N = Z AGATA campaign

Grześ Jaworski

on behalf of N=Z, NEDA, NW & DIAMANT collaborations

AGATA Week, Milano, September 14th, 2017

Outline

 \rightarrow Physics

- \rightarrow Key instrumentation (under construction):
 - * NEDA + Neutron Wall
 - * DIAMANT
 - * Plunger see talk of Joa Ljungvall
 - * new target chamber see talk of Nadine Redon
- \rightarrow Mechanics.
- \rightarrow Electronics.
- → DAQ
- \rightarrow Global integration and commissioning
- → Calendar

GANIL 2018: AGATA + NE DA

- M. Bentley: In beam gamma-proton coincidence spectroscopy in ${}^{65}As$ isospin symmetry at the limits of proton binding. (+ DIAMANT) 20 UTs
- A. Boso: Isospin symmetry breaking and shape coexistence in mirror nuclei ⁷¹Kr ⁷¹Br. (+ DIAMANT) 20 UTs
- B. Cederwall: Search for isoscalar pairing in ⁸⁸Ru. (+ DIAMANT) 36 UTs
- B. Fornal, S. Leoni & M. Ciemała: Gamma decay from near-threshold states in ¹⁴C: a probe of clusterization phenomena in open quantum systems. (+ DIAMANT + DSSD + LaBr₃ + PARIS) 22 UTs
- S. Lenzi: Effects of Isospin Symmetry Breaking in the A=63 mirror nuclei. (+ DIAMANT) 17 UTs
- J. Nyberg: Studies of excited states in 102,103 Sn to deduce two-body neutron interactions, single-particle energies and N = Z = 50 core excitations. (+ DIAMANT) 32 UTs
- M. Palacz: Purity of the $g_{9/2}^n$ configuration based on lifetime measurements and energies of excited states in 94 Pd. (+ FATIMA) 23 UTs
- J.J. Valiente Dobon & E. Clément: Shell evolution of neutron-deficient Xe isotopes: Octupole and Quadrupole Correlations above ¹⁰⁰Sn. (+ DIAMANT + Plunger) 32 UTs

202 UTs **= 67** beam days

Status of

Detector production

Self production [hand made], using:

- → Detector vessels and PMT housings are made by welding flanges to hexagonal profiles;
- → EJ520 TiO₂ paint; TorrSeal; 5" 5mm BK7 glass;
- \rightarrow Expansion bellow $\Delta T = 40$ K;
- \rightarrow EJ301 (BC501A) liquid scintillator.
- → SBA R11833-100HA 5" PMT (32% Q.E.)
- \rightarrow custom transistorized VD provided by Świerk
- \rightarrow mu-metal shielding (1 mm)

Fig. 1. Elements used for the construction of the NEDA detector: detector cell, with extension pipe (1); PMT (2); PMT housing (3); PMT pusher (4); the bellow (5) and the support for the bellow (6).

Detector production

Production – current status NE DA

- \rightarrow 20 detectors finished (2400-2600 phe/MeVee);
- 15 detectors to be finished in no time; \rightarrow
- 17 on various stages of the production; \rightarrow
- \rightarrow 10 detectors under recovery.

NEDA6_ngd_35

p(⁷Li,n)⁷Be LICORNE @ ALTO

VEDA6_SLOW

FOM = 1.88 for (50-200)keVe

NEDA6_ngd_35

tof_NEDA7RATIO

Characterisation: NEDA **#21**

A. Raggio

for each energy gate.

Characterisation: NEDA **#21**

A. Raggio

Figure 3.9: Digital timing distribution as a function of energy. The top line shows the FHWM for each corresponding energy gate.

Artificial Neural Networks

- → NWall structure machined by Warsaw, Padova & Daresbury
- \rightarrow 16 NEDA detectors mounted on the structure in G2 as we speak

NEDA Front-end Electronics Design.

