

Simulation of PSCS techniques on a planar segmented HPGe gamma-rays detector

AGATA Week – Milano – 11-15 September 2017

B. De Canditiis, G. Duchêne, F. Didierjean, M. Filliger, M.H. Sigward

Aim and summary

This study aims to quantify the accuracy of the scanning system used at the IPHC in Strasbourg

- Geometry of GEANT4 simulated system
- Pulse-shape generation with ADL + SIMION
- Pulse Shape Comparison Scanning (PSCS) technique results

The system

 Scanning table: the system allow horizontal and vertical scanning with a gamma-ray beam. With the PSCS it's possible to reconstruct a database of pulse shapes at each grid point of the scan.

• Detector: HPGe planar gamma ray detector with 3x3 segmentation.

Simulation frame

- XY plane parallel to collimator surface
- Z axis parallel to the beam

9

DETECTOR

θ

ന

COLLIMATOR

Collimator model geometry

AGATA Week - Milano, September 2017

Detector model geometry

AGATA Week - Milano, September 2017

Beam Analysis

- Beam profile is reconstructed knowing the positions and the momentum of the exiting gamma-rays.
- The beam profile is comparable with the one obtained by M. Ginsz in a previous simulation.
- Beam spot has ~2mm diameter inside the detector.

AGATA Week - Milano, September 2017

Detector analysis

3000

2000

1000

0.2

0.1

0.3

0.4

0.5

0.6

0.7

First Interaction spectra [HOR]

By analyzing the spectra of first interaction of gamma-rays that enter segment 5 [blue] it can be seen that part of the gamma rays undergo a single-interaction photoelectric absorption. This percentage increases if only events that are fully absorbed in the shot segment are considered [red].

	$\gamma_{emitted}$	$\gamma_{detected}$	$\gamma_{fullabs}$	γ_{signle}	$\frac{\gamma_{single}}{\gamma_{single}}$	$\frac{\gamma_{signle}}{\gamma_{signle}}$
					Idetected	/full abs
Hor	685467	327179	48285	7478	$2.28{\pm}0.03\%$	$15.4 \pm 0.2\%$
Ver	1153784	293848	32605	4964	$1.68{\pm}0.02\%$	$15.2 \pm 0.2\%$

7 0.8 E [MeV]

ADL simulation

• The Agata Detector Library [ADL] is a C based library, developed in Koln, that can be used to calculate the shapes of the pulses for a specific detector geometry.

B. Bruyneel et al. DOI: 10.1140/epja/i2016-16070-9

- The SIMION software was used to calculate the weighting potentials and the electrical field for the 3x3 detector geometry. A grid of 1x1x1 mm was used to define the geometry and refine the potentials and fields.
- The **electron and holes mobility** parameters used are the one described in B.Brunyeel article

Electron mobility parameters				
Mobility along	σ (100)	Inter valley sca	ttering rate	
$E_0 \left[V/cm \right]$	507.7	E_0 [V/cm]	1200	
β	0.804	ν_0	0.459	
$\mu_0 [\mathrm{cm}^2/\mathrm{V \ s}]$	37165	ν_{1}	0.0294	
$\mu_n [\mathrm{cm}^2/\mathrm{V \ s}]$	-145	ν_2	0.000054	
Hole mobility parameters				
Mobility along	g (100)	Mobility alo	ong (111)	
$E_0 [V/cm]$	181.9	E_0 [V/cm]	143.9	
β	0.735	β	0.749	
$\mu \ [\mathrm{cm}^2/\mathrm{V} \ \mathrm{s}]$	62934	$\mu \ [\mathrm{cm}^2/\mathrm{V} \ \mathrm{s}]$	62383	

• Final pulses were convoluted with **experimental noise** sampled directly from the detector.

ADL simulation

• The Agata Detector Library [ADL] is a C based library, developed in Koln, that can be used to calculate the shapes of the pulses for a specific detector geometry.

B. Bruyneel et al. DOI: 10.1140/epja/i2016-16070-9

- The SIMION software was used to calculate the weighting potentials and the electrical field for the 3x3 detector geometry. A grid of 1x1x1 mm was used to define the geometry and refine the potentials and fields.
- The **electron and holes mobility** parameters used are the one described in B.Brunyeel article

Electron mobility parameters				
Mobility along	g $\langle 100 \rangle$	Inter valley sca	Inter valley scattering rate	
$E_0 [V/cm]$	507.7	$E_0 [V/cm]$	1200	
eta	0.804	$ u_0$	0.459	
$\mu_0 \; [{\rm cm}^2/{\rm V} \; {\rm s}]$	37165	$ u_1 $	0.0294	
$\mu_n \ [\mathrm{cm}^2/\mathrm{V} \ \mathrm{s}]$	-145	$ u_2 $	0.000054	
Hole mobility parameters				
Mobility along	g $\langle 100 \rangle$	Mobility along $\langle 111 \rangle$		
$E_0 [V/cm]$	181.9	$E_0 [V/cm]$	143.9	
eta	0.735	eta	0.749	
$\mu \ [\mathrm{cm}^2/\mathrm{V} \ \mathrm{s}]$	62934	$\mu \ [\mathrm{cm}^2/\mathrm{V} \ \mathrm{s}]$	62383	

• Final pulses were convoluted with **experimental noise** sampled directly from the detector.

