Content:

1. Review on AMchip R&D

- Activity time-line
- AMchip features
- Evolution of AMchip test board
- Latest update of the test-board

2. Test-bench 1 (Virtex-6 FPGA)

- Firmware/software
- Architecture and key components
- AMchip characterization and test-bench
 tuning

3. AMchip application in sequence matching

- Smith-waterman algorithm for sequence matching
- Reformulation of smith-waterman for AMchip
- Implementation
- results

4. IPMC JTAG interface

JTAG interface

5. Test-bench 2 (ZYNQ-7 FPGA)

- Embedded system (hardware software integration)
- Embedded Linux and interfacing with host processor
- Embedded Linux and driving ZYNQ FPGA
 through AXI interface and DMA
- 7 series high-speed GTX interface

6. Future plan and improvement

- SATA IP development based on DMA
- Integration of SATA in test-bench 2

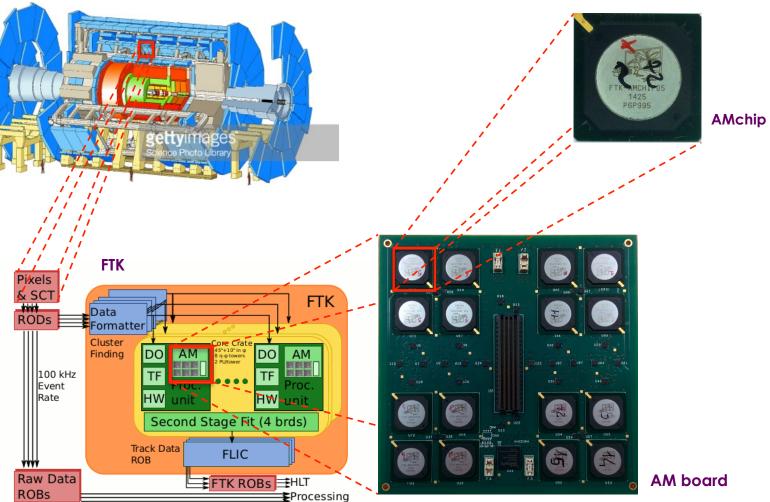
AMchip: Summary of activities, new research, development and applications

M. Ali Mirzaei CNRS Postdoc, Micro-Electronics Engineer researcher UPMC, LPNHE, ATLAS group, AMchip team Contact: <u>mmirzaei@lpnhe.in2p3.fr</u> <u>Mirzai142.nri@gmail.com</u>

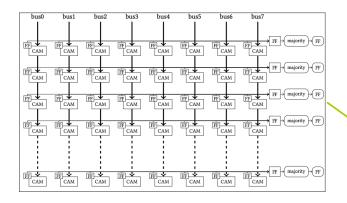
Test-bench 1(firmware/software)

Activities	Apr-15	May-15 Jun-15	Jul-15	Aug-15	Sep-15	Oct-15	Nov-15 Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	9T-INf	Aug-16 Sen-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17
AMchip Test-bench 1 (firmware and software)																					
Sequence alignment based on AMchip IPMC board AMchip Test-bench 2 (firmware and software)																					
presentation and documentstation																					

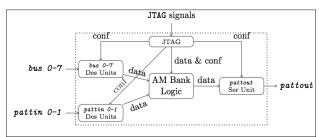
∕ ₽


Test-ber

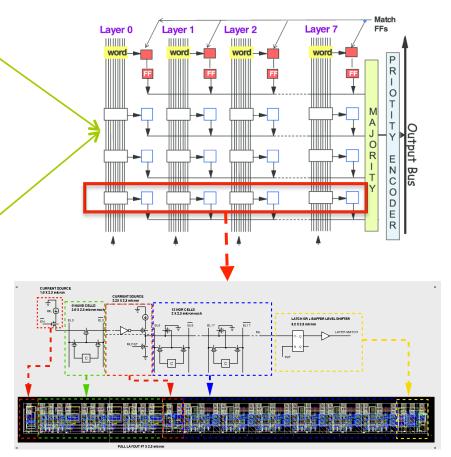
AMchip in FTK and ATLAS detector


ATLAS detector

₃ AMchip


This presentation is all about "AMchip"

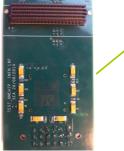
AMchip Architecture



₄ AMchip

"AMchip" is an ASIC:

Input: predefined pattern and unknown pattern output = match/mismatch



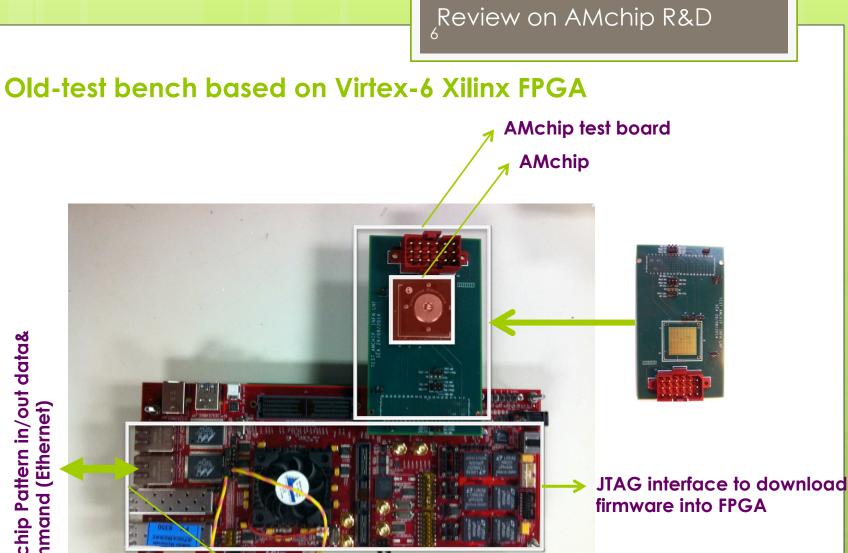
Note: The circuit is not the latest version

₅ Review on AMchip R&D

Different evaluation of AMchip test bench

1-The first generation of test-bench

- Have GTX instability and error during the test and data communication
- The comments was sent to the board manufacturer for review of the design
- Temperature monitoring was external
- No on-board ADC was used

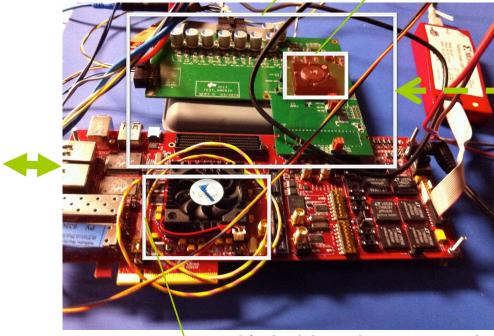


- **7** 2-The second and third generation of test-bench
- Power supply problem and some other DC/ DC convertors mal-functioning
- Better signal communication and more stable GTX bus
- On-board ADC was included to facilitate real time AMchip monitoring

3-The forth generation of test-bench

- Less power supply problem
- Better signal communication and more stable GTX bus
- Some on-board facilities to do AMchip characterization test

AMchip test-bench components


Xilinx Virtex-6 FPGA

AMchip Pattern in/out data& command (Ethernet)

Old-test bench based on Virtex-6 Xilinx FPGA

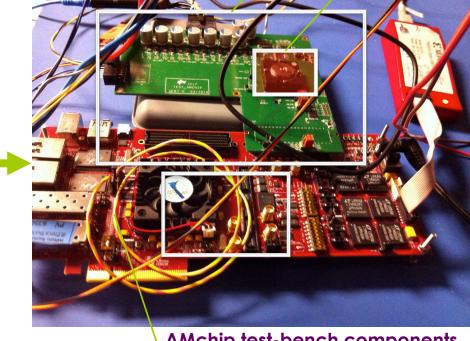
AMchip test board

AMchip

AMchip Pattern in/out data& command (Ethernet)