Electronics

Electronics

Have: Numexo2 (16 ch) x7

ADC mezzanines (4 ch) x25 GTS mezzanines (tree 3-1) x4 NIM GTS Carriers (4 mezzanines) x1 NIM crates 2kW (12 ch) x1 RG58-blue MM11/50 150 cables 15 m SHV cables HDMI cables x40 Linco2 (8 ch) x13 optical fiber MPO MPO (16 ch) x7 optical adapter MPO to LC (16 ch) x7

Currently addressed issues:

 \rightarrow DAQ

- \rightarrow PCIe buffering and validating timestamps
- \rightarrow synchronization of the reset sequence
- \rightarrow validating the firmware NGD, TDC on FPGA
- \rightarrow debugging the read-out from NUMEXO

→ trigger processor

- \rightarrow workstations and storage disk server
- \rightarrow SEDIFF should arrive tomorrow

First NEDA data dumped

00063	50 80	00	00	00	80	00	00	00	80	00	00	00	80	00	00	00		
00073	50 80	00	00	00	80	00	00	00	80	00	00	00	87	00	00	02		
00074	00 00	12	00	01	02	00	07	00	80	00	00	00	00	00	02	05		
00074	20 00	00	00	00	00	00	00	00	00	00	5b	00	b9	4e	96	0e		
00074	10 c9	4e	7e	01	d 4	4e	7f	01	e1	4e	7e	01	e6	4e	7d	01		
00074	50 ee	4e	80	01	f7	4e	81	01	f6	4e	82	01	fe	4e	7d	01		
00075	90 ff	4e	7f	01	03	4f	7c	01	03	4f	81	01	08	4f	86	01		
00075	20 03	4f	90	01	03	4f	a1	01	02	4f	c2	01	ff	4e	02	02		
00075	40 ff	4e	61	02	fc	4e	e1	02	fc	4e	7a	03	f6	4e	25	04		
00075	50 f2	4e	db	04	f3	4e	99	05	ef	4e	58	06	e7	4e	14	07		
00076	90 e2	4e	cf	07	e5	4e	82	08	da	4e	2b	09	d6	4e	c9	09		
00076	20 cf	4e	5a	0a	d2	4e	df	0a	cd	4e	57	Øb	c 1	4e	c5	Øb		
00076	40 bd	4e	24	Θc	ba	4e	81	0c	b3	4e	d1	0c	ac	4e	12	Ød		
00076	50 a4	4e	57	Ød	a2	4e	8b	Θd	9a	4e	b9	Ød	7e	41	ea	Ød		
00077	90 7e	41	11	0e	80	41	2e	0e	7d	41	4a	0e	80	41	67	0e		
00077	20 80	41	7f	0e	7d	41	95	0e	7c	41	a8	0e	80	41	b6	0e	00 20	201
00077	40 80	41	c3	0e	81	41	cf	0e	8b	41	d8	0e	99	41	e0	0e	00.09	.201
00077	50 b1	41	ea	0e	df	41	f3	0e	28	42	f5	0e	9d	42	fa	0e		
00100	an 29	43	fc	0e	dΘ	43	fb	0e	80	44	03	Of	39	45	01	. 01		
00100	20 fg	45	01	Of	b7	46	04	Of	74	47	05	Of	28	48	01	. 01		
00100	40 db	48	fe	0e	7a	49	ff	0e	16	4a	fo	0e	90	4a	fa	0e		

Acknowledges: GANIL, Valencia, Daresbury, Kraków, CERN, LNL.

First NEDA waveform **NEDA** from PCIe and NUMEXO2

DAQ

NE DA

O. Stezowski A. Goasduff F. Saillant

NEDA & NW – G. Jaworski – AW, Milano, Septemer 14th, 2017

 \rightarrow Samtec boards mounted and tested on 1 DAQ server

- → Delivery of DAQ Server mid-(end-) September to LNL
 * Installation and configuration of the servers (ASAP)
 - * Installation and test of the Samtec board (ASAP)
 - * Data transfer test with 1 NUMEXO and NEDA
- \rightarrow Test data taking with NWALL detectors + NUMEXO2 (without trigger processor)
 - * Availability of the SEDIFF?
 - * First test with 16 detectors on 1 NUMEXO
 - * Quality check of the FPGA n/g discrimination for NWALL
- \rightarrow The amount of data produced by NEDA
 - * Request the storage on the grid (to be done)

O. Stezowski A. Goasduff F. Saillant DB

-loc

🖲 We	elcome I	to the Co	onstructio	n DataBas	e Navigat	ог									
nection	Produc	tion Stat	us Qualit	ty Control	WorkSta	ations 1	ables	Windows	Plug-ins	Help					
Quit	Open	Save	Print	Get	B Update	Undo	Scan	Query	Add BM	Del	ВМ	See BM	SQL		
				Enter	logon pa	ssword	-> _ n	edad	ccrea	ad	j				
al prefer	ences-		—												
ool_id:	100														
Asse	mbly H	listory	Navigat	ог											
Object	ID : 🛛	ISD_003		Ref.	date c	hosen	(YYYY	MM-DD	HH24:MI	.55):	2017	-09-10	00:48:0	9	2

