- Square endcap with tapered ends (typically used with BGO shields)
- 3) Round endap without a taper **featured in the next slide*

ORTEC advantages in clover detectors

- #1 Easy replacement of Molecular Sieves
 - Customer can perform field vacuum service
- #2 ORTEC design allows easy Dewar replacement
 - replacement of leaking dewar in the field
 - upgrade to a larger LN_2 or a mechanical dewar in the future at the factory
- #3 ORTEC CLOVER is designed with a modular mount
 - promotes serviceability at the factory for detector repair/replacement

ORTEC

Clover Detector	Four N-type HPGe detectors.
Efficiency	Relative efficiency of four detectors can be customized between 20% and 80% (for each detector element).
Resolution	Dependent upon detector efficiency and cryostat configuration. For example, four 25% relative efficiency HPGe detectors are warranted to have: FWHM ≤2.15 keV @ 1.33 MeV per detector (typical performance is under 2.00 keV) FWHM ≤1.05 keV @ 122 keV per detector (typical performance is under 1.00 keV)
Energy Range	20 keV up to 10 MeV (larger coaxial detectors are recommended for better high energy efficiency).
Peak to Compton	Dependent upon detector efficiency. For example, four 25% relative efficiency HPGe detectors are warranted to have: 45:1
Cooler	Liquid nitrogen. Minimum capacity 3L (24 hour holding time). For other LN ₂ dewar configurations and orientations, or for mechanical cooling options, consult factory.
Preamplifiers	4 in remote configuration (resolution above based on 6 μ s shaping time).
Detector Spacing	<1 mm between detector elements. Endcap to detector spacing depends on the endcap angle and size of the detector elements. Typical distances 5–30 mm.
Endcap Material	Aluminum. To maximize low energy efficiency, other customized endcap window options are available.
Low-Background Option	Available (optional)
Warranty	1 year standard warranty. Optional extended warranty is available.

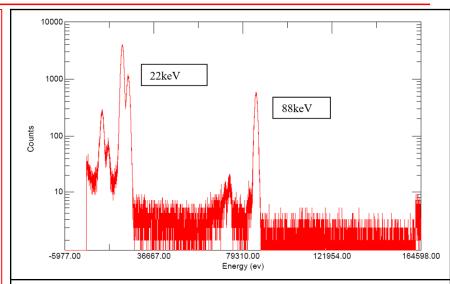
Key Feature	Application Benefit
Double sided orthogonal Ge Strip layers	Allows tracking and positioning information High count rate throughput Better efficiency than Si for hard X-rays (80-200keV)
Large surface area	Very good coverage for large targets or wide scattering angles
Minimized cross-talk	To avoid false signal or double-counting
Small, multi-orientation dewar Or Advance electro-mechanical cooling	Compact count geometry 180 degree annihilation count geometry

- 15+ years of experience with several functional units in the field
- Multiple references available upon request

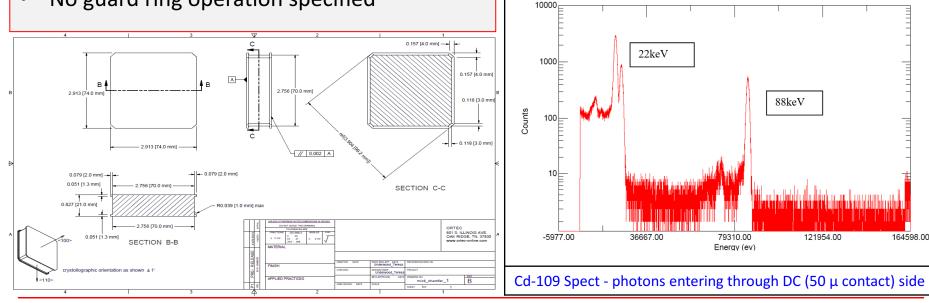
Double Sided Ge Strip Detector

ORTEC[®]

12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy



Double Sided Ge Strip Specifications


ORTEC[®]

Specifications:

- Average FWHM </= 1.7keV @ 122 keV
- ALL channels FWHM </= 2.3keV @ 122 keV
- No more than 2 strip per side >1.8 keV @ 122 keV
- FWHM </= 2 x FWHM @ 122 keV
- No guard ring operation specified

