Recent developments of the AGATA Simulation Code

On behalf of the

Simulation Working Group

Marc Labiche (marc.labiche@stfc.ac.uk)

18t^h AGATA week, Milano - 11th Oct 2017

Outline

Generalities regarding the AGATA code

Recent additions/corrections:

> Minor debugging

> New ancillary detector

New analysis tools for simulated data (before tracking)

> Update on simulated efficiencies and validation with source at rest

Generalities

• AGATA Code (AC) still maintained and available here:

- http://npg.dl.ac.uk/svn/agata
- Check it out with command: svn co http://npg.dl.ac.uk/svn/agata

AC is compatible with Geant4.10.3 and prior versions.

 To use GDML geometry files, Geant4 must be installed with the GDML option.

(Please, see the INSTALL file in the Agata code svn repository)

• GDML files available here:

- https://github.com/malabi/gdml-files
- Get it with command: git clone https://github.com/malabi/gdml-files/AGATA

Generalities

• GDML files available:

gdml files for GEANT4 simulations of NP detection suystems

⑦ 17 commits	₽ 2 branches	♥ 0 releases	2 contributors
Branch: master New pull red	quest		Find file Clone or download -
Alain Goasduff Added NEDA	A gdml files		Latest commit 7fadce8 12 days ago
AGATA	Added NEDA gdml files		12 days ago
GALILEO	Add gdml files for GALILEO TC / GALILEO PI	lunger device / GALILEO SPIDER	9 months ago
MARA	Adding MARA folder		9 months ago
MuGasT	adding MuGasT chamber		4 months ago
SToGS/ATC-Demo	Adding SToGs ATC demo		8 months ago
README.md	Update README.md		10 months ago

Generalities

GDML files available for AGATA:

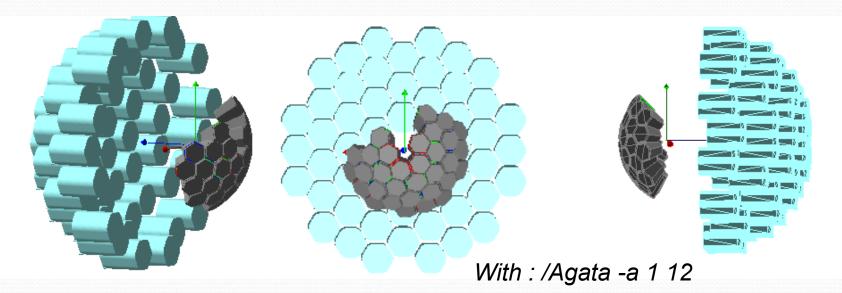
📮 malabi / gdml-files		• Watch	3	★ Star	0	¥ Fork	2
↔ Code ① Issues 0 11 Pull request	s 0 III Projects 0 Insights 🗸						
Branch: master - gdml-files / AGATA /			Creat	e new file	Find	file History	y
Alain Goasduff Added NEDA gdml files			Late	st commit 7	7fadce	8 12 days ago	þ
GDMLSchema	add AGATA					2 years ago	С
🖿 GanilChamb	adding GanilVamosChamb2b					2 years ago	С
HoneyComb	rm 1 file					2 years ago	С
NEDA	Added NEDA gdml files					12 days ago	С

Users need to edit the trunk/CMakeLists.txt file and set the variable gdmIPATH correct path to the downloaded gdmI-files/AGATA/ directory:

set(gdmlPATH "/mnt/hgfs/Echanges/MyGitHubRep/gdml-files/AGATA/")

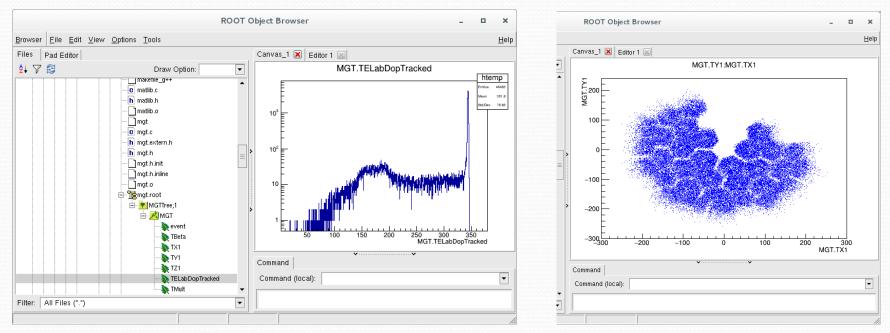
• Minor bug:

- Issue with command /Agata/tracking/verbose x (for x >1):
 - Positions of the Segments were not written in the output file header.