AMchip test-bench components

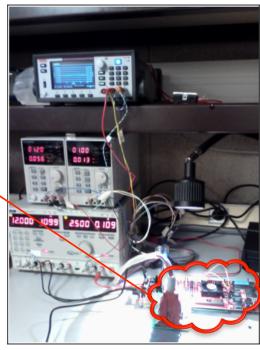
Xilinx Virtex-6 FPGA



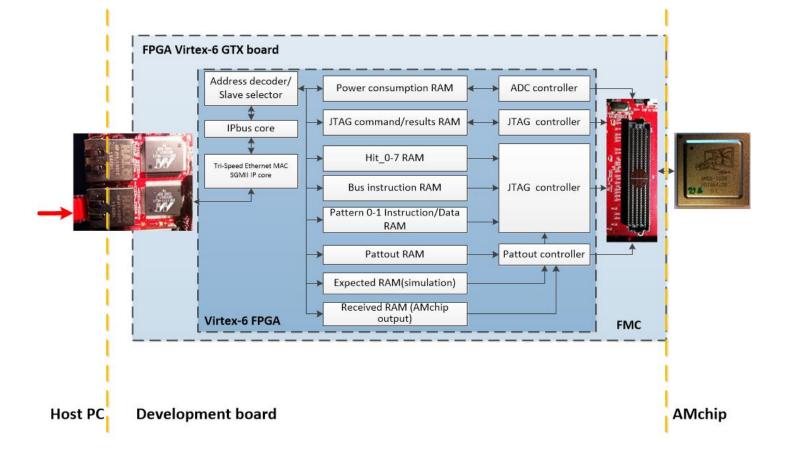
JTAG interface for downloading firmware into FPGA

Old-test bench based on Virtex-6 Xilinx FPGA

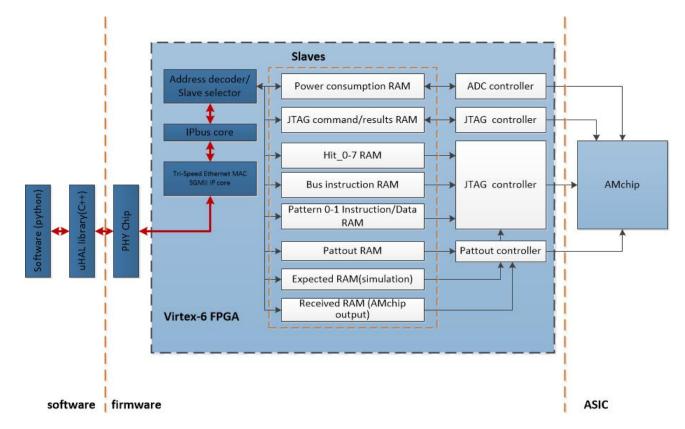
AMchip test board


AMchip

AMchip Pattern in/out data& command (Ethernet)


AMchip test-bench components

Xilinx Virtex-6 FPGA



Complete set of test-bench

Firmware and FPGA architecture

FPGA and its interfacing with PC

10

More information about uHAL library can be found here:

https://svnweb.cern.ch/trac/cactus

Further information about IPbus:

https://svnweb.cern.ch/trac/cactus/wiki/uhalQuickTutorial#HowtoInstalltheIPbusSuite

Interfacing with PC through IPbus

Wiki Time

wiki: WikiStart

Welcome to CACTUS

The CACTUS project is the SW and F/W repository and tracking system for the upgrades of the CMS Level-1 Trigger.

11

Before sending a request try to find out in our FAQ

Application Developer Documentation

- IPbus Software Suite Installation
- uHAL, Pycohal, and ControlHub Quick Tutorial
 o ⇔uHAL Doxygen API
- IPbus firmware wiki
- Trigger Supervisor Developer Guide

CACTUS Developer Documentation

- Trac guide and formatting
- CACTUS Software Developer Procedures
- CACTUS Hardware Developer Procedures
- ➡L1 Page Developer Guide
- Nightly Builds ⇔results, ⇔SVN stats, and ⇔Doxygen API

Sequence alignment using AMchip

Activities	Apr-15	May-15	Jun-15 Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16 Mav-16	Jun-16	Jul-16	Aug-16	Sep-16	Oct-16	Nov-16	Dec-16	Jan-1/	Feb-17 Mar-17
AMchip Test-bench I (firmware and software)																					
Sequence alignment based on AMchip																					
IPMC board AMchip Test-bench 2 (firmware and software)																					
presentation and documentstation																					

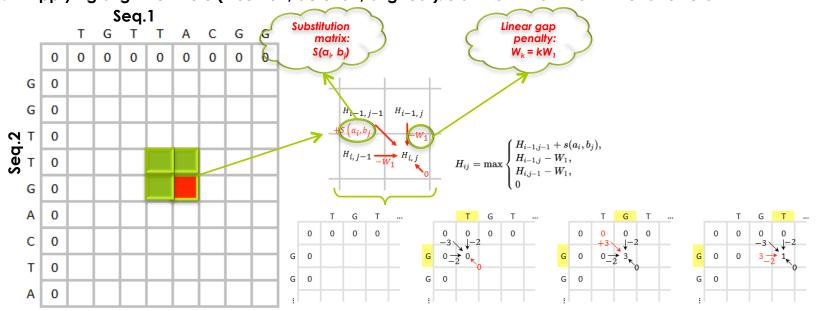
Sequence matching problem

Research question/answer:

How we can align two sequences versus each other?

Seq. 1: TGTTACGG Seq. 2: GGTTGACTA

• answer: smith-Waterman (SW) algorithm


Alignment of above two sequences:

-GTT- AC--

-GTTGAC--

• Steps of optimal SW algorithm:

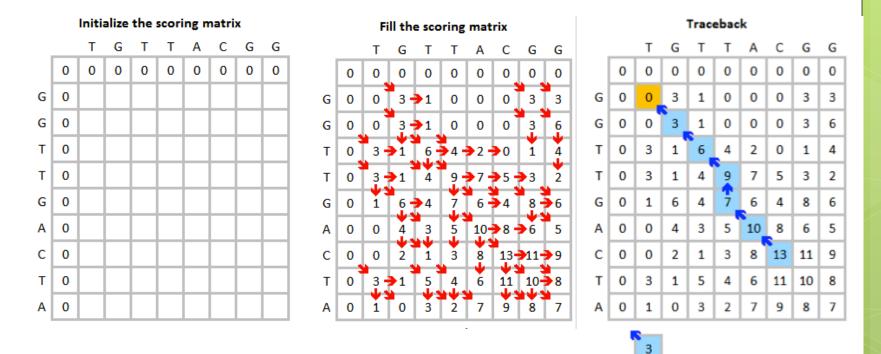
- 1. Establish a set of rules (penalty weight and substitution matrix)
- 2. Calculate scoring matrix
- 3. Find Absolut maximum
- 4. Trace back from maximum to zero
- 5. Applying alignment rule (insertion, deletion, aligned): start from maximum \rightarrow end to zero

C

А

т

G A C


G

G T

Sequence matching problem

• Practice solution based on SW:

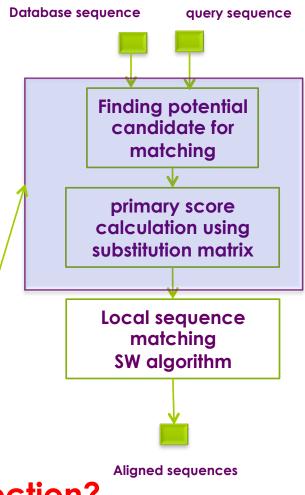
- 1. Establish a set of rules (penalty weight and substitution matrix)
- 2. Calculate scoring matrix
- 3. Finding maximum value in the matrix
- 4. Tracking back from maximum to zero
- 5. Applying alignment rule (insertion, deletion, aligned): start from maximum \rightarrow end to zero

This is called local alignment algorithm.

Global and local alignment

• Problems:

- The database sequences are really long (in some cases might be **1 million characters** long)
- The dimension of the matrix grows very rapidly and the complexity of the calculation increases exponentially
- The calculation time increases (might takes a week)


• solution:

- Global alignment proposed with following principles:
 - 1. Seeds will be detected along data base sequences
 - 2. Local sequence matching will be applied only to the selected seeds

ABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCD KLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTU VWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCD FGHIJ

• Where AMchip can be used?