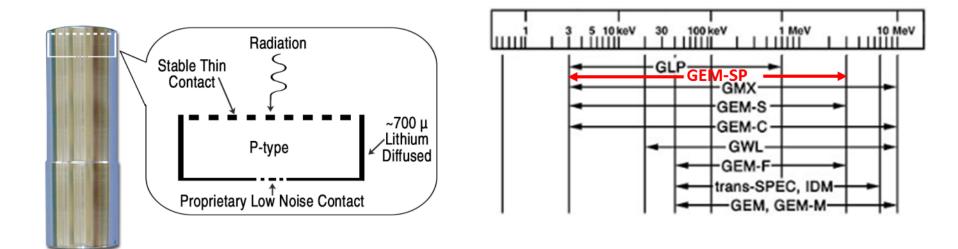
Cd-109 Spect - photons entering through AC (0.3 μ contact) side

12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

Key Feature	Application Benefit
Small discrete detector elements (one endcap) Large discrete detector elements (one endcap)	Excellent resolution compared and very high count rates for small elements Good resolution and high efficiency for large elements
Multiple detector elements - 3 to 30 (small) - 4+ (large)	 Close packing and minimize dead space within endcap to allow: Scattering information Higher throughput (less deadtime than single large detector)
P- or N-type HPGe	Annealing option is available with N-types
Segmented	Tracking information, angular scattering, pulse shape analysis for the location of interactions within crystal

- 20+ years of experience
- Consult factory for your array or segmented detector application needs

Point contact detector project – ORTEC GEM-SP ORTEC®


Key Feature	Application Benefit
Low Noise Back Contact (LNBC)	Superior resolution performance at low to medium energies (3-700 keV) – minimize false positives or separates double peaking Excellent resolution in a wide range of energies (3keV to several MeV)
Stable Thin Front Contact (STFC)	No "dead layer growth", lower handling and storage cost with no loss of detector efficiency Improved efficiency at lower energies

Key Feature (commercial grade)	Application Benefit
Crystal diameter maximized within endcap	Maximized efficiency, minimized "dead space"
Largest surface area available	94+ mm sizes available (unmatched) in the market
Custom designs available (optional)	Customization for application requirements
Compatible with any ORTEC's LN ₂ or electro-mechanical coolers	Versatility to be used in any counting geometry

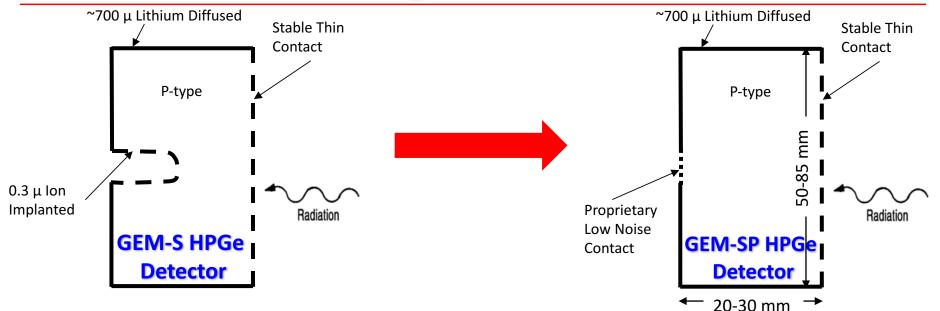
Point contact detector project – ORTEC GEM-SP ORTEC®

- First ORTEC semi-planar p-type, point contact (PPC) detector built in 2009
- Commercial versions introduced in 2015
- 50+ units special and commercial grade designs manufactured
- Unmatched commercial guaranteed performance

Resolution Factors

System resolution $R_T = \sqrt{R_d^2 + R_E^2 + R_V^2}$

where


- R_d is the detector resolution
- R_E is the electronic resolution
- R_V is the vibration resolution
- To a very good approximation Fano Noise² R_d (in keV) = $1.35\sqrt{E(in MeV)}$
- R_E depends on the capacitance of the detector, in turn capacitance depends on the surface area of the contact
- R_V is zero in LN₂ cryostats or "some" new generation mechanical coolers.

² "(1947). "Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions". Physical Review. **72** (1): 26. <u>Bibcode:1947PhRv...72...26F</u>. <u>doi:10.1103/PhysRev.72.26</u>."