• Cause:

Variable named "ns" & "ps" in src/AgataDetectorArray.cc and src/AgataAncillaryADCA.cc were over shadowed by units variables "ns" and "ps" of CLHEP.

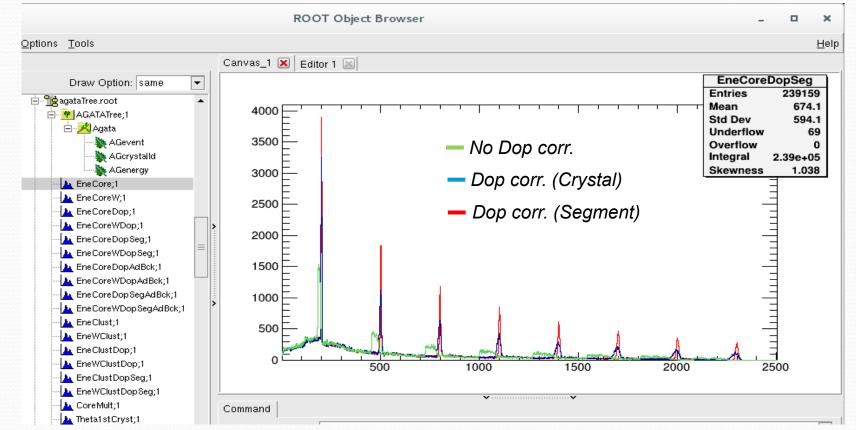
So Agata variables have been renamed "Ns" and "Ps" instead.


New Ancillarys:

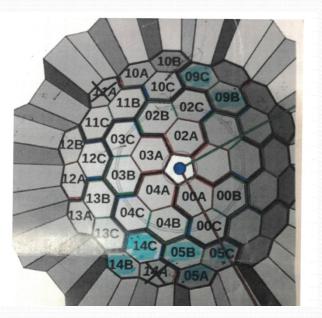
- NEDA added to the AC package (courtesy of A. Goasduff)
- NEDA geometry defined with GDML
 - Some issues observed when comparing results with G4.9 & G4.10
 under investigations

• <u>New analysis tools:</u>

- trunk/analysis/mgt++
 - Same as mgt/ but producing a root output file " mgt.root" with a root tree called MGTTree
 - Still need to add all the other histograms mgt can provide.



• <u>New analysis tools:</u>

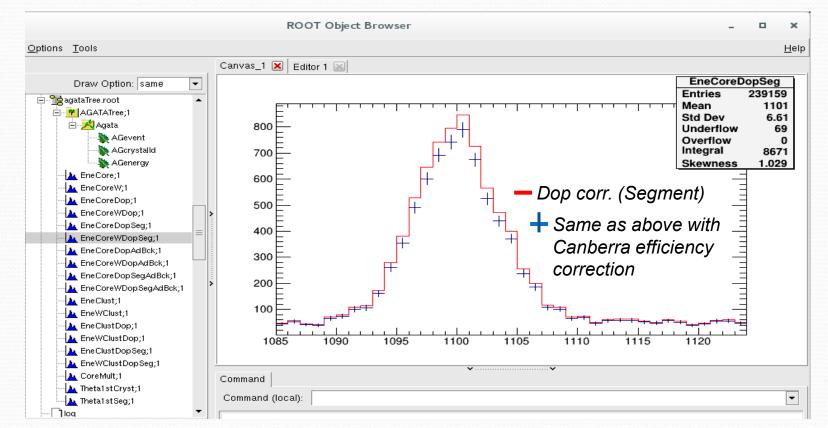

- trunk/analysis/AgataSort/AgataRead.cpp
 - No tracking
 - Just Core Common and Calorimeter analysis
 - includes Doppler correction from both Crystal positions and Segment positions.
 - reads position information in header of simulation output file GammaEvents.xxxx
 - command /Agata/file/verbose 2 (or 3) must be used for that.
 - includes Canberra/Geant4 relative efficiency ratio
- Simple command: ./AgataRead beta (in %)
- Produce the root file "agataTree.root" with root tree "AGATATree"
- + histograms