C. Aufranc A. Goasduff O. Stezowski G. Jaworski

DB

- \rightarrow Based on the tools developed for AGATA
- → Reachable from wherever using the BigBrowser software https://lyosvn.in2p3.fr/constructiondb/wiki/Download

→ Included in the DB: Detectors (PMT, BODY, PUSHER, CELL, BELLOW, VD & CATs, ...), Cables (OF, HDMI, AN, HV, Ethernet, ...), Crates (NIM, HV), NUMEXO2, FADC, GTS carrier, GTS mezzanine, DAQ Server, Samtec PCIE, HV Cards, Racks

→ Possibility to include and control the fill chain: Detector (with its constituents) → AN cable → SEDIFF → HDMI cable → FADC → NUMEXO2 → OF → PCIE → DAQServer

- → Will make debugging easier
- \rightarrow Inventory and transfers under control

NEDA & NW @ GANIL in NE DA AGATA Simulation Code

- → NEDA finally available as AGATA's ancillary
- \rightarrow included in the GANIL trunk
- → NEDA & NW N=Z 2018 campaign geometry ready
- \rightarrow ancillary ID = 12 for NEDA
- → light production and interaction time sorting restored.

 \rightarrow Unclear if neutron energy deposit can be trusted within g.4.10 nor g.4.9

A. Goasduff, G. Jaworski

7 RS232 cable with RJ45-RJ45 connectors from NUMEXO2 rear panel to terminal server

Infrastructure

- \rightarrow Cables all available, mostly in LNL, about to be shipped
- \rightarrow Racks 3 racks for the HV, NIM electronics and servers @ GANIL
- \rightarrow Crates in LNL, Valencia \rightarrow to go to GANIL

TODO:

 \rightarrow ship

 \rightarrow new version of the scheme for the in-beam commissionings in Nov. 2017

		20	17		2018			
	9	10	11	12	1	2	3	4
Detector production								
Production								
Characterisation (Npg, NGD)								
Shipment together with Neutron Wall								
Mechanical structure & pieces								
NEDA installation in G2								
NEDA & NWALL installation in G1								
absorbers								
Electronics – Hardware								
PMTs – CAT								
VDs	Ha	ave,	test	ed				
NUMEXO 2, FADC mezzanines	Ha	ave,	test	ed				
SEDIFF – checking the prototype								
SEDIFF – mass production								
Signal cables (x150 RG58-blue MM11/50, 15m)		ha	ve					
SHV cables (x150)		ha	ve					
HDMI cables		ha	ve					
NIM GTS carriers, GTS mezzanines, NIM crates		ha	ve					
HV cards – buying / repairing		tes	ted					
MPO fibres, MPO-LC adapters		ha	ve					
Electronics – Firmware								
FPGA – NGD – validation								
FPGA – TDC – validation								
FPGA – GTS – validation								
Firmware integration								
DAQ								
OS installation								
Samtec test								
<u>Narval</u> – producer								
<u>Narval</u> – watcher								
<u>Narval</u> – PSA filter								
<u>Narval</u> – assembler		ha	ve					
<u>Narval</u> – time sorting								
Narval – event builder								
Target Chamber				_	,			
Pieces arrive, testing in the lab,mounting in GANIL								
Plunger								
Cabling, source test, debugging								
In beam tests (x3)								

Septemer 14th, 2017

Status of DIAMANT

Istvan Kuti

Configuration for the 2018 campaign FW config (plunger)

Cabling schematics for the 2018 campaign

Configuration for the autumn tests

FW config (plunger), reduced channel number

Cabling schematics for the atumn tests

Timeline

available / ready not ready yet, progressing as planned missing, but resolvable / no problem might be a problem