GEM-SP detector design

ORTEC[®]

ADVANCED CONTACT FEATURES FOR GEM-SP DETECTORS

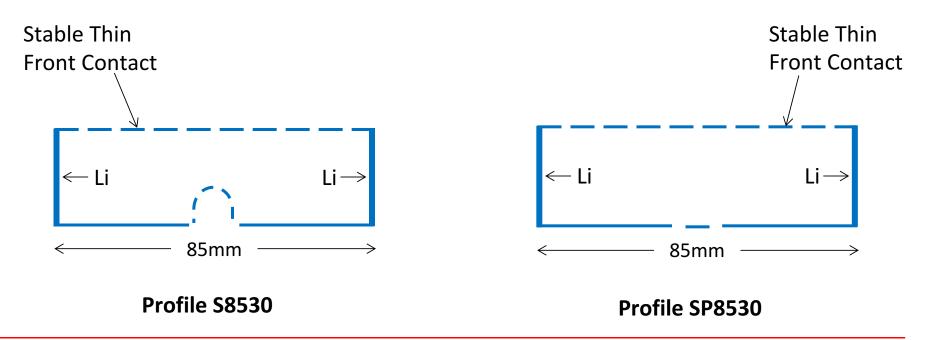
- Thin front contact
- Enhance contact stability
- Low noise back contact (reduced detector capacitance)

 Stable front contact presented at the IEEE NSS/MIC, November 2014 in Seattle, Washington – Kyle T. Schmitt, Gregor Geurkov, Member IEEE, E. G. Roth, Timothy R. Twomey, and Teresa Underwood, Member IEEE, "Improved Efficiency at Low Energies with P-Type High Purity Germanium Detectors", presented at IEEE, November 2014.

GEM-SP detector performance

ORTEC[®]

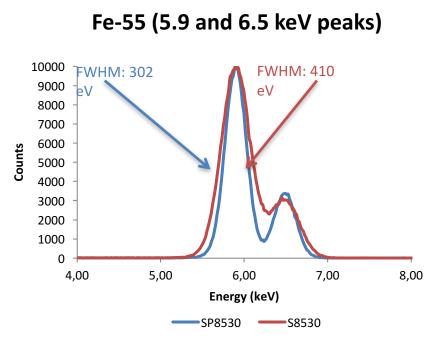
DETECTOR SUMMARY


New GEM-SP DETECTOR	Shaping time (µs)	5.9 keV Measured	5.9 keV Warranted	122 keV Measured	122 keV Warranted	1.33 Me Measure	
GEM-SP5020	6	216	300	479	585	1.6	1.8
GEM-SP5825	6	277	340	514	585	1.7	1.8
GEM-SP7025	6	296	380	496	585	1.6	1.8
GEM-SP8530	6	302	425	533	630	1.9	1.9
DETECTOR	VOLUME	Nomina	Nominal Relative		12	2 keV	1332 keV
DETECTOR	(cm³)	Efficie	ency (%)	Percentage Improvement in Detector Resolution			
GEM-SP5020	39		7	15%	1	0%	0% / no degradation
GEM-SP5825	66	:	15	15%	1	0%	0% / no degradation
GEM-SP7025	96	20		15%	1	0%	0% / no degradation
GEM-SP8530	170	!	50	15%	1	0%	0% / no degradation

12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

Two semi-planar P-type detectors Profile S8530 vs SP8530. Both detectors are:

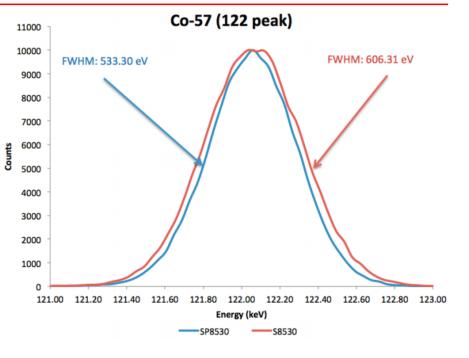
- 50% rel. eff.
- 85mm diameter
- 30mm thickness



12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

TEC®

PROFILE "SP": SP8530 AT 122 keV and 5.9 keV ORTEC[®]



