

Department of Physics and Astronomy "Galileo Galilei"

University of Padova, Italy

PhD course: Science & Engineering of Materials and Nanostructures

Investigation of P Monolayer Doping in Germanium

Semiconductor and Advanced Crystals group

Talk scheme

1

- Introduction
- Monolayer Doping
- Molecular Precursors and Sample Synthesis
- Surface Characterizations
- Diffusion tests and bulk characterizations
- Laser Thermal Annealing from ML sources
- Conclusions

Ge devices

Lasers

Photodetectors

γ-Ray detectors

Monolayer Doping Technique on Ge: surface preparation

Carturan, S., et al Materials Chemistry and Physics, (2015) 161, 116–122.

P Molecular Precursor

11-12/09/2017

11-12/09/2017

11-12/09/2017

P Molecular precursors

ODPA

Diethyl 1-propylphosphonate (DPP)

Octadecylphosphonic acid (OPDA)

Allyl diphenil phosphine (ADPP)

Previous Si MLD works

Ho, J. C. et al. 2009. Nano Letters (2009), 9

Arduca, E. et al. Nanotechnology (2016), 27

Longo, R. et al. Advanced Functional Materials (2013), 23

Other works & info: Connell, J. Et al. Nanotechnology

11-12/09/2017

DPP

ODPA

DPP

ODPA

Other info: Yerushalmi, R Surfaces. Angew. Chem. (2008), 120 (c)

11-12/09/2017

DPP

ODPA

11-12/09/2017

Buriak, J. M., Chemical Reviews (2002), 102, 5

11-12/09/2017

DPP

ODPA

Buriak, J. M., Chemical Reviews (2002), 102, 5

11-12/09/2017

Surface Characterization techniques

Nuclear Reaction Analysis (NRA)

- Absolute quantification
- Selective to one specific isotope
- Sensitive to deep layers

X-Ray Photoelectron Spectroscopy (AR-XPS)

- Sensitive to oxidation states
- Detection of all atomic species
- Layer model available with Angle Resolved XPS

Deposition of DPP and ADPP precursors

Substrate surface preparation	ML DPP	ML ADPP	
Ge native oxide	4,1 ± 0.3	Compatible with 0	
Hydrogenated Ge	4,3 ± 0.3	0,5 ± 0.2	

The surface preparation experimentally seems to be pointless in DPP case

Reflux in 1,3,5-Trimetylbenzene (Mesitylene) at 166°C

1ML = 1 Ge (100) ML = 6,25 10¹⁴ cm⁻²

Angle Resolved XPS: DPP molecule from Ge-H surface

11-12/09/2017

F. Sgarbossa

average XPS-ED (75 Å)

XPS: ADPP molecule

11-12/09/2017

2nd P. S. Ge Detectors meeting

XPS: ADPP molecule

11-12/09/2017

Surface Characterizations starting from Ge-H surface

Rinsing procedure to remove physisorbed fraction

1	1	-1	2/	′09,	/2	01	7
---	---	----	----	------	----	----	---

Surface Characterizations starting from Ge-H surface

Strong Physisorbed fraction still remain

Rinsing procedure to remove physisorbed fraction

Thermal Annealing Results: SIMS analysis

- Very low signals: dose << 1%
 - Not reproducible profiles
- Profiles comes from localized signals

NO clear evidence of diffusion

11-12/09/2017

NRA in depth: DPP

Where is Phosphorus after Thermal Annealing?

The Phosphorus remain at the SiO_2 – Ge interface

- Is 3 ML of GeO_x a diffusion barrier?
- Can we degradate the molecules with a thermal annealing smaller that the Ge start to melt?

Laser Thermal Annealing

- The P diffuse inside Ge in both cases
- There are fluctuations of the P surface concentration
- Maybe molecules are not well laterally distributed on the surface.

NRA after LTA: residual surface P

ODPA Surface NRA quantification example 15.0 ODPA1 in **ODPA1** out 12.5 -15 Yield (Counts/Charge) 10.0 7.5 -5.0 -2.5 0.0 -5050 5055 5060 5065 5070 Energy (KeV)

We check the residual P on surface.

The residual P remains on surface

11-12/09/2017

Conclusion

- MLD processes cause Ge oxidation
- The P quantification and the surface oxidation characterization confirm the literature's reaction:
 - DPP physisorbed after Ge oxidation > 2 ML
 - ODPA chemisorbed ~ 1 ML
 - ADPP chemisorbed only on the Ge-H surface ~ 0.5 ML
- ADPP is the most promising candidate for P thermal in-diffusion
- DPP and ODPA act as a source for Laser Annealing doping

In the near future

- Optimize the deposition and the thermal treatment for ADPP precursor
- Deepen the chemical analysis of the ADPP functionalized Ge surface
- Probe the activation of the diffused dopant
- LTA on ADPP precursor

11-12/09/2017

Department of Physics and Astronomy "Galileo Galilei"

University of Padova, Italy PhD course: Science & Engineering of Materials and Nanostructures

INFN Legnaro National Laboratory

Italian National Institute for Nuclear Physics, Legnaro National Laboratory