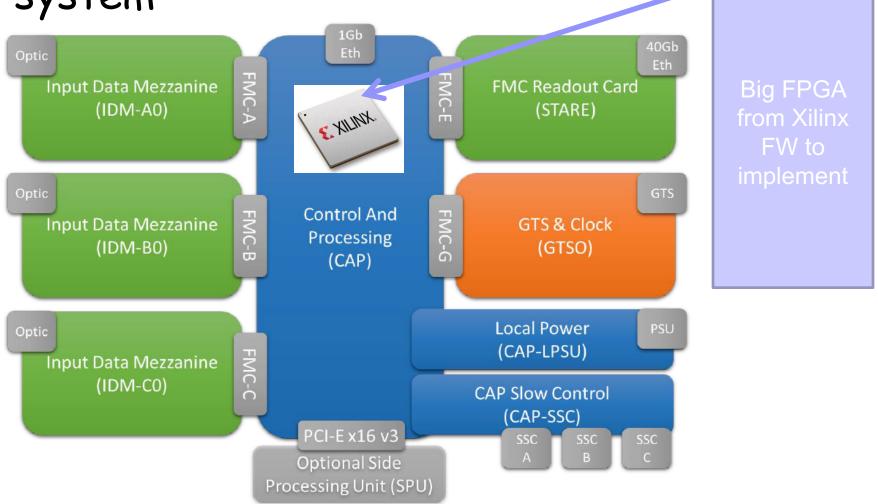


Agata Week 2017 Electronics phase 2 Ctrl & Processing f/w

Laurent CHARLES
Christian BONNIN
IPHC/CNRS Strasbourg

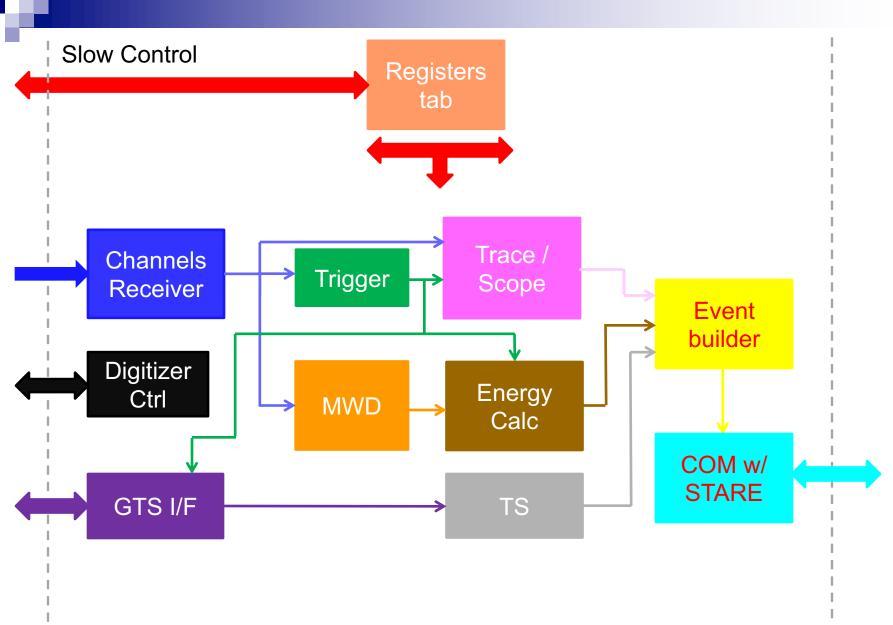

Laurent Charles 2017/09/15

Outline

- Introduction
- Contributions from IPHC
- Todo list (at short & middle term)

Remind of the schematic of the PACE

system


- Functionalities to be implemented into the FPGA from the CAP board
- The FPGA should be well sized
 - □ The FGPA should be quite large to fit the whole logic
 - Checking & choice of the component done by Valencia
- The current GPP f/w could not be re-used
 - We have to perform the f/w design from scratch

- 5 main interfaces
 - □ Channels Receiver
 - Reception of the digitized channels coming optically from 3 IDM mezzanines designed by Valencia
 - 3 IDM \Leftrightarrow 3 crystals \Leftrightarrow 3 x 36 channels in all
 - Interface done by Valencia and include
 - □ Deserialization
 - □ Alignment
 - □ Buffering
 - □ Control signals
 - To indicate that the channels data are ready for the next block
 - From the slow control for initialization stage

- □ Interface with the FMC readout board (STARE) designed by CSNSM
 - Communication path should be defined
 - Buffering via an external memory seems necessary before transferring data packets to the STARE board
- □GTS interface
 - Available from NEDA project
 - Need to identify which person to contact
 - To be re-used and integrated in the global f/w
- □ Digitizer Controller
 - Which link?
 - Which config? offset, gain, internal settings ADC...
 - Depends on the choice of the component