- AMchip can help to find the seeds.
- Selected seeds will be pushed to FPGA for local sequence matching

• How AMchip perform seed selection?

Answer: Pattern matching using convolution operator

results

AMchip-Sequence alignment

calculation for the first block	
[0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475]	
sequence allignement result	
ABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZA	ABC
<pre><lmopqrstuvwxyzabcdefghijklm0pqrstuvwxyzabcdefghijklm0pqrstuvwxyzabcdefghijklm0pqrstuvwxyzabcdefghij< pre=""></lmopqrstuvwxyzabcdefghijklm0pqrstuvwxyzabcdefghijklm0pqrstuvwxyzabcdefghijklm0pqrstuvwxyzabcdefghij<></pre>	KLM
WXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUV	/w/>
GHIJ	
ABCDEFGHIJKLMOPQ	
section sequence 2	
2	
ABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZA	ABC
KLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJK	KLM
WXYZÅBCDEFGHIJKLMOPQRSTUVWXYZÅBCDEFGHIJKLMOPQRSTUVWXYZÅBCDEFGHIJKLMOPQRSTUVWXYZÅBCDEFGHIJKLMOPQRSTUV	M)
-GHIJ	
calculation for the second block	

[8, 33, 58, 83, 108, 133, 158, 183, 208, 233, 258, 283, 308, 333, 358, 383, 408, 433, 458] -----sequence allignement result-----ABCDEFGHIJKLM0PQRSTUVWXYZABCDEFGHIJKLM0PQRSTUVWXYZABCDEFGHIJKLM0PQRSTUVWXYZABCDEFGHIJKLM0PQRSTUVWXYZABCD KLM0PQRSTUVWXYZABCDEFGHIJKUNAYZABCDEFGHIJK

FGHIJ

ABCDEFGHIJKLMOPQ

end string ------

ABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCD KLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMO VWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKLMOPQRSTUVWXY FGHIJ

concatenation

Stop sending data

[0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475] [8, 33, 58, 83, 108, 133, 158, 183, 208, 233, 258, 283, 308, 333, 358, 383, 408, 433, 458] ABCDEFGHIJKLMOPQRSTUVWXYZABCDEFGHIJKIK

Result and publication

range found by AMC and NCBI 30 **NCBI** range range found by NCBI and AMchip for protein i **AMC** range 25 20 15 105 0 0 200 400 600 800 1000 1200 postion of each alaphabet in the sequence

HiCOMB 2016

15th IEEE International Workshop on High Performance Computational Biology May 22-23, 2016 Chicago, Illinois, USA 2016 IEEE International Parallel and Distributed Processing Symposium Workshops

A Novel Associative Memory Based Architecture for Sequence Alignment

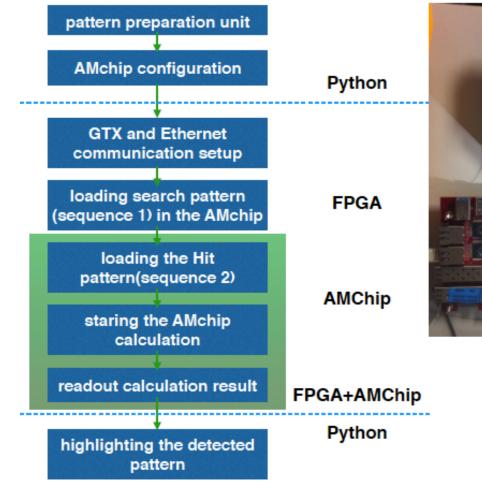
M. Ali Mirzaei, Francesco Crescioli, Giovanni Marchiori, Giovani Calderini *ATLAS group* LPNHE, IN2P3, CNRS, UPMC 4 Place Jussieu, Paris 75005, France Email: mmirzaei@lpnhe.in2p3.fr Sebastien Viret, William Tromeur, Guillaume Baulieu, Geoffrey Galbit CMS group IPNL, IN2P3, CNRS, UCBL 4, Rue Enrico Fermi, 69622 Villeurbanne, France Email: viret@in2p3.fr