	July	Aout	Sep t	Oct	Nov	Dec	Jan	Feb	Mar
Hardware									
Detectors									
NUMEXO2 modules									
FADC mezzanines									
GTS carrier									
GTS mezzanines									
NIM crate									
Cooling rack									
Reaction chamber									
Flexiboard gen1 (repurposed)									
Flexiboard gen2									
SeDif units									
PSU gen1 (2nd stage)									
PSU gen2 (NIM)									
Network switch									
DAQ server, data storage									
Cables									
SCSI									
HDMI									
Optical									
Serial									
UTP									
Firmware and software			· · ·						
DIAMANT data frame integration									
Virtex 6 8ch									
Virtex 6 1/8/16ch (DSP48E1)									
Narval actor, software mods									
Testing		_							
Pulser tests with 1/8/16ch FW									
Comissioning									
Iransport to GANIL									
Mounting in G2					~				
Mounting in G1			1		run 3				Campaign _
Campaign									

Status

Firmware

- \rightarrow using DSP48E1 slices 16ch routed
- \rightarrow 31% occupied slices, using 57% of the DSP48E1's
- → pretrigger filter, dcfd, 2 trapeze... everything except pileup handling implemented
- \rightarrow testing method: 1ch -> quicker compiling

 \rightarrow delay due to issues with integration and testing (flashing, broken hw, trigger, late beamtime)

Software

- \rightarrow NARVAL actors (in-place division, producer) \rightarrow will get help from A.Goasduff
- \rightarrow got the modified GECO, V5, embedded sw and lots of help from GANIL GAP
- \rightarrow data frame similar to EXOGAM2
- \rightarrow DAQ will benefit of the NEDA developments

Tests

- \rightarrow pulser tests of firmware with DSP48E1 filters finished last week:
- signal passthrough, valid trigger & trapezes, some problems with data readout → testing new SeDif units and mezzanines (week 37 first half)
- \rightarrow in beam test ongoing right now \rightarrow beamtime: 13th-15th, but delay expected
- \rightarrow planning to record trace data for further tests

N = Z campaign – G. Jaworski – AW, Milano, Septemer 14^{th} , 2017
Status

Hardware:

56ch FlexiBoard + 8ch ForwardWall (24ch ChessBoard) - 64 (80) ch, 16ch/NUMEXO2

- \rightarrow all of the NUMEXO2s are ready
- \rightarrow all FADC mezzanines are ready
- \rightarrow GTS, crates, racks: help from EXOGAM2
- \rightarrow detectors ready (chessboard is not priority right now)
- \rightarrow FlexiBoard: the current FB will be cut & used
- → chamber: plans from Lyon are being finalized -> manufacturing funds are also allocated in ATOMKI for some parts (vc. feedthrough, inner mount), final design & manufacturing in progress
- → power supply: for run3, the gen1 2^{nd} stage will be used, NIM PSU funded, will be ready Q4 2017

SeDif: 4 redesigned carrier board manufactured (4) 20 new mezzanines manufactured (30) \rightarrow enough for 96ch (w/ spares)

N = Z campaign – G. Jaworski – AW, Milano, Septemer 14th, 2017

N=Z campaign preparation calendar

Instalation and debugging:

- \rightarrow structure and 17 detectors mounting mid. Sept.
- \rightarrow cabling, mounting infrastructure items 1st week of Oct.
- \rightarrow basic DAQ, configuration of NUMEXOs, absorbers 2nd week of Oct.
- \rightarrow trigger processor, source tests 3rd week of Oct.
- → debugging fun continues until:

In-beam tests:

- \rightarrow 5th Nov 2UTs, pilot, CIME, ³⁶Ar+⁵⁸Ni (?) trigger processor, NGD, ϵ_{1n}
- \rightarrow 11th Nov 3UTs, pilot, CSS, ⁷⁸Kr+⁵⁸Ni (?) trigger processor, ε_{1n} , $p_{\gamma \rightarrow n}$
- \rightarrow 24th Nov 4th Dec 2UTs, parasitic, CSS, ¹²⁴Xe+¹²C neutron fold