- □ General Slow control
 - Useful to configure
 - □ All internal registers
 - □ IDM board (Digitizer) via the Digitizer Controller block
 - Registers tab should be well defined with an address range per functionality
 - Best option
 - □ 1 Gb-Eth / Ipbus interface
 - Link & protocol used for configuring and monitoring in the DAQ systems from CMS Upgrades phase 1 & 2
 - If BW should be saved on STARE board, the Ipbus interface could be extended to transfer channel data in scope mode
 - To do long trace analysis
 - To configure properly the channel settings (trigger, MWD) before an acquisition run

Intro - Simplified block diagram

Contributions from IPHC

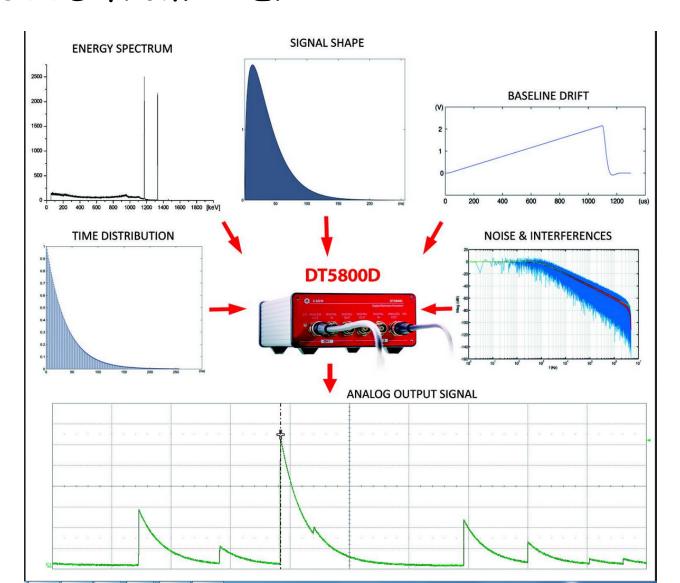
- Dev of the f/w and a part of the s/w
 - □ Based on our experience in nuclear physics from
 - Past
 - □ TNT2 card still used
 - Digitizer from Agata Phase 0 in Stand Alone Mode => re-use of the algos from TNT2
 - Present: Stella project for nuclear astrophysics
 - □ DSSD acquisition from 96 channels split on 4 AMC boards plugged in one microTCA crate
 - □ Ipbus readout
 - □ Migration of the algos from TNT2 to Kintex-7 FPGA
 - □ In operation at Orsay
 - Based on our CERN activities
 - Notably Ipbus used in CMS Tracker Upgr. Ph. 1 & 2

Contributions from IPHC

- Dev in interaction with the contributors
 - □ CSNSM concerning the readout part
 - COM FPGA(CAP) ⇔ FPGA(STARE)
 - □ External memory for buffering
 - Def of the data format
 - Def of the acquisition modes
 - □ Energy mode
 - □ Scope mode
 - Mix-mode?
 - Scope mode seems important for diagnostic purposes
 - Dev of a versatile & flexible s/w plug-in for displaying sampled data or processed data
 - Need requests from the users to define the features and limitations of the tool to dev
 - A doodle will be early proposed by E. Legay

Contributions from IPHC

- □ Valencia for the Channels Receiver
 - Deserializing, alignment of the channel data
 - □ Test bench with an eval kit from Xilinx
 - Integration of this block in the global f/w
- □ People from NEDA project for the GTS I/F
 - Need to identify the person(s)


Todo list (at middle term)

- Task1: writing of a working document
 - Which will be iterated

- Task2: migration of the algos
 - □ Towards the evaluation kit chosen by Valencia
 - Dev of scalable code to generate n instances of algos derived from TNT2 (MWD & Trigger) via generic parameters
 - Utilization reports from Vivado Tool from Xilinx
 - Check if the stats match the stats from Valencia
 - □ Performance measurements of the digitizer
 - Add Gb-Eth/Ipbus interface to acquire data?
 - □ Need a data format for the test bench
 - Comparison of the performances against
 - ☐ The current electronics
 - □ Others boards (TNT2, etc.)

- Task2: MWD improvements
 - Other implementations are possible but need to be tested and compared
 - Eg. Bipolar mode avoiding the BLR (baseline restorer)
 - Christian could test it in s/w
 - □ Need same data set from Agata experiments for cross verification
 - FW coding and checking on board
 - □ Note: our team has the Desktop Digital Detector Emulator DT5800 from CAEN

DT5800D from CAEN

- Task3: Trigger improvements
 - □ Pulse discrimination of individual channel
 - At the beginning of dev => Re-use of this one from TNT2
 - □ Do some s/w models exist?
 - Which could be tested by Christian before beginning a FW migration

- Task4: Compression algo
 - Should be done on the f/w before transferring data packets to STARE
 - □Zero suppress
 - Were some models already studied?