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ABSTRACT: Midinfrared plasmonic sensing allows the direct targeting of
unique vibrational fingerprints of molecules. While gold has been used
almost exclusively so far, recent research has focused on semiconductors
with the potential to revolutionize plasmonic devices. We fabricate antennas
out of heavily doped Ge films epitaxially grown on Si wafers and
demonstrate up to 2 orders of magnitude signal enhancement for the
molecules located in the antenna hot spots compared to those located on a
bare silicon substrate. Our results set a new path toward integration of
plasmonic sensors with the ubiquitous CMOS platform.

KEYWORDS: Silicon technology, plasmonics, mid-infrared spectroscopy, explosives detection

Localized plasmon resonances are nowadays recognized as
one of the most powerful mechanisms to boost the

interaction between light and matter at the nanoscale. In this
frame, recent plasmonic research has searched for novel
material platforms, which can improve the quality and
integrability of plasmonic interfaces and devices.1 The choice
of the material can impact the crystalline and nanofabrication
quality of the device, the spectral range of operation, and the
amount of loss. The crucial issue for the future use of
plasmonics in everyday applications, however, is the integration
with the Si-complementary metal-oxide semiconductor
(CMOS) technology process. This is difficult to foresee using
the most common metal in plasmonics, gold, due to it being a
deep level impurity and a fast diffuser, which is incompatible
with silicon technology. Among all applications of plasmonics,
molecular sensing has already made its way to the market.
Plasmonic sensors can be based on refractive index variations at
the metal surface,2,3 on the local enhancement of the electric
field for Raman spectroscopy,4,5 or on the modification of the
engineered transmitted or reflected wavefront in antennas by a
resonant molecular vibration in the mid-infrared (IR).4,6−16 In
the past few years the latter approach, mainly pursued with the
nanofabrication of gold antennas, led to reported signal
enhancements exceeding 3 orders of magnitude for the material

located in the antenna hot spots compared to the material
outside the hotspots.
While metals are the most natural choice for visible and near-

IR plasmonics, it has been suggested that heavily doped
semiconductors (i.e., degenerately doped to be metallic) could
replace and, possibly, outperform metals in the mid-IR
frequency range.1,14−25 The envisioned advantages for
plasmonic device design include (i) the low absolute values
of the dielectric constant in the mid-IR, strictly resembling that
of metals in the visible and near-IR range but without the
detrimental effect of interband transition losses, (ii) the high
material quality, thanks to single-crystalline epitaxial growth,
(iii) in the case of foundry-compatible group-IV semi-
conductors like Si and Ge, the potential for on-chip integration
of antennas, detectors and readout electronics, all fabricated in
a single cost-effective silicon foundry manufacturing process,
and (iv) the possibility of active electrical and/or optical tuning
of the plasmonic effects by the control of the doping level. The
onset of the plasmonic behavior of a conducting material is
marked by the so-called plasma frequency ωp, i.e., the frequency
below which the real part of the dielectric constant of the
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Monolayer	Doping	Technique	on	Ge	
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Monolayer	Doping	Technique	on	Ge:	surface	preparation	

Ge
GeO2 (&	GeO)

HF	10%	- H2O	(BD)	5	cycles

Substrate	Preparation

Ge

H

HH
HH

H

Carturan,	S.,	et	al	Materials Chemistry and	Physics, (2015) 161,	116–122.	
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Monolayer	Doping	Technique	on	Ge	
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Monolayer	Doping	Technique	on	Ge

Capping	deposition

SiO2

Thermal	Annealing

Rinsing
Capping	removal
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Monolayer	Doping	Technique	on	Ge

Capping	deposition

SiO2

Thermal	Annealing

Rinsing
Capping	removal

Laser	Thermal	Annealing
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P	Molecular	precursors	

ChemisorptionPhysisorption

Diethyl 1-propylphosphonate	(DPP) Octadecylphosphonic acid	(OPDA) Allyl diphenil phosphine (ADPP)

Longo,	R.	et	al.	Advanced	Functional Materials
(2013),	23

Ho,	J.	C.	et	al.	2009.	Nano	Letters (2009),	9

Arduca,	E.	et	al.	Nanotechnology (2016),	27

Other works &	info:	Connell,	J.	Et	al.	Nanotechnology
(2016),	27

Previous Si	MLD	works

DPP ODPA ADPP
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Molecular	precursors:	surface	affinity	and	reactions	

Ge

ChemisorptionPhysisorption

DPP ODPA ADPP
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ChemisorptionPhysisorption

Ge

Native	Oxide

OH OH OH

DPP ODPA ADPP

Molecular	precursors:	surface	affinity	and	reactions	

Other	info:	Yerushalmi,	R	Surfaces.	Angew.	Chem.	(2008),	120	(c)
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DPP ODPA ADPP

Molecular	precursors:	surface	affinity	and	reactions	
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ChemisorptionPhysisorption

Ge

H
HH

HH
H

Ge
GeO2 &	GeO

DPP ODPA ADPP

Molecular	precursors:	surface	affinity	and	reactions	

Buriak,	J.	M.,	Chemical Reviews (2002),	102,	5
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ChemisorptionPhysisorption

Ge

H
HH

HH
H

DPP ODPA ADPP

Molecular	precursors:	surface	affinity	and	reactions	

Buriak,	J.	M.,	Chemical Reviews (2002),	102,	5
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Surface	Characterization	techniques	

Nuclear	Reaction	Analysis	(NRA) X-Ray	Photoelectron	Spectroscopy	(AR-XPS)

𝑃 𝛼, 𝑝 𝑆&'
() 	&+

(&

CN	accelerator	@	LNL	INFN

• Absolute	quantification
• Selective	to	one	specific	isotope
• Sensitive	to	deep	layers

• Sensitive	to	oxidation	states	
• Detection	of	all	atomic	species
• Layer	model	available	with	Angle	

Resolved	XPS	

XPS-UHV	@	DISC	UNIPD
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Substrate	surface	
preparation

ML

DPP

ML

ADPP

Ge	native oxide 4,1	± 0.3
Compatible

with
0

Hydrogenated Ge 4,3	± 0.3 0,5	± 0.2

Deposition	of	DPP	and	ADPP	precursors

The	surface	preparation	
experimentally	seems	to	
be	pointless	in	DPP	case

Reflux in	1,3,5-Trimetylbenzene	
(Mesitylene)	at 166°C
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1ML	=	1	Ge	(100)	ML	=	6,25	1014 cm-2



Surface: C, 11.004  Å

Layer 1: P2O3, 5.2  Å

Layer 2: GeO, 5.6  Å

Bulk: Ge

M
odel Scale: 32.706 Å

average XPS-ED
 (75 Å)

C

P

GeO-GeO2

Ge bulk

GeOx layer:	 3,2	± 0,4	ML

An	oxide	interlayer	
forms	between	the	
precursor	and	the	
germanium	bulk.

Angle	Resolved	XPS:	DPP	molecule	from	Ge-H	surface

P 2p

Ge 3p	
(Ge +	GeOx)
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P layer:	 0,5	ML	
(NRA	cross	check)

GeOx layer:	 4	ML	± 1

Binding	Energy	(eV)

In
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ADPP		Ge	3p P	2p Analysis	@	20°

Ge 3p	Metallic

GeO

GeO2

P 2p
Ge plasmon

XPS:	ADPP	molecule
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Ge 3p	Metallic

GeO

GeO2

P 2p
Ge plasmon

XPS:	ADPP	molecule

Too	low	P	signal	to	make	
a	complete	Angle	
Resolved	analysis

ADPP		Ge	3p P	2p Analysis	@	20°
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Surface	Characterizations	starting	from	Ge-H	surface

MeOH

Rinsing	procedure	to	remove
physisorbed	fraction

MeOH
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Precursor ML

DPP 4,3	± 0.3

ODPA 1,9	± 0.3

ADPP 0,5	± 0.3



Precursor ML

DPP 4,3	± 0.3

ODPA 1,9	± 0.3

ML

1,9	± 0.3

1,2	± 0.2

MeOH

Rinsing	procedure	to	remove
physisorbed	fraction

Strong	Physisorbed	fraction	still	remain	

MeOH

Surface	Characterizations	starting	from	Ge-H	surface
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Thermal	Annealing	Results:	SIMS	analysis

RTA

• Very	low	signals:	dose	<<	1%
• Not	reproducible	profiles	

• Profiles	comes	from	localized	signals	

NO	clear	evidence	of	diffusion
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NRA	in	depth:	DPP	

Where	is	Phosphorus	after	Thermal	Annealing?

The	Phosphorus remain	at	the	SiO2 – Ge	interface

?

• Is	3	ML	of	GeOx a	diffusion	barrier?
• Can	we	degradate the	molecules	with	a	thermal	

annealing	smaller	that	the	Ge	start	to	melt?
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Laser	Thermal	Annealing

• The	P	diffuse	inside	Ge	in	both	cases
• There	are	fluctuations	of	the	P	surface	concentration
• Maybe	molecules	are	not	well	laterally	distributed	on	the	surface.	

8%	of	diffused	dose 6%	of	diffused	dose
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ODPA	Surface	NRA	quantification	example

We	check	the	residual	P	on	surface.

The	residual	P	remains	on	surface

NRA		after	LTA:	residual	surface	P
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Thermal	Annealing	Results:	ADPP

RTA

NRA	in	depth	reveal	that	most	of	P	
remains	at	SiO2 - Ge	interface
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• MLD	processes	cause	Ge	oxidation	

• The	P	quantification	and	the	surface	oxidation	characterization	confirm	the	literature's	
reaction:

• DPP	physisorbed	after	Ge	oxidation	>	2	ML
• ODPA	chemisorbed			̴	1	ML	
• ADPP	chemisorbed	only	on	the	Ge-H	surface				̴	0.5	ML	

• ADPP	is	the	most	promising	candidate	for	P	thermal	in-diffusion

• DPP	and	ODPA	act	as	a	source	for	Laser	Annealing	doping

• Optimize	the	deposition	and	the	thermal	treatment	for	ADPP	precursor
• Deepen	the	chemical	analysis	of	the	ADPP	functionalized	Ge	surface
• Probe	the	activation	of	the	diffused	dopant
• LTA	on	ADPP	precursor

In	the	near future

Conclusion
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