Installing in G1 and commissioning? - Jan-Feb 2018

Campaign – Feb-Mar 2018

Summary and outlook

- NEDA:
 - 17 detectors and mechanics ready in GANIL will be tested in October
 - Production, repair and characterisation ongoing manpower available?
 - Hardware: all ready (except sediff Sept/Oct)
 - Firmware: ²⁵²Cf & gamma sources tests @ LNL ongoing
 - Software: getting ready for November
- DIAMANT:
 - Detectors existing.
 - Hardware: all ready (including sediff which was the last issue)
 - Firmware: 8ch and 13ch versions running. Add filter for trigger request. 16ch version compiling. Pulser tests in August. In-beam tests in ATOMKI ongoing now.
 - Software: will benefit from NEDA development
- Target chamber with many constraints (DIAMANT, plunger, target loader, thickness,...) - pieces being machined now – mounted in G2 in October.
- EXOGAM2 TP_V1 running. Requires extensive tests. Connection to EXOGAM2 and AGATA. Collaboration with IPHC
- Plunger will be ready latest in January 2018.
- In-beam test of NEDA+DIAMANT+EXOGAM2+target chamber in November, x3
- AGATA+NEDA+DIAMANT will be taking data in 2018 \rightarrow 8 experiments approved
- Necessity of a beam comissioning in G1 with AGATA → beginning of 2018. Have to
 prove that it works in G2 first. Each exp should send sb.

Backup slides follow

Collaboration

G. de Angelis, S. Carturan, E. Clement, X. Egea, N. Erduran, S. Ertürk, G. de France,
A. Gadea, A. Goasduff, V. Gonzalez, K. Hadyńska-Klęk, T. Hüyük, M. Jastrząb,
V. Modamio, M. Moszyński, A. Di Nitto, J. Nyberg, M. Palacz, E. Sanchis, B. Saygi,
P.-A. Söderström, D. Testov, A. Triossi, J.J. Valiente Dobon, R. Wadsworth and G. J.

Notes to the NEDA FEE A. Gadea (IFIC, CSIC-Univ. Valencia) for the NEDA FEE collaboration

NEDA Front-end Electronics Design.

NEDA Front-end Electronics

Cabling and Fibres Signal:

- •BNC-LEMO cables to electronics rack \rightarrow 100's produced
- HDMI short cable 4-to-1 → crosstalk checking completed at Cracow, cables purchased
- LEMO RF- 7 cables needed

Note: we are using RF and not gamma Tref Readout

- SAMTEC NUMEXO fibers PCI interface
- Extensions MPO-MPO for SAMTEC fibers

GTS

• LC/LC fibers to build the GTS tree and to connect to the NUMEXO2 boards: 1 LC/LC fiber to connect to the AGAVA fiber + 4 LC/LC fibers for the GTS tree + 7 LC/LC fibers for the connection GTS – NUMEXO2

NEDA FEE Hardware available.

- Single-Ended to differential adapter: pre-production ongoing production in
- NOMERO2 motherboards: 6 production (Uni. York) + 1 pre-production (UVEG-

- FADC Mezzanines 4 channels: 45 production + 5 pre-production (UVEG-IFIC)
- SAMTEC PCI Interfaces: 7 procured (IFIC-UVEG)

- GTS Mezzanines: 9 available (GAN
- NIM GTS-Carrier: 3 available (GANIL)
- NIM Crates available (IFIC, LNL)

NEDA FEE summary of hardware missing

- Single Ended-Differential adapter: Fist prototyping failed. Now pre-production on-going. 1 pre-production ready in September. Production before end of October
- DAQ hardware (Servers procurement by INFN-LNL ongoing)

NEDA FEE Firmware Status: Virtex 5

The firmware of NEDA is a version of the NUMEXO2 Firmware with additions and changes in the Virtex5 and Virtex6 firmwares for the PCIe readout without the ADONIS mode.

Virtex5:

- GTS multiple trigger request firmware (A.Triossi) Ready
- PCI buffering and validated data timestamp: ADC_Interface (A.Triossi) debuging ongoing
- New PCIe with FIFO exclusion (A. Boujrad, L. Legeard)
- Issues with FIFO management (May-June 2017)
- Issues with Linux booting (June-July 2017) Other cards?
- Recent Issues:
 - Numexo2_fifo_pcie and Andrea's IP main clock
 - Enabling and configuring the PCIe in NEDA case
 - Synchronization of the reset sequence
 - Use of PCIe Clock in the project

NEDA FEE Firmware Status: Virtex 6

Virtex6:

- FADC data processing, PSA, Trigger request, data formatting (X.Egea) Ready
- ToF TDC (M. Kogimtzis) Ready
- Register Server (F.Saillant team) Ready
- Extended testing missing

Note: re-done the structure of the Virtex6 firmware and extended the frame. Integration now completed and working on the testing. Now working on the data transfer Virtex6-Virtex5-PCIe with Validation/Rejection. Trailer on Data frame added. To add counters to evaluate data misalignment been

evaluated.

