

2nd Position Sensitive Germanium Detectors (PSeGe)

On the way towards a coaxial segmented Ge detector at LNL-INFN

Walter Raniero

INFN – Laboratori Nazionali di Legnaro Ensar2 H2020-Infraia 2014/2015 n° 654002 WP10-Jra2 PSeGe

Multidisciplinary Team

INFN-LNL

INFN-LNL and University of Padua:

INFN-LNL and University of Verona

INFN-LNL and University of Trento

INFN-PG and University of Camerino INFN-PG and University of Perugia

IKP Cologne

CNR-IMM Bologna

D.R. Napoli, W. Raniero

D. De Salvador, G. Maggioni, S. Carturan E. Napolitani, V. Boldrini, F. Sgarbossa

G. Mariotto

G. Della Mea

N. Pinto S. Riccetto

J. Eberth

R. Nipoti, F. Mancarella, M. Bellettato

On the way towards a coaxial segmented Ge detector at LNL-INFN

OUTLINE

- HPGe coaxial:
 - lapping surface preparation (shaping)
 - (p+, n+) contact
 - passivation on intrinsic HPGe surface

Addendum

Alternative contact technology: SOD (spin on doping)

HPGe Surface preparation

HPGe wafer surface roughness

AFM (atomic force microscope) morfology characterization

Sample	R quadratic (nm)		
HPGe as received	330 ± 85		
Manual polishing	350 ± 40]	down to 3µm
Manual polishing/etched	37 ± 7		
Automated polishing	22 ± 4		down to 0.25µm
Automated polishing/etched	18 ± 4		

HPGe surface dislocations (EPD: etch pits density)

Umicore HPGe (100) as received (50.8mm diameter, 2mm thick) bulk dislocation: about 10³ /cm²

> **SUPEROXOL** (1 min) chemical treatment H_2O_2 :HF:H₂O, 1:1:4

EPD (etch pits density) (n° dislocation / cm²)

Magnification: 200 X Area: 1,2x10⁻³ cm² Dislocation: >10⁶ /cm²

Dislocation

High dislocation number on the surface W. Raniero (LNL - INFN) PSeGe Milano 2017

Manual Polishing - EPD (etch pits density)

polishing Al₂O₃ (grain size 3µm) + H₂O (DW)
+ Superoxol 1 min

Magnification: 500 X Area: 1,92x10⁻⁴ cm² Dislocation: >10⁶ /cm² + etching

Magnification: 200 X Area: 1,23x10⁻³ cm² Dislocation: 4x10³ /cm²

Automated Polishing - EPD (etch pits density)

Diamond polishing (down to 3µm)
+ Superoxol 1 min

Magnification: 500 X Area: 1,92x10⁻⁴ cm² Dislocation: >10⁶ /cm² + etching

strips

Etching 3:1 (HNO₃:HF) (etch=3min)
+ Superoxol 3 min

Magnification: 200 X Area: 1,23x10⁻³ cm² Dislocation: 3x10³ /cm²

EPD (etch pits density)

Manual polishing

Magnification: 200 X Area: 1,23x10⁻³ cm² Dislocation: 4x10³ /cm²

- High purity Al₂O₃ and DW water, no contamination of HPGe crystal
- Better control on the lapping process (based on the operator's sensitivity)

Automated polishing

Magnification: 200 X Area: 1,23x10⁻³ cm² Dislocation: 3x10³ /cm²

- No control on the chemical impurities in the used materials
- Worse control on lapping process (strip defects)
- Good technology for first crystal shaping

Drilling system for coaxial detector

IKP tip is fed with ceramic slurry [$H_2O(DW) + Al_2O_3(30\mu m)$]

depth of hole \approx 30mm Hole diameter \approx 9mm

Ge crystal

Ø_{ext} = 50mm Height = 43mm

Drilling system for coaxial detector

PTFE (Polytetrafluoroethylene) circuit to feed the tip with ceramic slurry

switching

amplifier

nitrogen gas

Rotation speed controller

Drilling rate < 0.3 mm/h Slurry \approx 70% (H₂0) – 30% (Al₂O_{3,} 30µm) weight % Weight tip \approx 2Kg Rotation speed < 70rpm

n+ contact Lithium diffusion at LNL-INFN

Coaxial crystal handler at LNL-INFN to perform the lithium diffusion in n-type HPGe crystal