Reformulation of the problem for AMchip

			"H(PPV	/RFT	YRL	LSYL	VSA VSA	IA"																				
								VSAI VSAI		۲ ۰																			
oatt-	add									patt-	Add									patt-	add								T
0000000	0x00	M	н	Q	P	P	V	R	F	0000000	0x29	Т	Y	R	L	L	S	Y	L	0 000000	0x52	V	S	А	1	1	0	0	0
0000000	0x01	H.	Q	P	P	V	R	F	Т	0000000	0x2A	Y.	R	L	L	S	Y	L	V	0 000000	0x53	S	A	1.1	1	A	0	0	0
0000000	0x02	Q	P	P	V	R	F	Т	Y	0000000	0x2B	R	L	L	S	Y	L	V	S	0000000	0x54	А	1	1	А	G	0	0	0
0000000	0x03	P	P	V	R	F	Т	Y	R	0000000	0x2C	L	L	S	Y	L	V	S	А	0000000	0x55	1	1	A	G	Q	0	0	0
0000000	0x04	P	v	R	F	Т	Y	R	L	0000000	0x2D	L	S	Y	L	v	S	Α	1	0000000	0x56	1	Α	G	Q	P	0	0	0
0000000	0x05	v	R	F	т	Y	R	L	L	0000000	0x2E	s	Y	L	V	S	Α	1	1	0000000	0x57	Α	G	Q	P	L	0	0	0
0000000	0x06	R	F	Т	Y	R	L	L	S	0000000	0x2F	Y	L	V	S	Α	1	1	Α	0000000	0x58	G	Q	P	L	L	0	0	0
0000000	0x07	F	т	Y	R	L	L	S	Y	0000000	0x30	L	v	S	Α	1	1	Α	G	0000000	0x59	Q	P	L	L	P	0	0	0
0000000	0x08	т	Y	R	L	L	s	Y	L	0000000	0x31	v	S	Α	1	1	Α	G	Q	0000000	0x5A	P	L	L	P	Α	0	0	C
0000000	0x09	Y	R	L	L	S	Y	L	V	0000000	0x32	s	Α	1	1	Α	G	Q	P	0000000	0x5B	L	L	P	Α	v	0	0	C
0000000	0x0A	R	L	L	S	Y	L	V	S	0000000	0x33	Α	1	1	Α	G	Q	P	L	0000000	0x5C	L	P	Α	V	G	0	0	0
0000000	0x0B	L	L	S	Y	L	v	S	Α	0000000	0x34	1	1	А	G	Q	P	L	L	0000000	0x5D	P	Α	V	G	Α	0	0	C
0000000	0x0C	L	S	Y	L	V	S	Α	L	0000000	0x35	L	Α	G	Q	P	L	L	P	0000000	0x5E	Α	v	G	Α	V	0	0	0
0000000	0x0D	S	Y	L	v	S	А	1	L	0000000	0x36	А	G	Q	P	L	L	Р	А	0000000	0x5F	v	G	А	V	1	0	0	0
0000000	0x0E	Y	L	V	S	Α	1	I.	Α	0000000	0x37	G	Q	P	L	L	Р	Α	V	0000000	0x60	G	Α	V	I.	т	0	0	(
0000000	0x0F	L	V	S	А	1	1	Α	G	0000000	0x38	Q	P	L	L	Р	Α	v	G	0000000	0x61	А	v	1	т	P	0	0	0
0000000	0x10	v	s	А	1	1	А	G	Q	0000000	0x39	P	L	L	Р	А	v	G	А	0000000	0x62	v	1	т	Р	Q	0	0	C
0000000	0x11	S	Α	1	1	Α	G	Q	P	0000000	0x3A	L	L	P	A	v	G	A	v	0000000	0x63	1	т	P	Q	N	0	0	C
0000000	0x12	A	Î.	i.	A	G	Q	P	L	0000000	0x3B	Ē	P	A	V	G	A	V	Ĩ.	0000000	0x64	Т	P	Q	N	G	0	0	C
0000000	0x13	1	1	Α	G	Q	P	L	L	0000000	0x3	P	Α	v	G	Α	v	1	т	0000000	0x65	P	Q	N	G	А	0	0	C
0000000	0x14	L	A	G	Q	P	L	L	P	0000000	0x3	A	v	G	Α	v	1	т	P	0000000	0x66	Q	N	G	Α	G	0	0	C
0000000	0x15	A	G	Q	P	Ĺ	L	P	A	0000000	0x3	V	G	A	V	Ť.	Ť	P	Q	0000000	0x67	N	G	A	G	M	0	0	C
0000000	0x16	G	ã	P	Ĺ.	ĩ	P	Ā	v	0000000	0x3F	Ġ	Ă	v	Ť	Ť	P	Q.	Ň	0000000	0x68	G	Ă	G	M	D	õ	ō	Č
0000000	0x17	Q	P	Ĺ	Ē	P	A	v	G	0000000	0x4	A	v	Ť.	Ť	P	Q	N	G	0000000	0x69	A	G	M	D	ĸ	0	0	C
0000000	0x18	P	i.	ī	P	A	v	G	A	0000000	0x4	v	Ť.	Ť	P	Q	N	G	A	0000000	0x6	G	M	D	ĸ	A	ō	0	C
0000000	0x19	Ĺ.	ĩ	P	Δ.	v	Ġ	Ă	v	0000000	0x4	Ť.	Ť	P	Q.	Ň	G	Ă	G	0000000	0x6	M	D	ĸ	A	A	õ	ō	C
0000000	0x1	ĩ	P	A	v	Ġ	Ă	v	Ť	0000000	0x4	Ť	P	à	Ň	G	Ă	G	M	0000000	0x6	D	ĸ	Ä	Â	Ň	õ	õ	Č
0000000	0x1	P	A	v	G	Ă	v	Ť	Ť	0000000	0x4	P	Q.	Ň	G	Ă	G	M	D	0000000	0x6	ĸ	A	A	N	G	õ	ō	Ċ
0000000	0x1	A	v	Ğ	Ă	v	Ť	Ť	P.	0000000	0x4	à	Ň	G	Ă	G	м	D	к	0000000	0x6	A	Â	Ň	G	v	ŏ	ō	č
0000000	0x1	ŵ	Ğ	Ă	ŵ	Ť	Ť	P	Q	0000000	0x4	Ň	G	Ă	Ĝ	м	D	ĸ	A	0000000	0x6F	Â	ĥ	G	v	P	ŏ	ŏ	č
0000000	0x1	Ğ	Ă	ŵ	Ť	Ť	P.	à	Ň	0000000	0x4	G	Ă	Ĝ	м	D	ĸ	A	Â	0000000	0x70	ĥ	G	v	ř.	v	ŏ	ŏ	č
0000000	0x1F	Ă	v	Ť	Ť	P	à	Ň	G	0000000	0x4	Ă	Ĝ	м	D	ĸ	Δ.	Â	Ñ	0000000	0x70	G	v	P	v	v	ŏ	ŏ	Č
0000000	0x20	ŵ	Ť	Ť	P	à	N	G	Ā	0000000	0x4	Ĝ	M	D	ĸ	Δ.	Â	Ñ	G	0000000	0x72	v	P	v	v	Ň	ō	ŏ	č
0000000	0x21	Ť	Ť	P	à	N	G	Ă	Ĝ	0000000	0x4	м	D	ĸ	A	2	ĥ	G	v	0000000	0x72	P	v	v	Ň	i.	0	ŏ	č
0000000	0x21	Ť	P	Q	N	G	A	Ĝ	M	0000000	0x4	D	ĸ	A	Â	ĥ	G	v	P	0000000	0x73	v	v	Ň	1	A	ŏ	ŏ	č
0000000	0x22	P	Q	Ň	G	Ā	Ĝ	M	D	0000000	0x4	ĸ	A	Â	Ñ	G	v	P	v	0000000	0x74 0x75	v	Ň	1	Å	î	ō	ō	č
0000000	0x23	Q	N	G	A	G	M	D	ĸ	0000000	0x4	A	Â	Ň	G	v	P	v	v	0000000	0x75	Ň	IN I	A	÷	P	0	0	č
0000000		N	G	-	G			_							-	÷			N	0000000		IN I		Ť	P	-	0	0	č
	0x25	G	_	AG	_	D	D	A	A	0000000	0x4	AN	G	G	P	v	v	V	N		0x77		A	P	N	G	0	0	- 6
0000000	0x26		A		M	2	K			0000000	0x4F			V	1.0			N		0000000	0x78	A	P				_	_	
0000000	0x27	A	G	M	D	K	A	A	N	0000000	0x5	G	V	P	V	V	N	1	A	0000000	0x79	T	-	N	G	A	0	0	0
000000	0x28	G	M	D	K	A	A	N	G	0000000	0,051	v	P	v	v	N		A	T	0000000	0x7	P	N	G	A	G	0	0	10

