

Laboratori Nazionali di Legnaro

Characterization of thermally induced shallow defects in HPGe

V. Boldrini^{1,2}, S.M. Carturan^{1,2}, G. Maggioni^{1,2}, D.R. Napoli², E. Napolitani^{1,2}, W. Raniero², F. Sgarbossa^{1,2}, S. Riccetto² and D. De Salvador^{1,2}

¹*Physics and Astronomy department "G. Galilei", University of Padova* ²*INFN-LNL, Viale dell'Università 2, 35020 Legnaro (Padova), Italy*

Contents

1. Introduction

- Aim of the study
- List of studied processes
- P diffusion by Spin-On-Doping → [V. Boldrini et al., Appl. Surf. Sci. 392 (2017)]
- Sb diffusion from remote source [G. Maggioni et al., submitted to: Appl. Surf. Sci.]

2. Thermally-induced defects in HPGe

- Role of active defects in Ge
- How to measure active defects

3. Experimental

- 4 wires resistance and Hall measurements
- Sample preparation

4. Results

- Sheet resistance @ low T
- Carrier density and type @ low T
- 5. Empirical model for contamination dependence on annealing T and t
 - Analysis results and discussion
 - Thermal window for non-contaminant processes
- 6. Work in progress

Impurity diffusion inside semiconductors is a thermally activated process.

Thus, all doping processes that exploit thermal annealing treatments could introduce a high level of active defects inside HPGe.

Depletion region:

$$d = \sqrt{\frac{2\epsilon V}{en}}$$

Samples come from HPGe wafers supplied by Umicore [n_{growth} < 2x10¹⁰ cm⁻³]:

- * Reference samples:
 - as cut n-type
 - as cut p-type
 - B ion implanted
- * P diffusion by Spin-On-Doping
- * Sb diffusion from a remote sputtered source
- * Deposition of a SiO₂ protective coating
- * High-T annealing treatments on as cut samples

P diffusion from Spin-On-Doping source

[G. Maggioni et al., submitted to: Appl. Surf. Sci. (sept. 2017)]

REMOTE SOURCE: Sputtering of 100 nm of Sb on a auxiliary piece of Si.

HPGe positioned at a distance of 8 mm.

Annealing treatment: @ 605 °C for 30 min in standard tube furnace.

Contents

1. Introduction

- Aim of the study
- List of studied processes
- P diffusion by Spin-On-Doping → [V. Boldrini et al., Appl. Surf. Sci. 392 (2017)]
- Sb diffusion from remote source → [G. Maggioni et al., submitted to: Appl. Surf. Sci.]

2. Thermally-induced defects in HPGe

- Role of active defects in Ge
- How to measure active defects
- 3. Experimental
 - 4 wires resistance and Hall measurements
 - Sample preparation
- 4. Results
 - Sheet resistance @ low T
 - Carrier density and type @ low T
- 5. Empirical model for contamination dependence on annealing T and t
 - Analysis results and discussion
 - Thermal window for non-contaminant processes
- 6. Work in progress

[Conwell, Proceedings of the IRE (1958)]

[Conwell, Proceedings of the IRE (1958)]

[Conwell, Proceedings of the IRE (1958)]

Т

Contents

1. Introduction

- Aim of the study
- List of studied processes
- P diffusion by Spin-On-Doping → [V. Boldrini et al., Appl. Surf. Sci. 392 (2017)]
- Sb diffusion from remote source → [G. Maggioni et al., submitted to: Appl. Surf. Sci.]

2. Thermally-induced defects in HPGe

- Role of active defects in Ge
- How to measure active defects

3. Experimental

- 4 wires resistance and Hall measurements
- Sample preparation

4. Results

- Sheet resistance @ low T
- Carrier density and type @ low T
- 5. Empirical model for contamination dependence on annealing T and t
 - Analysis results and discussion
 - Thermal window for non-contaminant processes
- 6. Work in progress

Four wires resistance and Hall measurement

Surface chemical etching in order to measure the electrical properties of bulk HPGe after processes:

- * 1 cm^2 area samples were cut from 2 mm thick HPGe wafer.
- * 10 μ m removal from front surface, by 3:1 HNO₃/HF chemical etching.
- * CrAu square electrodes at corners.
- * 4 wires pressed on CrAu with malleable In.

Contents

1. Introduction

- Aim of the study
- List of studied processes
- P diffusion by Spin-On-Doping → [V. Boldrini et al., Appl. Surf. Sci. 392 (2017)]
- Sb diffusion from remote source → [G. Maggioni et al., submitted to: Appl. Surf. Sci.]