NEDA FEE Software Status

Control Software:

- NEDA version of the GECO control/GUI completed (F.Saillant team)
- GTS EPICS software for NUMEXO2 being done (F.Saillant)
- EGC/RunControl integration to be done/discussed
 → Action (Integrated as EXOGAM2)
- DAQ Software (see Alain Goasduff discussion) :
 - NEDA Narval actor will be done (L. Legeard and C. Maugeais, F.Saillant team)

AGATA Trigger not compliant with AGATA+NEDA+DIAMANT needs (limited to max 40 TRs)

- Development of the EXOGAM2 Trigger Processor. Specs:
 - Full compatibility with GTS
 - Extension to 256 TRs (max possible for GTS)
 - Multiple simultaneous trigger capabilities
 - \circ Define precise trigger timing
 - \circ No dead time; continuous coincidence analysis
 - Validate data not participating to trigger decision
 - Flexibility (easy to change trigger conditions)
 - Generate an event pattern

Main steps of the trigger processing cycle:

1)SORTING: To sort the TR labels issued from the GTS leaves messages and to dispatch them into partitions

2)MULTIPLICITY: To perform the multiplicity of each partition and to issue the multiplicity result 3)COINCIDENCE: To combine the multiplicity results of partitions in time coincidence windows 4)DECISION: To source the event validation or reject result

5)EVENT PARAMETERS: To register the event TR pattern, the event number and the event time stamp.

6)REPLY MESSAGE: To send back to each GTS leaves the validation or reject messages

Partitionning:

- TR labels (up to 256) are assigned to partitions
- Up to 32 partitions can be built Multiplicity:
- Partition Multiplicity Window: Width
- Threshold
- Acceptance window: Width

Coincidence:

- Partition Coincidence Window: Delay and Width

Logical Equation:

- Coincidence Windows are OR/AND combined in the Logical Equation

$$LE = \prod_{n=0}^{n=31} R \prod_{p=0}^{p=31} AND (ENp AND CWp)$$

$$(LE = 1 = > event validation is sourced)$$

EXOGAM2 TP_V1

Completed end of

TCP/IP protocol

- Linux OS in RASPBERRY PI
- SPI link to/from VC707
- => It is a temporary solution because of its very low bandwidth

EXOGAM2 TP_V1

VHDL implementation of 2 partitions in the Virtex 7 success

- Partition 1 : 8 TR; MW width = 4T; AW witdh = 10T; CW witdh 10T, CW delay = 101T; Multiplicit
- Partition 2: 1 TR; MW width = 2T; AW witdh = 2T; CW witdh 10T, CW delay = 6T; Multiplicit
- Validation: LE = CW1 AND CW2

- VC707, connected to the GTS tree, has been successfully tested
- Connected to AGATA with 32 leaves through GTS NIM carrier
- Nex Signilar performance as AGATA TP (rejection rate ~1%)
 - \Rightarrow Connect to EXOGAM2 for long term tests (rejection =f(rate); multipartition; reliability;...)
 - \Rightarrow Connect to AGATA (check 10 µs latency vs idle cycle)
 - \Rightarrow Replace Raspberry PI by IP BUS protocol

Workflow

	07/1 7	09/1 7	11/1 7	03/1 8
Connection to AGATA				
Use in-beam run3				
Rerouting SPI connection (V2)				
IP BUS (V2) IPHC				
2018 Campaign				

- 2 EXOGAM2 TP_V1 exist
 - •1 permanently online for tests
 - •1 for rerouting SPI
- 1 Being built at IPHC for IP BUS protocol implementation

Physics with NEDA

NEDA talk @ NUSPIN, GSI, June 28th, 2017

FADC Mezzanine

X. Egea and A. Gadea (IFIC,CSIC, Valencia)

- 4-channel acquisition with a sampling rate of 250 Msps and 14bit resolution.
- Use of a PLL for jitter cleaning and clock synchronization
- 6 W power consumption at 250 MHz.
- Possibility to use a variable offset by using a 16-bit digital-to-analog converter.
- Includes 2 QFS-026-04,75-LD-PC4 connectors, and thorugh them, differential signals, control lines and power lines are transmitted by using the same connector.
- Includes an HDMI PCB receptacle, which will link the front-end electronics with the FADC mezzanine.