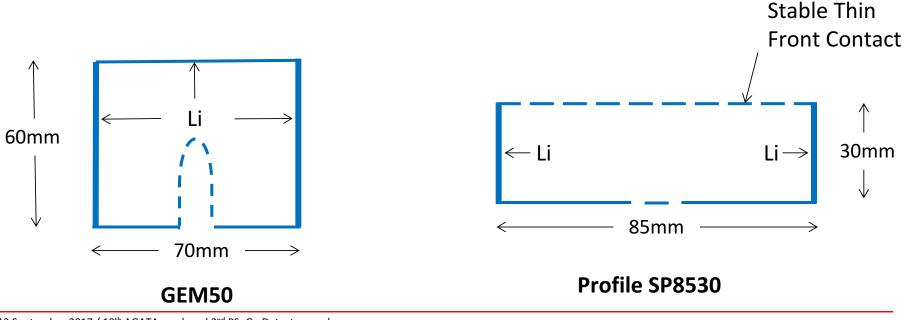
- FWHM measurement at 5.9 keV energy with
 - GEM-SP8530 is 302eV (spec is 425)
 - GEM-S8530 is 410eV (spec is 500)
- 25% improvement in <u>measured</u> resolution
- 15% improvement in <u>specified guaranteed</u> resolution
- Better peak differentiation between 5.9 and 6.5 keV peaks

*55Fe and 57Co source positioned 25 cm away from the front of the endcap

12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

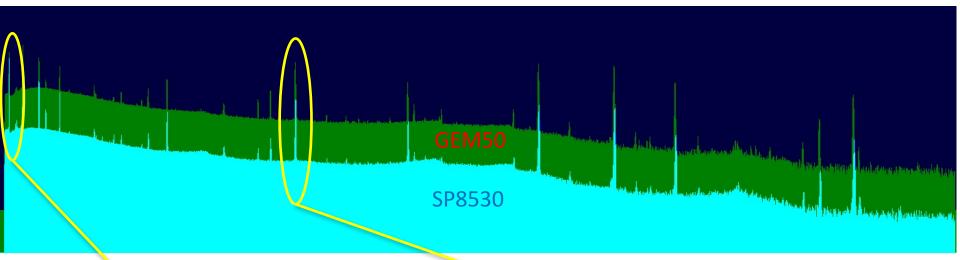
 Resolution for GEM-SP8530 is 10% better at 122 keV than a standard GEM-S8530

27

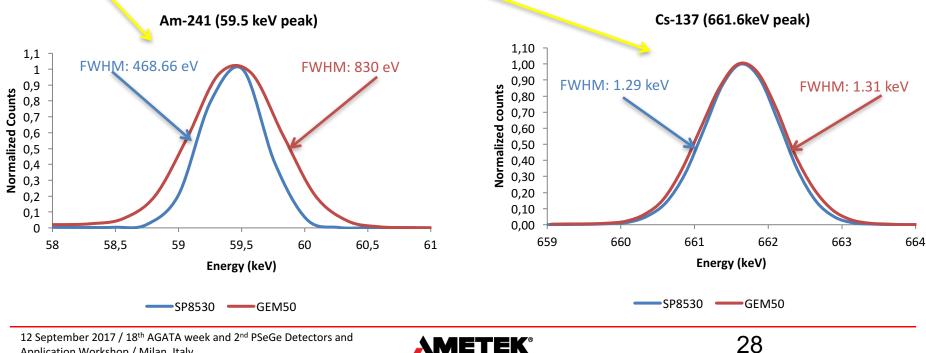

Coaxial P-type GEM50 vs Semi-planar P-type Profile SP8530. Both detectors are:

• 50% rel. eff.