AMchip-Sequence alignment

Reformulation of the problem for AMchip


	Lit comuoneo		5.0	w	Y			w	F	v	G			1	м	С	S		S	T		v	
ŦW	Hit sequence		INI	vv	T	L	L	vv	-	•	G	•	L		M	C	3		3		•	•	-
(*)																							
	Output pattern																						
3	10000000001000100000	Add	M	н	Q	P	P	v	R	F	Т	Y	R	L	L	S	Y	L	V	s	Α	1	L
4	00000010011000010000	0x01	н	Q	P	Ρ	V	R	F	Т	Y	R	L	L	S	Y	L	V	S	Α	1	1	Α
1	0000000001000000000	0x02	Q	P	P	V	R	F	т	Y	R	L	L	S	Y	L	V	S	Α	1	1	Α	G
1	000000000000001000000	0x03	Ρ	P	V	R	F	Т	Y	R	L	L	S	Y	L	v	S	Α	1	1	Α	G	Q
1	00000000000100000000	0x04	P	V	R	F	Т	Y	R	L	L	S	Y		V	s	Α	1	1	Α	G	Q	Р
2	0000000001000000001	0x05	V	R	F	т	Y	R	L	L	s	Y	L	V	S	Α	1	1	Α	G	Q	P	L
1	000000000000000000000000000000000000000	0x06	R	F	Т	Y	R	L	L	S	Y	L	v	S	Α	1	1	Α	G	Q	P	L	L
1	000000000000000000000000000000000000000	0x07	F	т	Y	R	L	L	S	Y	L	v	S	Α	1	1	Α	G	Q	P		L	Ρ
1	000000000000000000000000000000000000000	0x08	т	Y	R	L	L	S	Y	L	v	S	Α	1	1	Α	G	Q	Ρ	L	L	Ρ	Α
1	000100010000000000000000000000000000000	0x09	Y	R	L	L	S	Y	L	V	S	Α		L	Α	G	Q	Р	L	L	P	Α	V
3	0000000010000100010	0x0A	R	L	L	S	Y	L	V	S	Α		I	Α	G	Q	P	L	L	P	Α	V	G
3	000010000100000100000	0x0B	L	L	S	Y	L	V	S	Α	1		Α	G	Q	P	L	L	P	Α	V	G	A
1	001000000000000000000000000000000000000	0x0C	L	S	Y	L	V	S	Α	1	1	Α	G	Q	P	L	L	P	Α	V	G	A	V
0	000000000000000000000000000000000000000	0x0D	S	Y	L	V	S	Α		1	A	G	Q	Р	L	L	P	Α	v	G	Α	V	I.
2	000000001001000000000	0x0E	Y	L	v	S	Α	1	I	Α	G	Q	Р		L	P	Α	v	G	Α	V	1	т
2	000000000011000000000	0x0F	L	v	S	Α	1	L	A	G	Q	Р	L	L	Р	Α	v	G	Α	V		Т	Ρ
1	000000000010000000000		V	S	Α	1	1	Α	G	Q	P	L		Р	Α	v	G	Α	V	L	т	P	Q
1	000000000000000000000000000000000000000	0xA2	_	Α		1	Α	G	Q	Ρ	L	L	P	Α	V	G	Α	V	1	Т	Р	Q	Ν
0	000000000000000000000000000000000000000	0xA3	Α	1		Α	G	Q	P	L	L	Р	Α	V	G	Α	V	1	Т	Ρ	Q	N	G
0	000000000000000000000000000000000000000	0xA4	-	1	Α	G	Q	P	L	L	P	Α	v	G	Α	v	1	т	P	Q	N	G	Α
0	000000000000000000000000000000000000000	0xA	1	Α	G	Q	Р	L	L	P	Α	V	G	Α	V	1	Т	P	Q	N	G	Α	G
1	00000100000000000000000	0xA	A	G	Q	Р	L.,	L	P	Α	V	G	A	V	1	Т	P	Q	N	G	A	G	M
4	00001100110000000000	0xA	G	Q	P	L	L	Р	A	V	G	Α	V	1	Т	P	Q	N	G	A	G	M	D
1	0000100000000000000000	0xA	Q	P	L	L	Р	Α	V	G	Α	V		Т	P	Q	N	G	Α	G	M	D	K
1	000000001000000000	0xA	P	L	L	P	Α	V	G	Α	V		Т	P	Q	N	G	A	G	M	D	K	A
1	0000001000000000000	0xA	L	L	P	Α	V	G	Α	V		Т	P	Q	N	G	Α	G	M	D	K	Α	A
0	000000000000000000000000000000000000000	0xA	L	P	A	V	G	Α	V	1	Т	Р	Q	Ν	G	Α	G	Μ	D	K	A	Α	N
0	000000000000000000000000000000000000000	0xA	P	Α	V	G	A	V	1	Т	P	Q	Ν	G	Α	G	M	D	K	A	A	N	G
0	000000000000000000000000000000000000000	0xA	A	V	G	A	V	<u> </u>	T	P	Q	Ν	G	A	G	м	D	K	A	A	N	G	v
1	000000000001000000	0xA	V	G	A	V	1	Т	Р	Q	Ν	G	Α	G	M	D	K	A	A	N	G	V	P
1	0000000100000000000	0xA	G	Α	V	1	Т	P	Q	N	G	Α	G	Μ	D	K	A	A	N	G	V	Р	V
0	000000000000000000000000000000000000000	0xA	Α	V	1	Т	Ρ	Q	N	G	Α	G	M	D	K	Α	Α	N	G	V	Ρ	V	V
2	000000010000000001	0xB	V	1	Т	Ρ	Q	N	G	Α	G	м	D	K	A	Α	Ν	G	V	Ρ	V	V	N
0	000000000000000000000000000000000000000	0xB	1	Т	Р	Q	N	G	Α	G	M	D	ĸ	Α	Α	N	G	V	P	V	V	Ν	I
0	000000000000000000000000000000000000000	0xB	т	P	Q	N	G	Α	G	М	D	K	Α	Α	N	G	V	P	V	V	N	1	A
0	000000000000000000000000000000000000000	0xB	P	Q	N	G	Α	G	Μ	D	K	Α	Α	Ν	G	V	P	V	V	N	I	A	T
0	000000000000000000000000000000000000000	0xB	Q	N	G	A	G	M	D	K	Α	Α	N	G	V	P	V	V	N	I	A	Т	P
0	000000000000000000000000000000000000000	0xB	N	G	A	G	Μ	D	K	Α	A	N	G	V	P	V	V	N		Α	Т	P	N
1	000000000000000000000000000000000000000	0xB	G	Α	G	M	D	ĸ	Α	Α	Ν	G	V	P	V	V	N	1	Α	Т	Р	N	G
1	0000000010000000000	0xB	Α	G	Μ	D	ĸ	Α	Α	Ν	G	V	P	V	V	N	1	Α	Т	Ρ	N	G	Α
0	000000000000000000000000000000000000000	0xB	G	M	D	K	A	A	N	G	V	P	V	v	N		A	T	P	N	G	A	G