- 10 layers have been used in order to make possible this design by using high-speed layout techniques.
- The FADC follows an easy and straigthforward placement and routing. Besides, symmetry has been provided in order to make an easier design.
- The board dimensions fit on the NIM standard, where 4 of these will be inserted into the crate. (42mm wide + 98.5 mm long)
- Most of the QFS lines are linked to the

HDMI NEDA cables

X. Egea (LNL), M. Tripon (GANIL), M. Jastrząb (Kraków)

- Several tests have been applied to different cables in order to test their performance.
- Among them we may mention the bandwidth, crosstalk, impednace and reflections, and EMC (electromagnetic compatibility).
- On the picture on the left it is shown the **HDMI cable.**
- The HDMI 1.4 version, including a double shield, makes an important improvement against high-voltage peaks.

- Top → (From left to right): Crosstalk, reflections and EMC measurements. Bottom → Bandwidth
- The HDMI 1.4 has a big stiffness and it might be a little bit problematic mechanically.

Single ended to differential NE DA converter

Courtesy of Alan Grant, Ian Burrows & Mike Cordwell

n selection

EXOGAM experiment: ⁵⁸Ni (240 MeV) + ⁵⁴Fe

Why not NW?

An example:

Attempt to study ¹⁰⁰In – $1v \ 1\pi^{-1}$ outside ¹⁰⁰Sn 3n evaporation channel – the only 3n case with NWall (+ EUROBALL)

¹⁰⁰In not observed, but observation only a matter of statistics. 10x statistics: $\rightarrow \frac{1}{2}$ a a year with EXOGAM + NWall, $\rightarrow 2-3$ weeks with EXOGAM + NEDA.

Other crucial nuclei accessible in 3n evap. channels, including ¹⁰¹Sn.

Single cell

Nuclear Instruments and Methods in Physics Research A 673 (2012) 64-72

Contents lists available at SciVerse ScienceDirect Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Monte Carlo simulation of a single detector unit for the neutron detector array NEDA

G. Jaworski ^{a,b}, M. Palacz^{b,*}, J. Nyberg^c, G. de Angelis^d, G. de France^e, A. Di Nitto^f, J. Egea^{g,h}, M.N. Erduranⁱ, S. Ertürk^j, E. Farnea^k, A. Gadea^h, V. González^g, A. Gottardo¹, T. Hüyük^h, J. Kownacki^b, A. Pipidis^d, B. Roeder^m, P.-A. Söderström^c, E. Sanchis^g, R. Tarnowski^b, A. Triossi^d, R. Wadsworthⁿ, J.J. Valiente Dobon^d

NUCLEAR

Scintillator

Full geometry

Timing

Digital timing algorithm for various 5" PMTs

NGD

Digital PSA algorithm for various 5" PMTs

Nuclear Instruments and Methods in Physics Research A 767 (2014) 83-9

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Test of digital neutron–gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA)

X.L. Luo^{a,b,*}, V. Modamio^c, J. Nyberg^b, J.J. Valiente-Dobón^c, Q. Nishada^b, G. de Angelis^c, J. Agramunt^d, F.J. Egea^{d,e}, M.N. Erduran^T, S. Ertürk^g, G. de France^h, A. Gadea^d, V. González^e, T. Hüyük^d, G. Jaworski^{1,j}, M. Moszyński^{1,k}, A. Di Nitto¹, M. Palacz¹, P.-A. Söderström^m, E. Sanchis^e, A. Triossi^c, R. Wadsworthⁿ

^a Department of Instrument Science and Technology, College of Mechatronics and Automation, National University of Defense Technology, Changsha, China ^b Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden

^c Department of Physics and Astronomy, Oppsala University, SE-75120 Oppsala, ^c INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova, Italy

^d IFIC-CSIC, University of Valencia, Valencia, Spain

^e Department of Electronic Engineering, University of Valencia, E-46071 Valencia, Spain

¹ Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey

⁸ Nigde Universitesi, Fen-Edebiyat Falkültesi, Fizik Bölümü, Nigde, Turkey

^h GANIL, CEA/DSAM and CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 05, France

Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland

^j Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warszawa, Poland

^k National Centre for Nuclear Research, A. Soltana 7, PL 05-400 Otwock-Swierk, Poland

¹ Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

^m RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

ⁿ Department of Physics, University of York, Heslington, York YO10 5DD, UK

Fig. 10. FOM values of the IRT method for PMT ET9390kb, R11833-100, XP4512, and R4144 as a function of energy window (the widths of the windows are 10, 40, and 100 keVee in energy regions of 50–100, 100–500, and 500–1000 keVee, respectively).