Simulated pulses along X axis (no noise)

17 mm

____ 34 mm

Χ

ו

[Y = 25 mm Z = 12 mm]

AGATA Week - Milano, September 2017

Simulated pulses along Z axis (no noise)

3 mm

____ 18 mm

7

[X = 25 mm Y = 25 mm]

Experimental noise extraction

AGATA Week - Milano, September 2017

χ² Analysis [1]

$$\chi^{2} = \frac{1}{N} \cdot \sum_{ch=0}^{9} \sum_{i=0}^{100} \left(\frac{H_{ch} - V_{ch}}{\sigma_{ch}} \right)^{2}$$

The χ^2 selection threshold is adaptive and at the end of the procedure the best 200 tests are selected (i.e.: 400 signals).

χ² Analysis [2]

- Number of **couples of singles** and overall **singles** chosen as first parameters of quality
- Considering only the events that are totally absorbed in segment 5
- Various conditions applied for the selection

Crossing point at [25.5, 25.5, 9.95] mm		No Noise	With Noise
	Singles	59%	49%
All	Couples of singles	43%	25%
	Singles	50%	37%
NO COLE – NO FIL SEY.	Couples of singles	29%	15%
Adjacent only	Singles	50%	37%
	Couples of singles	29%	14%

χ² Analysis [3]

Position distribution of couples of singles is well centered in X and Y

Singles	49%
Couples of singles	25%

Crossing point at [25.5, 25.5, **9.95**] mm

AGATA Week - Milano, September 2017

χ² Analysis [4]

Position distribution of couples of singles is well centered in X and Y

Singles	45%
Couples of singles	25%

Crossing point at [21.0, 30.0, **4.0**] mm

AGATA Week - Milano, September 2017

Conclusions

- Simulations show a reasonable reliability of the system.
- Improvements must be done on the selection algorithms side in order to compensate the position shift due to the lack of sensibility in certain points of the detectors.

WHAT'S NEXT?

- Implement response function in the simulation
- Improve singles selection with the algorithm described in Crespi et. al.'s paper "A pulse shape analysis algorithm for HPGe detector" [10.106/j.nima.2006.10.003]. Single interaction events can be selected by looking at the current pulse from net charge collecting segment.
- Compare the simulation with real data
- Simulations of an AGATA detector

EXTRAS

χ^2 Analysis: Border point

Crossing point at [21.0, 30.0, 4.0] mm		No Noise	With Noise
	Singles	61%	45%
All	Couples of singles	36%	25%
	Singles	59%	45%
No Cole – No Hit Sey.	Couples of singles	36%	22%
Adjacent only	Singles	59%	45%
	Couples of singles	38%	22%

Middle XY single couples distribution

Sing_Int_pos_XY_postRefinement

AGATA Week - Milano, September 2017

Collimator model geometry

- The collimator is a metallic cylinder 189 mm high with an external diameter of 220 mm. The diaphragm has a 1.6 mm diameter.
- Materials: Iron, Lead, Tungsten (gamma-absorbers).
- Two extended sources where simulated:
 - Spherical ²⁴¹Am (Ø=1 mm, E = 59.5 keV).
 - Cylindrical ¹³⁷Cs source (3×3 mm, E = 661.7 keV).
- Gamma-rays are generated uniformly in θ and $\phi.$

Beam Analysis

Z	RMS (Am)	RMS (Cs)
2.50 mm	0.41 mm	0.47 mm
80.55 mm [Hor]	0.61 mm	0.69 mm
159.0 mm [Ver]	0.84 mm	0.93 mm

As 95% of events are expected to be within two RMS errors, this parameter gives a good indication of the beam width at a certain depth.

The beam width for Cs source is slightly bigger. That's because higher energy gamma-rays have higher probability to cross the edges of the diaphragm of the collimator.

Simulated pulses along Y axis (no noise)

1.7 cm

3.4 cm

γ

[X = 2.5 cm Z = 1.2 cm]

AGATA Week - Milano, September 2017