Istituto Nazionale di Fisica Nucleare

Thermal Evaporator

p⁺ contact on HPGe

¹¹B lonic Implantation IMM (Institute for Microelectronics and Microsystem) - Bologna

HPGe wafer cut and cleaning (isopropanol 80°C and DW 80°C)

HPGe (10x10x2) mm³ Pressure= 3.8×10^{-7} torr Energy= 23KeV Dose= 1 x 10¹⁵ atoms/cm²

Coaxial crystal handler for Boron implantation

will be installed at IMM (Institute for Microelectronics and Microsystem) - CNR Bologna

3D design

Istituto Nazionale di Fisica Nucleare

HPGe Passivation: lateral scan ²⁴¹Am on passivated surface

G. Maggioni et al. Eur. Phys. J. A (2015) 51: 141S. Riccetto et al. to be submitted (see next presentation)

- Strong decrease of counting rate close to the electrodes
- Hyper-H flat counting rate

On the way towards a coaxial segmented Ge detector at LNL-INFN

summary

- Manual lapping allows better process control, and the agents in contact with the hyperpure germanium is high purity. The dislocation number 10^{^3} cm⁻² after etching process confirm the bulk HPGe dislocation density
- In Automated lapping small splinters that detach during the process and scratch the surface germanium crystal. The agents used (diamond sprays) do not have a known composition and can contaminate the HPGe crystal.
- The drilling system allows to obtain blind hole on germanium crystals, and therefore allows for good control over the presence of contaminants since the entire circuit is in PTFE in contact with the known ceramic slurry

Addendum

HPGe diode: n⁺ contact on p-type HPGe

Precursor SOD (Spin on Doping) **P 507** (Phosphorus) **Filmtronics** Lateral Kapton on p-type HPGe CURING SPIN COATING Spike annealing 610°C – 12minutes T= 130 °C HPGe p-type Etching HF 10% to t= 30min size (10x10x2)mm³ RH < 20% remove the glassy coating 4500 rpm "Optimal process parameters for phosphorus spin-on-doping of germanium"

V. Boldrini et al., Applied Surface Science 392 (2017) 1173–1180

SIMS profiles of Phosphorus diffusion on HPGe

The **SOD** process is applied to HPGe p-type crystal. The optimization of **temperature**, **time** and **humidity** are fundamental to obtain reproducible SOD contact.

HPGe SIMS profile is similar to micro electronic Ge SIMS profile.

SOD technique can be applied to HPGe crystal !!

On the way towards a γ - detector (prototype)

3D cryostat design

I-V Diode characterization

HPGe p-type boron – phosphorus contact methanol (CH₃OH) lateral surface passivation

I-V Diode characterization

HPGe p-type boron – phosphorus contact methanol (CH₃OH) lateral surface passivation

SOD diffusion thermal treatment change the net impurity concentration of HPGe 2 x 10¹¹ atoms/cm³ (see Virgina Boldrini talk)

summary

- We have measured a p-n junction made by SOD technology but the HPGe detector is not fully depleted

outlook

- We are still working with alternative contacts (see F. Sgarbossa and V. Boldrini talks)

Thanks for the attention !!

This work was supported in part by the ENSAR2-INFRAIA H2020 Program 2014/2015, under grant agreement No. n° 654002 WP10-Jra2 PSeGe

W. Raniero (LNL - INFN) PSeGe Milano 2017

2nd Position Sensitive Germanium Detectors (PSeGe)

On the way towards a coaxial segmented Ge detector at LNL-INFN

Walter Raniero (Ensar2 agreement)

INFN – Laboratori Nazionali di Legnaro walter.raniero@lnl.infn.it