PMT tests for best NGD for NEDA

Light yield NEDA

Quality starts from the initial signal.

Prototype

GANIL 2018: AGATA +

NEDA - G. Jaworski - Orsay, October 6th, 2016

RIB: n tagging in transfer reactions

Lifetime measurements

E.Clement et al. Int.J.Mod.Phys. E20, 415 (2011) T.R. Rodríguez Phys.Rev. C 90, 034306 (2014)

NEDA - G. Jaworski - Orsay, October 6th, 2016

Fig. 2. Digitized waveforms averaged over 10⁵ events for the four 5 in. PMTs coupled to a cylindrical 5 in. by 5 in. BC501A. The sampling frequency of the digitizer was 500 MS/s. The waveforms were normalized to a pulse height of 1000 and time aligned at the maximum of the signal. Dashed lines are drawn at 10%, 90%, at the maximum and at the baseline of the waveform to guide the eye.

Conclusions on deuterated vs proton-based scintillator

- → better light to energy correlation for deuterated scintillator only for small detectors – not NEDA case.
- Proton-based BC501A:
- \rightarrow gives more light;
- → has higher efficiency;
- → has better time resolution;
- \rightarrow has better n/ γ discrimination;
- \rightarrow has smaller scattering probability (p_{1n->2n});
- \rightarrow is much less expensive.

NEDA decided to use standard proton based scintillator

Physics with NEDA

NEDA will address the physics of neutron-rich as well as neutron-deficient nuclei, mainly in conjunction with gamma-ray detector arrays like AGATA, GALILEO, EXOGAM2 and PARIS.

Nuclear Structure

- Probe of the T=0 correlations in N=Z nuclei: the structure beyond ⁹²Pd (Uppsala, LNL, Padova, GANIL, Stockholm, York)
- Coulomb Energy Differences in isobaric multiplets: T=0 versus T=1 states (Warsaw, LNL, Padova, GANIL, York)
- Coulomb Energy Differences and Nuclear Shapes (York, Padova, GANIL)
- Low-lying collective modes in proton rich nuclei (Valencia, Krakow, Istanbul, Milano, LNL, Padova)

Nuclear Astrophysics

- Element abundances in the Inhomogeneous Big Bang Model (Weizmann, Soreq, GANIL)
- Isospin effects on the symmetry energy and stellar collapse (Naples, Debrecen, LNL, Florence)
- Nuclear Reactions
 - Level densities of neutron-rich nuclei (Naples, LNL, Florence)
 - Fission dynamics of neutron-rich intermediate fissility systems (Naples, Debrecen, LNL, GANIL)

Digital electronics: EXOGAM2-NEDA-PARIS

NUMEXO2

NEDA test: PSA Neural Network

P.-A. Söderström(Uppsala University, Uppsala, Sweden)

Full advantage of digital electronics can be obtained using artificial neural networks to perform pulse-shape discrimination. This method is currently being investigated both for BC537 and BC501A.

+ Optimal discrimination over a large ene - Slower implementation limits counting ra by G. Jaworski

NEDA test: PSA Charge Comparison

Interactions of neutrons in the scintillator

Neutron - gamma discrimination

Liquid scintillators give a difference in signal pulse shapes for neutrons and gamma rays:

- neutrons (recoiling protons) slow light component (τ~300 ns)
- γ rays (electrons) fast light component ($\tau \sim 3$ ns)

Pulse shape combined with TOF gives w γ -ray as neutron interpretation probability ~ 0.1 %.

Present NWall: pulse shape discrimination analog. NEDA will use digital techniques.

J. Ljungvall et al. NIM A528 (2004) 741

Distance between detectors

Validation of the simulations

Geant 4 simulations

G.Jaworski et al. NIM A673 (2012) 64

Geant 4 simulations

Neutron detection efficiency

G.Jaworski et al. NIM A673 (2012) 64

Transverse position of the sig. interaction

