

HPGe cryostat design, build and operation (The BEGe for JYFL)

Presented by Ian Lazarus DSG and NPG, Daresbury Laboratory

Overview

- Cryostats designed and built at Daresbury
 XH/XSTRIP
 ProSPECTus
- GREAT BEGe for Jyvaskyla
 - > Why upgrade to a BEGe?
 - > Why design our own cryostat?
 - Results

XH and XSTRIP

XSTRIP

- Si 1024ch
- 25um pitch
- 500um thick (max 15keV)
- Water cooled

Energy Dispersive EXAFS

XH

- Ge 1024ch
- 50um pitch
- 1mm thick (max 40keV)
- LN2 cooled
- LBNL

ProSPECTus

- Compton Camera for SPECT imaging
- SiLi scatterer (60 x 60 x 9) mm double sided with 4mm strips
- Ge Absorber(60 x 60 x 20) mm double sided with 5mm strips
- Detectors need to be close so best to put them in 1 cryostat.

ProSPECTus

Cryostat and preamp board

Ge Sensor with Flexi Circuits

GREAT BEGe Science Case: X-rays

- BEGe detector has
 - Great Energy Resolution
 - Large area coverage
 - Excellent efficiency between 15 and 250 keV
 - Replaces existing GREAT Planar detector

- Superheavy elements have the highest electronic binding energies:
 - $E_{K} > 150 \text{ keV}$
 - $E_L > 30 \text{ keV}$

Thus X-ray energies lie in the most sensitive range of the BEGe.

Low-energy gamma rays

The heaviest nuclei around ²⁵⁴No are very well deformed and have a number of low-lying gamma transitions: e.g. Isomer spectroscopy:

See: Herzberg et al, Nature 442, (2006) 896

X-ray energies from Atomic theory

- Measurements exist up to Cm (Z=96)
- Calculations precise to eV levels
- Contribution to Binding energy from Vacuum polarisation, self-energy and Breit energy is now more than 1% in the heaviest elements
- Precision measurements of X-ray energies in elements with Z=100 to 104 will be done at the RITU Separator in Jyvaskyla
- Needs excellent energy resolution!

Image: Xdb.lbl.gov

Why design our own cryostat?

Space already fixed-"Letterbox"

The GREAT Spectrometer

Recoil

- 2 x 60mm x 40mm
 DSSD (4800 pixels)
- 28 x 28mm x 28mm
 PIN Diodes
- 12cm x 6cm
 Segmented Planar
 Ge or new BEGe
- Compton-Suppressed
 Segmented Ge
 Clover
- Position-Sensitive MWPC

The BEGe as delivered

Canberra 5020 delivered to Liverpool 9/2012

Baseline Energy Resolution Measurements

A comparison was made of the energy resolution between those taken at Liverpool and results obtained at DL in the original Canberra cryostat. Spectroscopic performance was measured using ²⁴¹Am and ¹³⁷Cs sources.

Liverpool

@ 60 keV: FWHM = 0.74 keV, FWTM = 1.58 keV

@ 662 keV: FWHM = 1.30 keV, FWTM = 2.44 keV

Measured using an Ortec 671 spec amp with 6µs shaping time and an Ortec 927 MCA using the Maestro software. The baseline noise directly out of the pre amp is approximately 5mV peak-to-peak.

Daresbury

 @ 59.54 keV: FWHM = 0.75 keV, FWTM = 1.58 keV
 @ 662 keV: FWHM = 1.40 keV, FWTM = 2.49 keV

Measured using an Ortec 570 spec amp with 6µs shaping time and a USB EasyMCA using the Maestro software.

The baseline noise directly out of the pre amp is approximately 2mV peak-to-peak.

Good performance!

DL measurements with temporary cryostat

Concern that 3mm gap between crystal and outer can would cause noise issues. Cryostat test head designed

Operating temperature 102K (top of cold finger)

End 2014

 @ 59.54 keV: FWHM = 0.72 keV, FWTM = 1.31 keV
 @ 662 keV: FWHM = 1.36 keV, FWTM = 2.44 keV

Measured using an Ortec 570 spec amp with 6µs shaping time and a USB EasyMCA using the Maestro software. The baseline noise directly out of the pre amp was again approximately 2mV peakto-peak.

Still get good performance!

Tasks: Design, Construction and testing

Tasks: Design, Construction and testing

- Stripping down of original detector.
- Designing and manufacture new holding structure (GREAT compatible)
- Design of new cryostat
- Thermal modelling
- Design of electrical connections
- Assembly of detectors in new cryostat
- Thin window, AI and carbon fibre.
- Testing (Detector Assembly Laboratory Daresbury)
- Difficulties
 - Cooling
 - Vacuum
 - Details of cryogenic and electrical connections
- Close working relationship under NDA with Mirion (Canberra)
- Many techniques and methods learned
- Skills acquired
- From FDR to delivery took approximately 12 months

Test results- 1.00mm Aluminium Window

Baseline Energy Resolution Measurements in the new cryostat.

Spectroscopic performance was measured using 241Am and 137Cs sources.

Energy	FWHM	FWTM
²⁴¹ Am @ 60 keV	0.70 keV	1.33 keV
¹³⁷ Cs @ 662 keV	1.36 keV	2.58 keV

Test results 0.6mm Carbon Window

Spectroscopic performance was measured using 241Am and 137Cs sources.

Energy	FWHM	FWTM
²⁴¹ Am @ 60 keV	0.71 keV	1.44 keV
¹³⁷ Cs @ 662 keV	1.29 keV	2.45 keV
¹⁵² Eu @1408 keV	1.74 keV	3.37 keV

Measured using an Ortec 570 spec amp with 6μ s shaping time and a USB EasyMCA using the Maestro software.

Post-delivery tests at Liverpool

	FWHM	FWTM
¹³⁷ Cs	1.22	2.25
²⁴¹ Am	0.64	1.18

Detector survived 20km journey

Next step is 3000km to Jyvaskyla!

THANKS

Nuclear Physics Groups at Daresbury and University of Liverpool Detector Systems Group Daresbury Projects and Mechanical Engineering Group Daresbury

Janet Groves Ian Burrows Nick Clague, Jon Headspith Liam McNicholl Paul Morrall John Simpson Andy Boston Helen Boston Laura Harkness-Brennan Dan Judson Paul Nolan Carl Unsworth

Mirion advice