But different crystal geometry:


- SP8530 has diameter greater than thickness (d:l is ~3:1) 85mm by 30mm
- GEM50 has diameter the same as thickness (d:l is ~1:1) 70mm by 60mm

Note: spectra collected with both detectors has the same counting statistics (offset is done for visual differentiation)

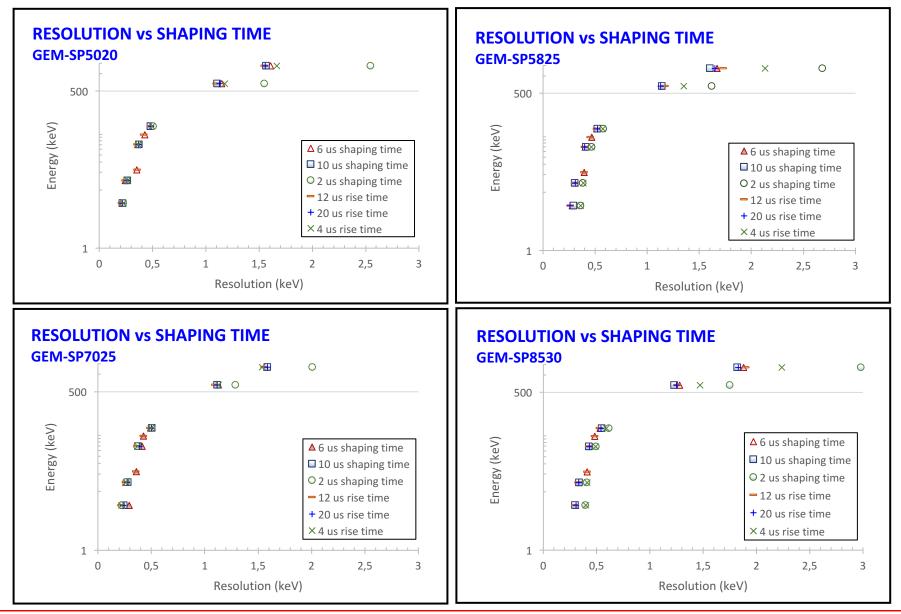


12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

ORTEC[®] Setup 2 resolution with mixed gamma

Peaks below have background subtracted, recalibrated and peak height normalized

AMETEK®


12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

Setup 2 resolution (cont.)

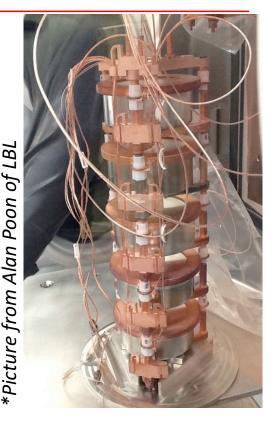
ORTEC[®]

RESOLUTION (FWHM) VS Shaping/Rise time ORTEC®

12 September 2017 / 18th AGATA week and 2nd PSeGe Detectors and Application Workshop / Milan, Italy

Point Contact Summary

- Premium resolution achieved for the GEM-SP detector incorporating several design features:
 - Detector element design
 - Previously developed barrier, stable thin front contact
 - Low noise back contact
- LNBC is a new proprietary contact for p-type detectors employed to improve low to medium energy (<700keV) resolution performance
 - 15% improvement at 5.9 keV
 - 10% improvement at 122 keV
 - Comparable performance at 1332 keV
- Ideal detector for applications in the energy range of 3 to 3000 keV
- May be used for energy ranges 3 to 10000 keV if premium resolution is required for large distributed sources
- LN2 performance achieved for a variety of mechanical cooling options: Mobius and X-COOLER-III


Point Contact (Majorana Demonstrator)

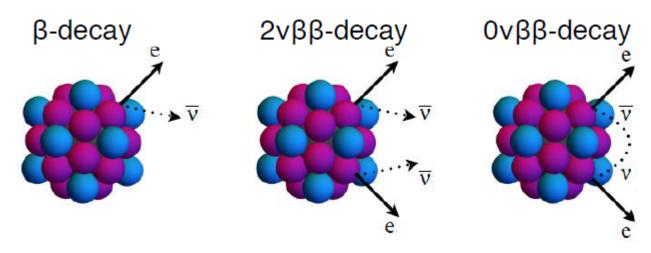
- 30+ Ge-76 detectors built
 - Manufacturing scheduled
 - Advantageous crystal growth and fabrication yield
- Pulser < 400 eV on average
- FWHM @ 1.33 MeV nominally 1.90 keV on average
- Exposure rate far below calculated acceptance value

Considerations:

- Background exposure
- High yield of high-cost Ge-76 material

ORTEC[®]

ORTEC Factory Advantages


Vertical manufacturing facility – maintain control in the exposure of material through growth and manufacturing process