• <u>New analysis tools:</u>

Simulation with: /Agata/generator/recoil/beta 10.0 /Agata/generator/gamma/band 200 300 8

New analysis tools:

Crystal	Crystal	Measured Relative	Geant4 Relative	Ratio
Location	Name	Efficiency (Canberra)	Efficiency (E. Clement)	
00A	a001	0.84	0.86	0.98
00B	b004	0.782	0.87	0.90
00C	c010	0.78	0.858	0.91
01A	a010	0.76	0.86	0.88
01B	b012	0.816	0.87	0.94
01C	c014	0.78	0.858	0.91
02A	a009	0.821	0.86	0.95
02B	b005	0.8	0.87	0.92
02C	c008	0.778	0.858	0.91
03A	a005	0.79	0.86	0.92
03B	b002	0.872	0.87	1.00
03C	c009	0.811	0.858	0.95
04A	a004	0.78	0.86	0.91


Ratio values are used as input in the AgataRead file and applied when filling histograms as follow:

For singles mode : $histo \rightarrow fill(Energy[cryst], Ratio[cryst])$ For calorimeter mode: $histo \rightarrow fill(\Sigma Energy[cryst], \Box Ratio[cryst])$

Note: Table re-ordered in the AgataRead input file so that the first crystal in the table correspond to the first crystal positioned in the simulation.

New analysis tools:

Simulation with: /Agata/generator/recoil/beta 10.0 /Agata/generator/gamma/band 200 300 8

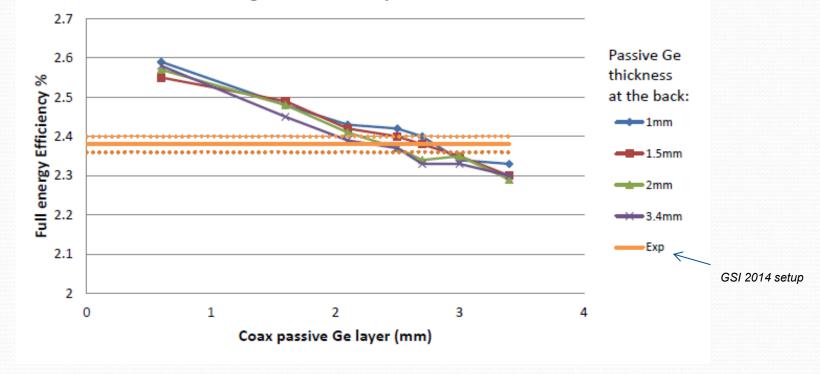
New analysis tools:

• Next step is to produce the event file after this ratio correction for the tracking algorithms.

 Alternatively, one can increase coaxial and back passive areas in Ge crystals.

- Pros:
 - Effect propagated all the way through tracking algorithm
 - Same for any incoming energy.
- Increasing the Ge passive area is done in A180Solid.list