2. Thermally-induced defects in HPGe

- Role of active defects in Ge
- How to measure active defects

3. Experimental

- 4 wires resistance and Hall measurements
- Sample preparation

4. Results

- Sheet resistance @ low T
- Carrier density and type @ low T
- 5. Empirical model for contamination dependence on annealing T and t
 - Analysis results and discussion
 - Thermal window for non-contaminant processes
- 6. Work in progress

Calculation of carrier density

Calculation of carrier density

Carrier density and type after processes

HPGe type	Sample description	n _c (cm⁻³)	Type after process
n	n as-cut	[8.7±0.7]x10 ⁹	n
р	p as-cut	[8.9±2.9]x10 ⁹	р

р	B implanted	[9.5±1.6]x10 ⁹	-
р	SOD 611 °C 156 s	[3.4±0.4]x10 ¹⁰	р
n	SOD 608 °C 621 s	[2.0±0.9]x10 ¹¹	-
р	SOD 810 °C 766 s	[1.1±0.1]x10 ¹⁴	_
n	Sb 605 °C 1801 s	[3.0±0.7]x10 ¹²	-
р	SiO ₂ 614 °C 1801 s	[7.8±0.7]x10 ¹²	-
n	611 °C 150 s	[1.1±0.1]x10 ¹¹	-
n	611 °C 150 s etch.	[4.8±1.4]x10 ¹⁰	-
р	(F2) 609 °C 552 s	[9.9±1.0]x10 ¹¹	р
n	610 °C 631 s	[5.0±0.5]x10 ¹¹	р
n	618 °C 1800 s	[2.2±0.2]x10 ¹²	р
р	624 °C 1800 s	[5.7±0.8]x10 ¹²	-
n	800 °C 666 s	[6.9±1.8]x10 ¹³	р

Carrier density and type after processes

HPGe type	Sample description	n _c (cm⁻³)	Type after process
n	n as-cut	[8.7±0.7]x10 ⁹	n
р	p as-cut	[8.9±2.9]x10 ⁹	р

р	B implanted	[9.5±1.6]x10 ⁹	-
р	SOD 611 °C 156 s	[3.4±0.4]x10 ¹⁰	р
n	SOD 608 °C 621 s	[2.0±0.9]x10 ¹¹	-
р	SOD 810 °C 766 s	[1.1±0.1]x10 ¹⁴	_
n	Sb 605 °C 1801 s	[3.0±0.7]x10 ¹²	-
р	SiO ₂ 614 °C 1801 s	[7.8±0.7]x10 ¹²	-
n	611 °C 150 s	[1.1±0.1]x10 ¹¹	-
n	611 °C 150 s etch.	[4.8±1.4]x10 ¹⁰	-
р	(F2) 609 °C 552 s	[9.9±1.0]x10 ¹¹	р
n	610 °C 631 s	[5.0±0.5]x10 ¹¹	р
n	618 °C 1800 s	[2.2±0.2]x10 ¹²	р
р	624 °C 1800 s	[5.7±0.8]x10 ¹²	-
n	800 °C 666 s	[6.9±1.8]x10 ¹³	р

Carrier density and type after processes

HPGe type	Sample description	n _c (cm⁻³)	Type after process
n	n as-cut	[8.7±0.7]x10 ⁹	n
р	p as-cut	[8.9±2.9]x10 ⁹	р

р	B implanted	[9.5±1.6]x10 ⁹	-
р	SOD 611 °C 156 s	[3.4±0.4]x10 ¹⁰	р
n	SOD 608 °C 621 s	[2.0±0.9]x10 ¹¹	-
р	SOD 810 °C 766 s	[1.1±0.1]x10 ¹⁴	-
n	Sb 605 °C 1801 s	[3.0±0.7]x10 ¹²	-
р	SiO ₂ 614 °C 1801 s	[7.8±0.7]x10 ¹²	-
n	611 °C 150 s	[1.1±0.1]x10 ¹¹	-
n	611 °C 150 s etch.	[4.8±1.4]x10 ¹⁰	-
р	(F2) 609 °C 552 s	[9.9±1.0]x10 ¹¹	р
n	610 °C 631 s	[5.0±0.5]x10 ¹¹	р
n	618 °C 1800 s	[2.2±0.2]x10 ¹²	р
р	624 °C 1800 s	[5.7±0.8]x10 ¹²	-
n	800 °C 666 s	[6.9±1.8]x10 ¹³	р

Contents

1. Introduction

- Aim of the study
- List of studied processes
- P diffusion by Spin-On-Doping → [V. Boldrini et al., Appl. Surf. Sci. 392 (2017)]
- Sb diffusion from remote source → [G. Maggioni et al., submitted to: Appl. Surf. Sci.]