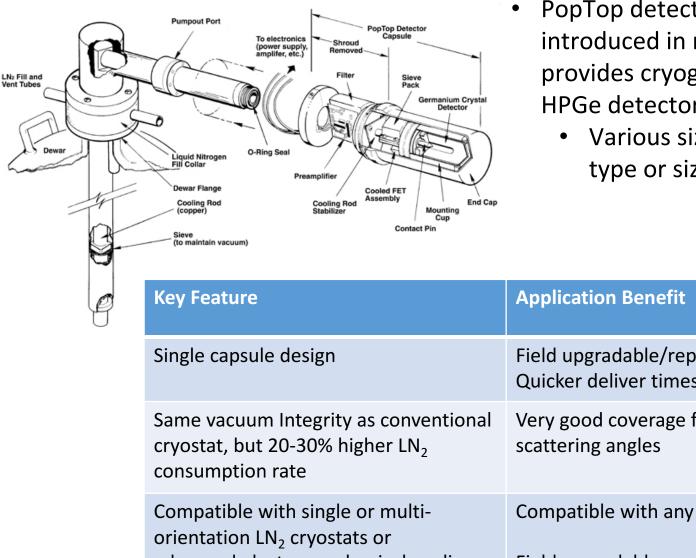
Superior resolution

Control of cosmic exposure

Coaxial Point Contact (Dark Matter)

Considerations:

• Background exposure


Dark Matter experiments require coaxial (larger) crystal geometry and have

- lower energy (<5keV detection) requirements than Majorana experiment (few MeV)
- Lower FWHM (pulse) requirement <100eV (Majorana's requirement was FWHM ~400eV for pulser)
- Consult factory for your needs

PopTop detector capsule

ORTEC[®]

- PopTop detector capsule was introduced in mid 1980s. It provides cryogenic enclosure for HPGe detector.
 - Various sizes for any HPGe type or size

Key Feature	Application Benefit
Single capsule design	Field upgradable/replaceable Quicker deliver times
Same vacuum Integrity as conventional cryostat, but 20-30% higher LN ₂ consumption rate	Very good coverage for large targets or wide scattering angles
Compatible with single or multi- orientation LN ₂ cryostats or advanced electro-mechanical cooling	Compatible with any counting geometry Field upgradable

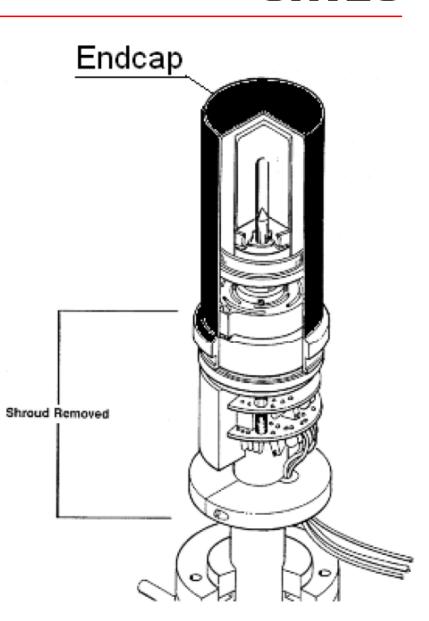
- ORTEC offers Encapsulated HPGe detectors as a special version of the PopTop capsule with a:
 - standard Harsh Environment (-HE) option.
 - minimized "dead space" within the endcap (similar to Profiles).
 - Comes with 1 HPGe detector per capsule.

Note: for several HPGe per capsule or tapered or high magnetic field options <u>consult factory</u>

- Encapsulated cryostat are used in a range of applications where space is limited or extreme environmental conditions are present:
 - Closely packed multi-detector arrays used nuclear structure studies
 - Space studies using HPGe's
 - Environmental field measurements or waste management (harsh environment and quick upgrades/replacement)

Key Feature	Application Benefit
Largest P- (up to 200% rel. eff.) or N-type (120+ rel. eff.) HPGe sizes	Decreases count times and increases MDA due to higher efficiency
Low background shielding with low Pb210 content	Minimizes cosmogenic and ambient background
Low background detector hardware (OFHC cupper, High Purity Aluminum, CF endcap)	Minimizes MDA emanating from detector subcomponents
Remote preamplifier	Minimizes background from electronics components