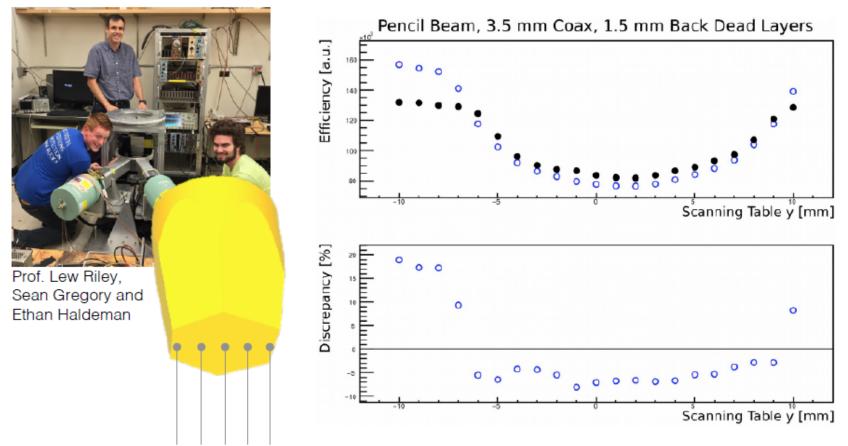
	# The 3 independent crystals of the clusters *** for AGATA-MC ***								
#	Cylinder centered on z-axis and front face on z=0								
#	cr	#s	p	# xyzo	f the Inner fac	e	x y z of the O	uter face	
#									
	0	6	0	33.906177	-0.000000	0.000000	48.844467	-0.070710 90.000000	
	0	6	1	15.358631	30.461479	0.000000	22.153453	43.765160 90.000000	
	0	6	2	-20.780862	27.320467	-0.000000	-28.562085	39.357292 90.000000	
	0	6	3	-33.865099	-3.186191	-0.000000	-47.398084	-4.559934 90.000000	
	0	6	4	-20.861304	-27.597830	-0.000000	-28.566730	-39.911479 90.000000	
	0	6	5	15.586726	-29.970097	-0.000000	22.461366	-43.232708 90.000000	
	0	0	0	5.000000	40.000000	90.000000	0.000000	0.000000 0.000000	
	0	0	1	13.000000	3.000000	2.500000	0.400000	0.800000 1.300000	
	0	0	2	1.000000	0.000000	0.000000	0.000000	0.000000 0.000000	
#									
	1	6	0	34.768773	0.000000	-0.000000	49.689796	0.721528 90.000000	
	1	6	1	15.189995	29.100143	-0.000000	21.480233	42.649698 90.000000	
	1	6	2	-21.610036	27.946520	0.000000	-29.959278	41.037150 90.000000	
	1	6	3	-34.515980	1.715443	0.000000	-48.660064	3.028171 90.000000	
	1	6	4	-17.845056	-29.899266	0.000000	-24.681675	-42.44404 90.000000	
	1	6	5	21.121422	-28.647387	-0.000000	29.962271	-40.688852 90.000000	
	1	0	0	5.000000	40.000000	90.000000	0.000000	0.000000 0.000000	
	1	0	1	13.000000	3.000000	2.500000	0.400000	0.800000 1.300000	
	1	0	2	0.000000	1.000000	0.000000	0.000000	0.000000 0.000000	
#									
	2	6	0	34.368758	0.000000	-0.000000	49.303402	-0.337546 90.000000	
	2	6	1	20.008679	28.248525	0.000000	28.536919	40.513380 90.000000	
	2	6	2	-16.582470	29.653241	-0.000000	-22.688267	42.479888 90.000000	
	2	6	3	-33.870627	1.539298	0.000000	-47.639755	1.903863 90.000000	
	2	6	4	-17.834223	-30.216677	0.000000	-24.533605	-43.851923 90.000000	
	2	6	5	15.063353	-29.838670	0.000000	21.492077	-43.323070 90.000000	
	2	0	0	5.000000	40.000000	90.000000	0.000000	0.000000 0.000000	
	2	0	1	13.000000	3.000000	2.500000	0.400000	0.800000 1.300000	
	2	0	2	0.000000	0.000000	1.000000	0.000000	0.000000 0.000000	


Ex: A180/A180SolidExp.list

Passivated Ge areas are:

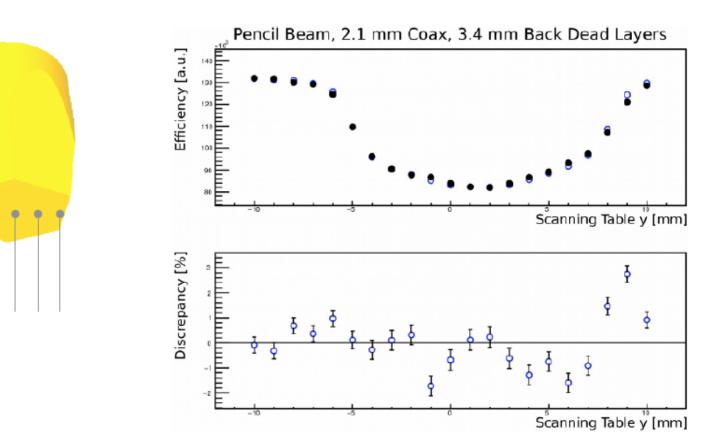
2.5mm thick at central contact (0.6mm in A180Solid.list)