2. Thermally-induced defects in HPGe

- Role of active defects in Ge
- How to measure active defects

3. Experimental

- 4 wires resistance and Hall measurements
- Sample preparation

4. Results

- Sheet resistance @ low T
- Carrier density and type @ low T
- 5. Empirical model for contamination dependence on annealing T and t
 - Analysis results and discussion
 - Thermal window for non-contaminant processes
- 6. Work in progress

An Arrhenius relation exists between contaminant density and temperature, with further dependence on time.

$$n_{eq} = n_0 exp\left(-\frac{E_{act}}{k_B T}\right) \quad (1) \qquad \qquad \frac{dn}{dt} = r n_0 exp\left(-\frac{E_{act}}{k_B T(t)}\right) \quad (3)$$

$$\frac{dn}{dt} = r(n_{eq} - n) \quad (2) \qquad \qquad n = r n_0 \int exp\left(-\frac{E_{act}}{k_B T(t)}\right) dt \quad (4)$$

An Arrhenius relation exists between contaminant density and temperature, with further dependence on time.

$$ln(n) = ln(rn_0) + ln(TB)$$
⁽⁵⁾

Fit results

Best linear fit between $ln(n_c)$ and ln(TB) is found through the minimization of the reduced chi squared.

What contaminant are we dealing with?

[Bracht, 2004]

In highly dislocated Ge, vacancies are provided by dislocations themselves, thus their density is fixed at thermal equilibrium C_v^{eq} . Cu atoms diffuse through interstitials, very rapidly.

$$Cu_i + V \longleftrightarrow Cu_s$$

$$D_{Cu_s}^{eff} = 7.8 \cdot 10^{-4} exp\left(-\frac{0.084 eV}{k_B T}\right) \ cm^2/s$$

$$C_{Cu_s}^{eq} = 3.44 \cdot 10^{23} exp \left(-\frac{1.56 eV}{k_B T} \right) \ cm^{-3}$$

$$E_{act} = E_{act}(C_{Cu_s}^{eq}) + E_{act}(DC_{Cu_s}^{eff}) = 1.64eV$$

Diffusion length and thermal budget

The dependence between diffusion coefficient and temperature is of Arrhenius type:

Thermal window for non-contaminant processes

Thermal window for non-contaminant processes

Contents

1. Introduction

- Aim of the study
- List of studied processes
- P diffusion by Spin-On-Doping → [V. Boldrini et al., Appl. Surf. Sci. 392 (2017)]
- Sb diffusion from remote source → [G. Maggioni et al., submitted to: Appl. Surf. Sci.]

2. Thermally-induced defects in HPGe

- Role of active defects in Ge
- How to measure active defects

3. Experimental

- 4 wires resistance and Hall measurements
- Sample preparation

4. Results

- Sheet resistance @ low T
- Carrier density and type @ low T
- 5. Empirical model for contamination dependence on annealing T and t
 - Analysis results and discussion
 - Thermal window for non-contaminant processes
- 6. Work in progress

Sb LTA sample:

- ✤ 1 cm² area, 2 mm thick, p-HPGe

I/V characteristic under reverse bias

Sb LTA DIODE PROTOTYPE:

- * 1 cm² area, 2 mm thick, p-HPGe
- * n contact: sputtered layer of Sb + Laser Thermal Annealing (LTA)
- * p contact: B ion-implanted layer

Sb LTA DIODE PROTOTYPE:

- * 1 cm² area, 2 mm thick, p-HPGe
- * FWHM = 0.66 keV

- ✓ We have demonstrated that high-T annealing introduce a concentration of Cu atoms coming from the external environment inside HPGe, varying with the applied thermal budget and usually higher than 10¹⁰ cm⁻³.
- ✓ We have demonstrated that Cu atoms induce shallow acceptor levels inside HPGe, which would prevent a complete depletion of the detector volume.
- ✓ By analyzing the measured data through an empirical model, we have identified a window of allowed thermal budgets for which HPGe is not contaminated.
- ✓ Passing to laser thermal annealing technique, we have built a not contaminated small HPGe diode, that showed optimum resolution toward Am photopeak.

Laboratori Nazionali di Legnaro

Thank you for your attention!