Reformulation of the problem for AMchip

		Database se query seque								IVS SLST		GQPLLPAVG	AVITPO	NG/	AGM	DKA	ANG	GVP	VVN	IATI	PNG	AG"						
	Hit sequence			м	w	Y	L	I.	w	F	v			G	I.	I.		м	С	s				S	т	L	v	I.
H W(Ĺ	-	-		Ē					Ē	-				Ī	Γ			-	Ē	-	Ē	-
	Output pattern	patt-out1	add									patt-out2	Add									patt-out3						
3	10000000001000100000000	10000000	0x00	M	н	Q	Ρ	P	v	R	F	00010001	0x29	т	Y	R	L	L	s	Y	L	00000000	0x52	v	s	Α	L	1
4		00000010		н	Q	Ρ	Ρ	v	R	F	Т	00110000	0x2A	Y	R	L.	L	S	Y	L	v	1000000		S	А	1	1	Α
		00000000	0x02	Q	P	Ρ	V	R	F	Т	Y	00100000	0x2B	R	L	L	S	Y	L	v	s	00000000	0x54	Α	1	L	Α	G
1		00000000	0x03	P	P	v	R	F	т	Y	R	00000010	0x2C	L	L	S	Y	L	v	S	А	00000000	0x55	1	1	Α	G	Q
_		00000000	0x04	P	v	R	F	т	Y	R	L	00010000	0x2D	L	s	Y	L.	v	s	Α	1	00000000	0x56	1	Α	G	Q	P
2		00000000	0x05	v	R	F	т	Υ	R	L	L	00100000	0x2E	S	Y	L	v	s	Α	1	L	00001000	0x57	Α	G	Q	Ρ	
_		00000000	0x06	R	F	Т	Y	R	L	L	s	00000000	0x2F	Y	L	v	S	Α	1	L	Α	00001000	0x58	G	Q	Р	L	
1		00000000	0x07	F	T	Y	R	L	L	S	Y	00000000	0x30	L	v	S	A	1	1	A	G	00100000	0x59	Q	P	<u>L</u>	L	P
_		00000000	0x08	T	Y	R	L	L	S	Y	L	00000000	0x31	V	S	A	1	1	A	G	Q	00100000	0x5A	P	L	L	P	A
1		00010000	0x09	Y	R	L		S	Y	L	V	00000000	0x32	S	A		1	Α	G	Q	Ρ	00000000		L	L	P	Α	V
3		00000000	0x0A	R	L	L	S	Υ	L	V	S	01000000	0x33	A			Α	G	Q	P	<u> </u>	00010000	0x5C	L	P	Α	ν.	G
3		00001000	0x0B	L	L	s	Y		V	S	A	01000000	0x34			Α	G	Q	Ρ	L		000000000	0x5D	P	Α	v	G	Α
1	001000000000000000000000000000000000000	00100000		L	S	Y	L	V	S	A		00000000	0x35		Α	G	Q	Ρ	L	L	P	00000000	0x5E	Α	v	G	A	V
0	000000000000000000000000000000000000000	00000000	0x0D	S	Y	L	V	S	Α			00000000	0x36	А	G	Q	Ρ	L	L	P	Α	00010000	0x5F	v	G	Α	V.	<u>.</u>
2		00000000	0x0E	Y	L	V	S	Α			Α	10010000	0x37	G	Q	Ρ	L	L	P	Α	V	00000000	0x60	G	Α	v	L	Т
2		00000000		L	V	S	Α	1		Α	G	00110000	0x38	Q	Ρ	L.,	L	Ρ	Α	V	G	00000000	0x61	Α	V	<u> </u>	Т	Ρ
1		00000000	0x10	V	S	Α	1	L	Α	G	Q	00100000	0x39	Ρ	L		Р	Α	V	G	Α	00000000	0x62	v	<u> </u>	т	Ρ	Q
1		00000000	0x11	S	Α	1	L	Α	G	Q	Ρ	00000000	0x3A	L	L	Ρ	Α	v	G	Α	V	01000000	0x63	1	Т	Р	Q	Ν
0	000000000000000000000000000000000000000	00000000	0x12	Α		1	Α	G	Q	Ρ	L	00000000	0x3B	L	Ρ	Α	v	G	Α	V	1	00000000	0x64	Т	P	Q	N	G
0	000000000000000000000000000000000000000	00000000	0x13	Ļ	<u>.</u>	A	G	Q	P	Ļ	L	00000000	0x3C	P	A	V	G	A	v	L_	T	00000000	0x65	P	Q	N	G	A
0	000000000000000000000000000000000000000	00000000	0x14	<u> </u>	A	G	Q	Ρ	L	L	P	00000000	0x3D		V	G	A	V	<u>L</u>	T	P	0000000	0x66	Q	N	G	A	G
1	000001000000000000000000000000000000000	00000100	0x15	A	G	Q	Ρ	-	L	P	Α	00000000	0x3E	v	G	A	V	<u> </u>	T	P	Q	0000000	0x67	N	G	A	G	Μ
4	000011001100000000000000000000000000000	0000110	0x16	G	Q	P	-		P	A	V	10000000	0x3F	G	A	V	<u> </u>	1	P	Q	N	0000000	0x68	G	A	G	M	D
1	000010000000000000000000000000000000000	00001000	0x17	Q	P	L		P	A	V	G	000000000	0x40	A	V	<u> </u>	T	P	Q	N	G	0000000	0x69	A	G	M	D	K
1	00000000100000000000000	00000000	0x18	P	L	L	P	A	V	G	A	01000000	0x41	V		T.	P	Q	N	G	A	0000000	0x6A	G	M	D	K	A
1	000000010000000000000000000000000000000	00000001	0x19	L	L	P	A	V	G	A	V	00000000	0x42	1	T	P	Q	Ν	G	A	G	0000000	0x6B	M	D	K	A	A
0	000000000000000000000000000000000000000	000000000	0x1A	L	P	A	V	G	A	V	<u> </u>	000000000	0x43	T	P	Q	N	G	A	G	M		0x6C	D	K	A	A	Ν
0	000000000000000000000000000000000000000	000000000	0x1B	P	A	V	G	A	v	<u>_</u>	T	000000000	0x44	P	Q	N	G	A	G	M	D	0000000	0x6D	K	A	A	N	G
0	000000000000000000000000000000000000000	000000000	0x1C	A	V	G	A	v	<u>_</u>	1	P	000000000	0x45	Q	N	G	A	G	M	D	K	0000000	0x6E	A	A	N	G	V
1	00000000000100000100	00000000	0x1D	V	G	A	V	-	Ţ	P	Q	00001000	0x46	N	G	A	G	M	D	K	A	0001000	0x6F	A	N	G	V	P
1	00000001000000000000000	00000000	0x1E	G	A	V	1	T	P	Q	N	10000000	0x47	G	A	G	M	D	K	A	A	0000000	0x70	N	G	V	P	V
0	000000000000000000000000000000000000000	00000000	0x1F	A	V	1	T	P	Q	N	G	00000000	0x48	A	G	M	D	K	A	A	N	0001000	0x71	G	V	P	V	V
2	000000010000000001000	00000000	0x20	v	Ļ	T	P	Q	N	G	A	10000000	0x49	G	M	D	K	A	A	N	G	0001000	0x72	N N	P	V	V	N
0	000000000000000000000000000000000000000	000000000	0x21	Ļ	T	P	Q	N	G	A	G	000000000	0x4A	M	D	K	A	A	N	G	V	0000000	0x73	P	V	V	N	4
0	000000000000000000000000000000000000000	000000000	0x22	T	P	Q	N	G	A	G	M	000000000	0x4B	D	K	A	A	N	G	V	P	0000000	0x74	V	V	N	4	A
0	000000000000000000000000000000000000000	000000000	0x23	P	Q	N	G	A	G	M	D	000000000	0x4C	K	A	A	N	G	V	P	V	0000000	0x75	V	N	4	A	T
0	000000000000000000000000000000000000000	000000000	0x24	Q	N	G	A	G	M	D	K	000000000	0x4D		A	N	G	V	۲ <u>-</u>	V	V	0000000	0x76	N		A	T	P
0	000000000000000000000000000000000000000	000000000	0x25	N	G	A	G	M	D	K	A	000000000	0x4E	A	N	G	V	P	V	V	N	0000000	0x77		A	T	P	N
1	000000000000000000000000000000000000000	000000000	0x26	G	A	G	M	D	K	A	A	000000000	0x4F	N	G	V	P.	V	V	N	1	0100000	0x78	A		P	N	G
1	000000001000000000000000000000000000000	000000000	0x27	A	G	M	D	K	A	A	N	10000000	0x50	G	V	P	V	V	N	-	A	0000000	0x79	T	P	N	G	A
0	000000000000000000000000000000000000000	000000000	0x28	G	M	D	K	A	A	N	G	000000000	0x51	V	P	V	V	N		Α	Т	0000000	0x7A	P	N	G	A	G

AMchip-Sequence alignment

Reconfiguration of AMchip for sequence analysis

Hardware setup

Post-processing of selected seeds on FPGA SW_32x32_top:1 Mcompar_GND_1_o_y[5]_LessThan_3_o1 and2 GND 1 o GND 1 o AND 3 o1 GND_1_o_GND_1_o_AND_3_o_inv1 Max_detection XST GND Finding potential candidate for nchronizer unit rst INV 24 o1 matching SW 32x32 top primary score calculation using substitution matrix SW 32x32 top This part of the Local sequence out_query(31:0 database(31:0) matching algorithm is done on in_query(31:0) clk SW algorithm an FPGA SW_32x32_top

AMchip-Sequence alignment

IPMC interfacing through JTAG

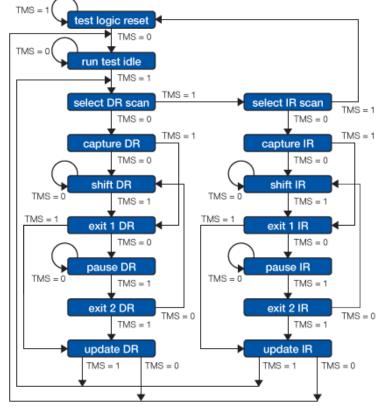
₽	
\leq	
\bigcirc	

Test-bend 2

Activities	Apr-15	May-15	Jul-15	Aug-15	Oct-15	Nov-15	Dec-15 Ian-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16 hil-16	Aug-16	Sep-16	Oct-16 Nov-16	OT-AON	Dec-16 Jan-17	Feb-17	Mar-17
AMchip Test-bench I (firmware and software)				_															
Sequence alignment based on AMchip																			
IPMC board																			
AMchip Test-bench 2 (firmware and software)																			
presentation and documentstation																			

IPMC JTAG interfacing and test

Complementary information: https://indico.cern.ch/event/300897/ contributions/1664698/attachments/ 567236/781334


A request from **LAPP** (our collaborative in Annecy) → the task was completed and submitted by **LPNHE**

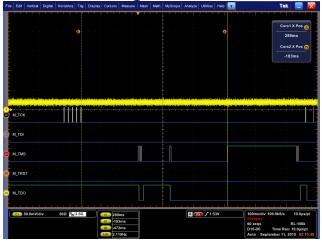
LPNHE was involved in JTAG development and now IPMC card is **being used as** power management board of CTA and LAr board.

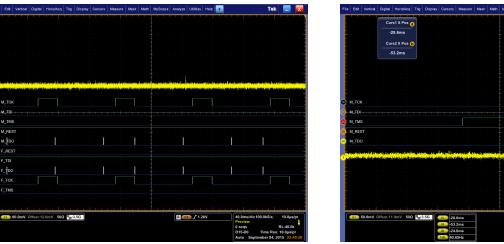
The aim of the JTAG interface testing is to program JTAG IR and DR to perform certain task based on below state machine.