3.mm thick at the back (1mm in A180Solid.list)

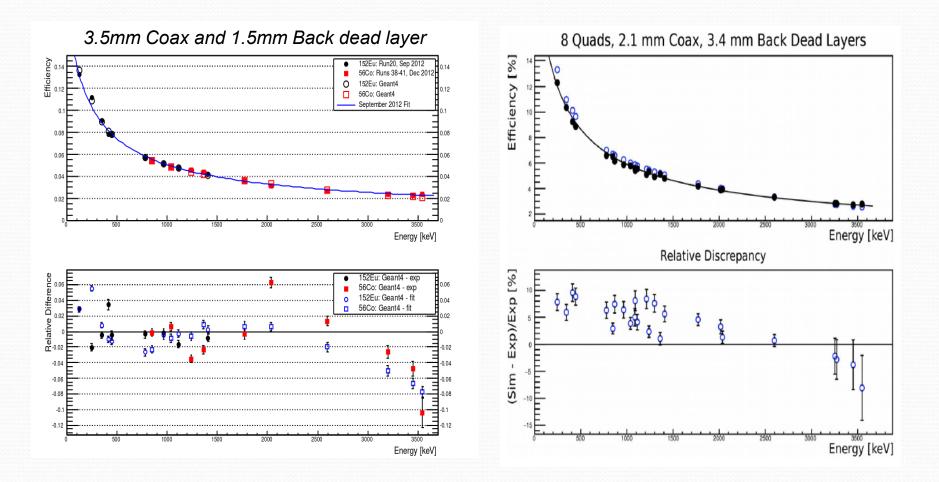

Single core efficiency at 1172 keV

Several set of thicknesses can provide a simulated efficiency that agrees with the measured one. So, which one ?

GRETINA case


Pencil Beams and Coaxial Dead Layers

Courtesy of Heather Crawford, Lew Riley et al.


GRETINA case

Pencil Beams and Coaxial Dead Layers

Courtesy of Heather Crawford, Lew Riley et al.

GRETINA case

Courtesy of Heather Crawford, Lew Riley et al.

<u>Enhanced Ge passive area Vs "Canberra" normalised</u> <u>efficiencies</u> :

Core Efficiency for 32 crystals in Compact configuration, $M\gamma$ =1

Energy:	1112 keV	
Original passive areas:	8.1*	* Courtesy of E. Clement
Enhanced Passive areas:	7.3	
Applying Canberra efficiency factor :	7.6*	
Measured (E661):	7.3*	

Simulated Core efficiency and Validation

Table 5: Measured AGATA efficiencies							
Energy	Ref	Measured	GEANT4 Single	GEANT4 $Single_{scaled}$			
(keV)		in single/core	efficiency / core	efficiency /core			
1.1 MeV	N. Lalovíc, NIMA 806 (2016)	0.113% in nominal	0.13%	0.12%			
$1.4 \mathrm{MeV}$	E. Clément, NIMA 855 (2017)	0.097% in nominal	0.11%	0.10%			
$1.3 \mathrm{MeV}$	R. Perez, AGATA Week 2016	0.095% in nominal	0.12%	0.11%			
$1.3 \mathrm{MeV}$	R. Perez, AGATA Week 2016	0.173% in compact	0.22%	0.21%			
$1.1 \ {\rm MeV}$	E661	0.228% in compact	0.253%	0.234%			

Courtesy of E. Clement

Still room for improvements:

- check simulations with a realistic chamber geometry
- add angular correlation effects

- check with an optimised/measured set of thickness parameters for the Ge passive areas

Summary

- Ancillary detector NEDA added to the Agata code package
- An analysis code of ASC output file for Core common and calorimeter analysis mode () is now provided
 - analysis/AgataSort
- An new version of mgt+ROOT (mgt++) in preparation
 - Analysis/mgt++
- Simulated efficiency improved by either scaling with ratio canberra/Geant4 relative efficiency factor, or by the increase of the passive areas in the Ge crystals.