- Low background hardware has been available since 1970
- In 2015 ORTEC started marketing campaign to show low background performance capabilities to be in par or better than competition
- Partnerships with low background or underground labs are desired to continue to build premium performance database



Material assay of LB materials

Receipt of material samples – AI, SS

- Background evaluation performed on samples in dedicated material cave
 - Material cave is > 35 years old
 - Includes a GMX25 LB detector
- Material is approved/rejected
 - Approved:
 - Material is isolated
 - Components made only from approved material
 - Rejected:
 - Supplier provide new material sample

ORTEC

Evaluation of recycled versus virgin lead

Lid Height

24.0

(61.2 cm)

Adjusting Screw

Ordered...

34.1

(86.7 cm)

26.0

(66.0 cm)

Leveling Foot

(4" (10.16 cm) Sq., 4-Plcs.)

- ORTEC top loading shield made from recycled lead
- ORTEC top loading shield made from virgin lead

Beryllium window

Magnesium endcap

- 26.0 --(66.0 cm)

Top View with Lids Opened

Floor Loading: 70 lbs./sg.in. (5 kg/sg.cm)

Ø20.0 (51 cm)

Lid Latch

-11.0-

(27.9 cm)

8.00+

(20 cm min.)

4" Leveling Feet Allow 3" (7.6 cm) vertical adjustment

Ē

min.)

ļ (i GD.1 E

40.6

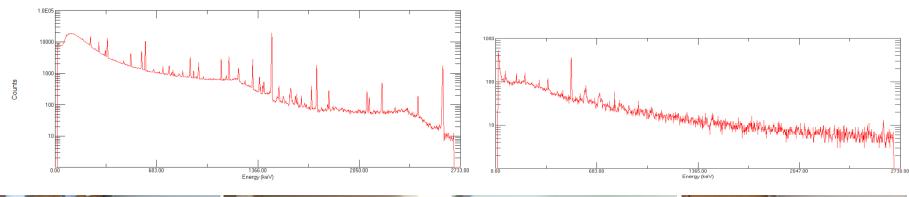
Lid Knobs

4" Thick

Reprocessed

Sample Cavity Liner .020" Sn and .064" Cu

- 24.0 --(61.2 cm)


Lead

Evaluation of ORTEC 6" lead shield

- Background evaluation performed using a 6-inch lead shield
 - GEM-S8530-LB-C-HJ
 - CFG-HJ-LB-108

Range of keV (counts)						
Sample ID	3-40	40-350	350 +	Total		
6" shield	16621	72063	87421	176235		
Unshielded	624833	9393360	3706880	13733900		

Summary of Low Background Assay and Materials ORTEC®

- Background assay of material samples performed prior to use in production of components for LB systems
- Lead shield made from recycled lead not sufficient for customers requiring lowest MDA possible below 400 keV
- Lead shield made from 3" recycled + 1" virgin liner is viable alternative for production of lead shields compared to virgin shields
- Shields made from virgin lead are still fabricated if the application requires lower background than may be achieved with shields constructed from recycled or 3+1 lead
 - ORTEC may also produce special LB shields less than 10 Bq/kg
 - In addition, ORTEC may supply designs with anti-cosmic reduction or cosmic suppression systems

Future work –

- Full characterization of different LB cryostat configurations in various shield configuration
- Further characterization of the ORTEC 6" shield offering
- Assembly and supply of advance special low background systems for complex applications

Thank You

In recent years ORTEC showed a Renaissance in core applications –

Advance Detector	Application Examples	
Clover Detectors	Nuclear studies Physics, Health Physics	 Contact – Local sales agent / distributor Product Manager – Gregor Geurkov (Gregor.Geurkov@ametek.com) Detector Director – Elaine Roth (Elaine.Roth@ametek.com)
Point Contact (coaxial, semi-planar)	Neutrino and Dark Matter, High Resolution Spectrometry	
Encapsulation	Multi-detector (limited space) or multi-orientation	
Double Sided Strip Detectors	Nuclear physics, Beamlines, Imaging, Medical	
Shields, Low Background Hardware	Low count rate, Underground low background studies	
Segmentation, Arrays	Synchrotrons and beamlines, EXAFs, tracking, Doppler Shift	