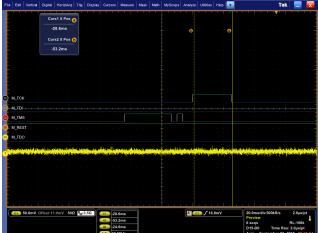
Some result of JTAG test

м_тск M_TDI

M_TMS

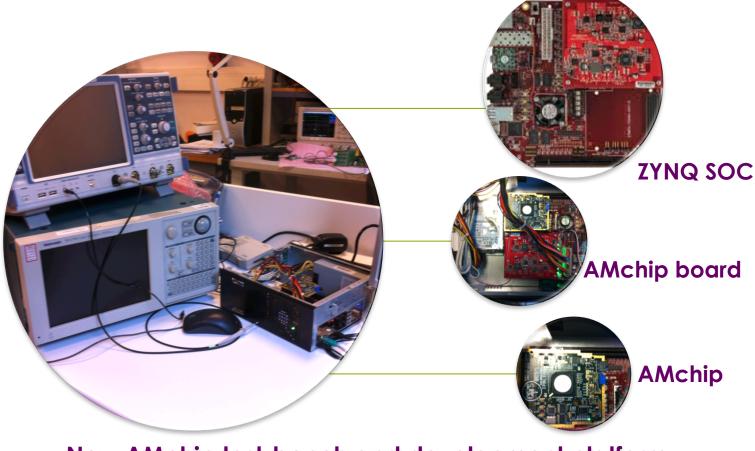

F TDI F_TDO F_TCK


60.0mV Offset:12.0mV 50Ω BW:3.5G


Individual line test

File Edit Vertical Digital	Horiz/Acq Trig	Display Cursors	Measure N	fask Math	MyScope	Analyze	Utilities	Help 🔽	MSO	Tek	_
											-
-	ntanakina ada	محبط بالاستعاد			لل والدور م	المعيد		et talle a stars	A designed delivery		ومعاليه المراجع
The second second second	dane to to total	and protocol and a	a such the second	Lange and the	-	Laboration of the		-	net manufactory	-	Intelligent and the second second
M_TCK											
M_TMS											
M_REST											
🧕 м_тво											
- F_REST											
o F_TDI											
🗧 F_TDO											
👳 ғ_тск											
- F_TMS											
G1 60.0mV Offset:1		200							40.0mm/	liv 100.0kS/s	10.0µs/pt
C1 CO.UMV Offsett1	2.01119 5012 %	(3.50				A 203	j∫ 1.2€	wi internet interne	0 acqs D15-D0		RL:40.0k
										eptember 04, 2	015 23:40:20

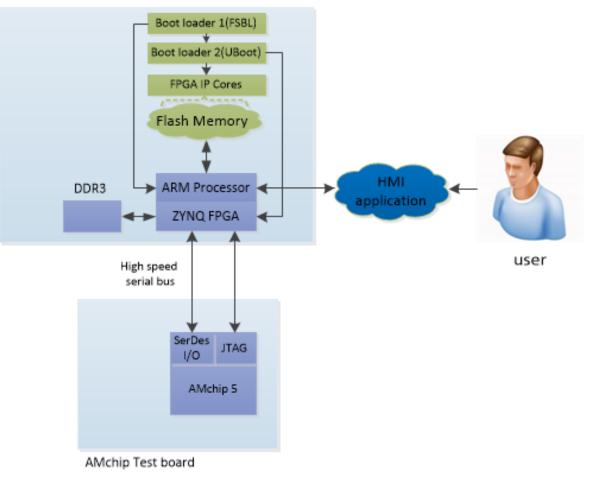
Test-bench 2(firmware and software)


Activities	Apr-15	May-15	Jun-15 Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16	Aug-16 Sen-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17
AMchip Test-bench I (firmware and software)																					
Sequence alignment based on AMchip																					
IPMC board																					
AMchip Test-bench 2 (firmware and software)																					
presentation and documentstation																					

Iment

Aivich Test-ber 2

Documentation

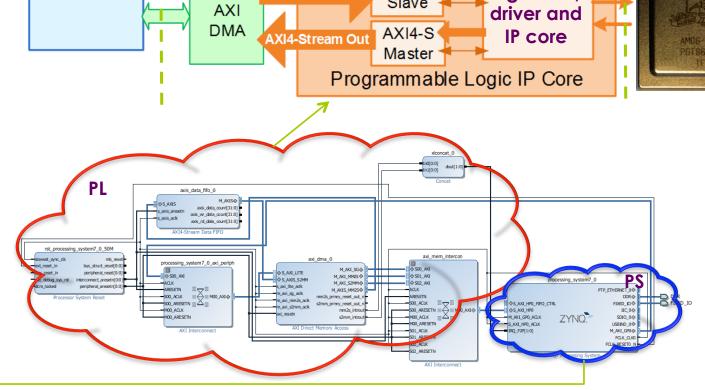

New development platform based on ZYNQ-FPGA and AMchip for different applications

New AMchip test-bench and development platform

New test-bench architecture based on ZYNQ-SOC

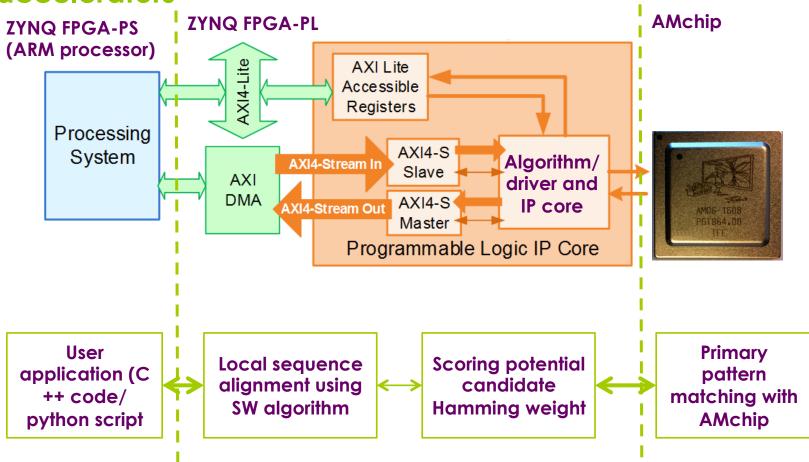
FPGA Development board

Interfacing from ARM processor to FPGA Embedded Linux

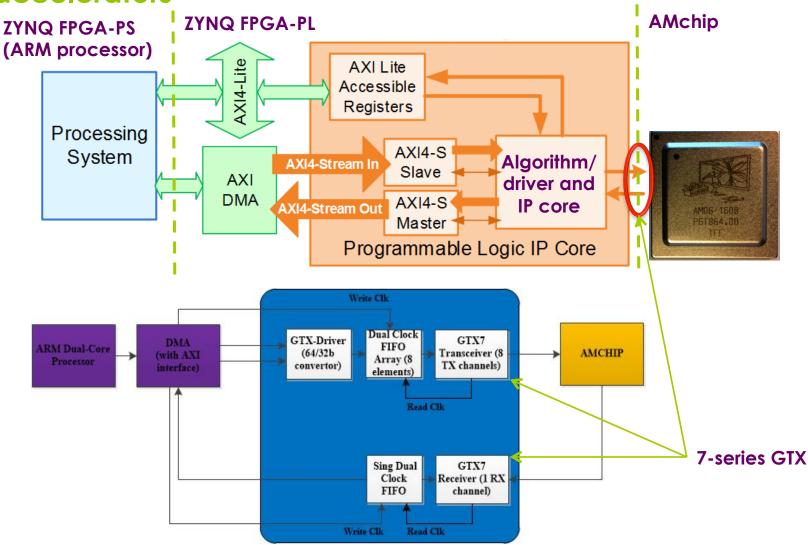

> Component of the embedded Linux
> Interfacing and Communication between ARM and FPGA

- Different library
- Full-chain and gigabyte link
- Some results

Embedded system and Zynq platform

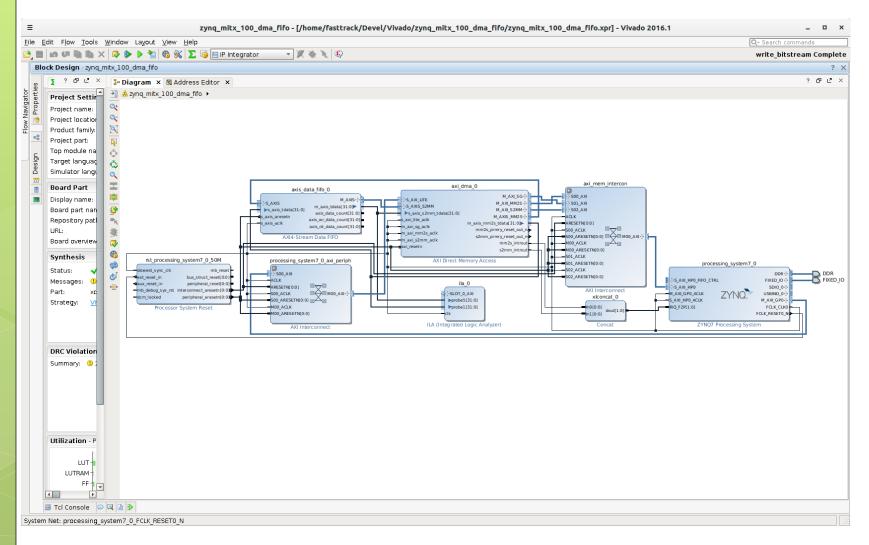

ZYNQ FPGA-PL AMchip ZYNQ FPGA-PS (ARM processor) AXI Lite AXI4-Lite Accessible Registers Processing AXI4-S System Algorithm/ AXI4-Stream In Slave AXI driver and DMA AXI4-S **IP** core AXI4-Stream Out

Jest-bench 2 (ZYNQ-7 FPGA)

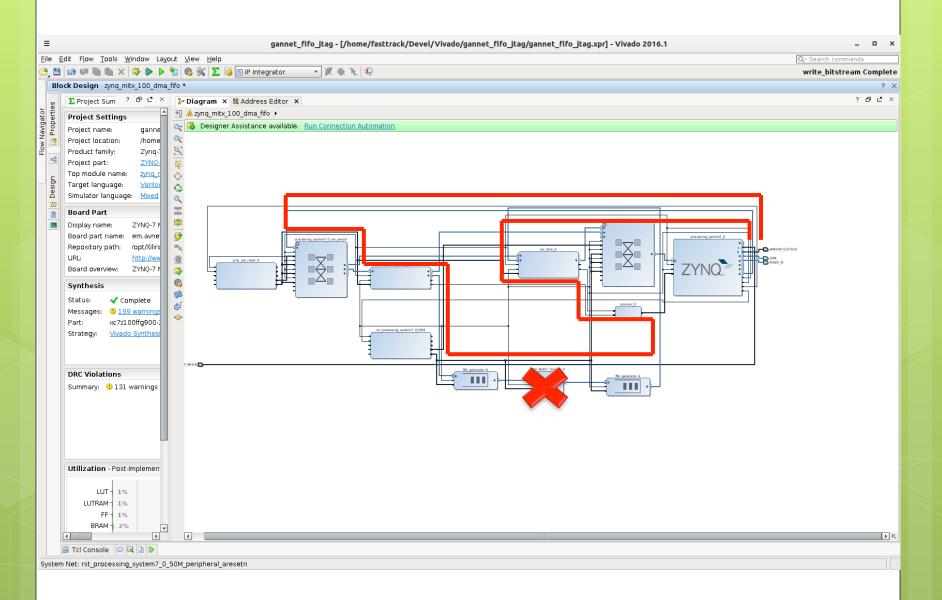


Example of Design integration in the Vivado IP integrator

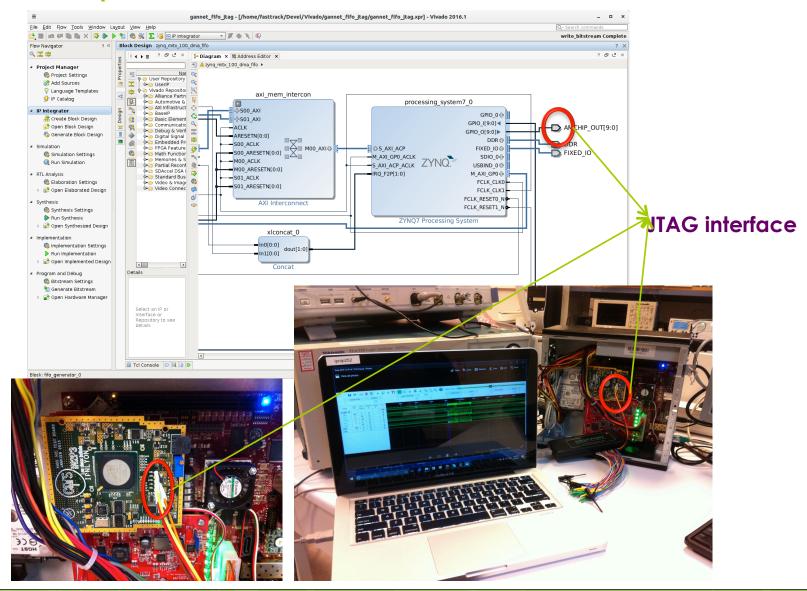
Full-chain high-speed link for data communication and accelerators

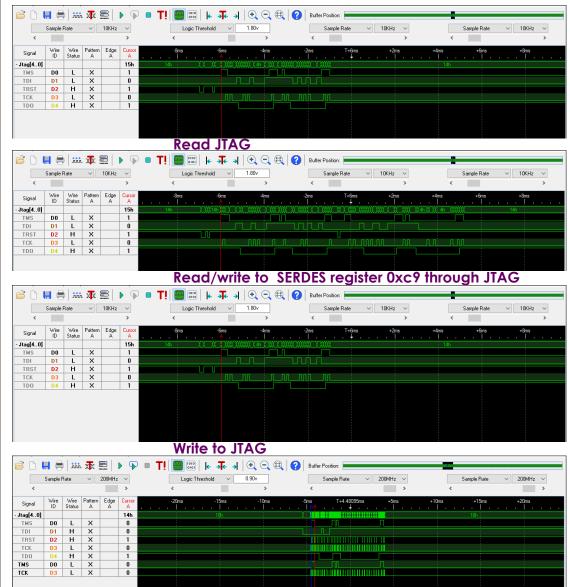


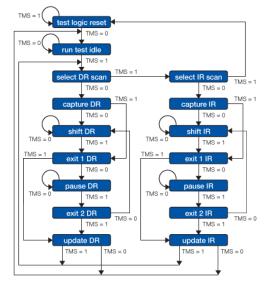
Full-chain high-speed link for data communication and accelerators



₃Test-bench 2 (ZYNQ-7 FPGA)

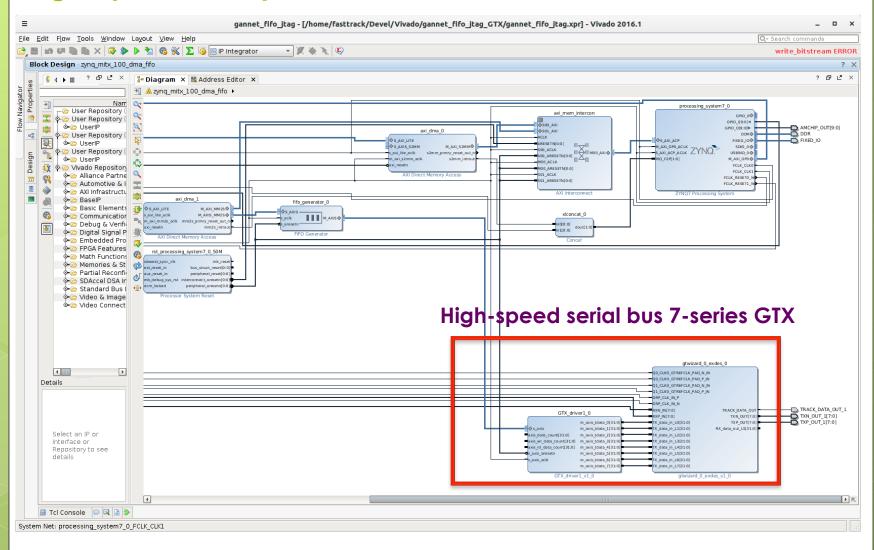

Architecture for testing Libgament and Zdma library


Full-chain speed test architecture



DDR, AMchip and LED connection interface

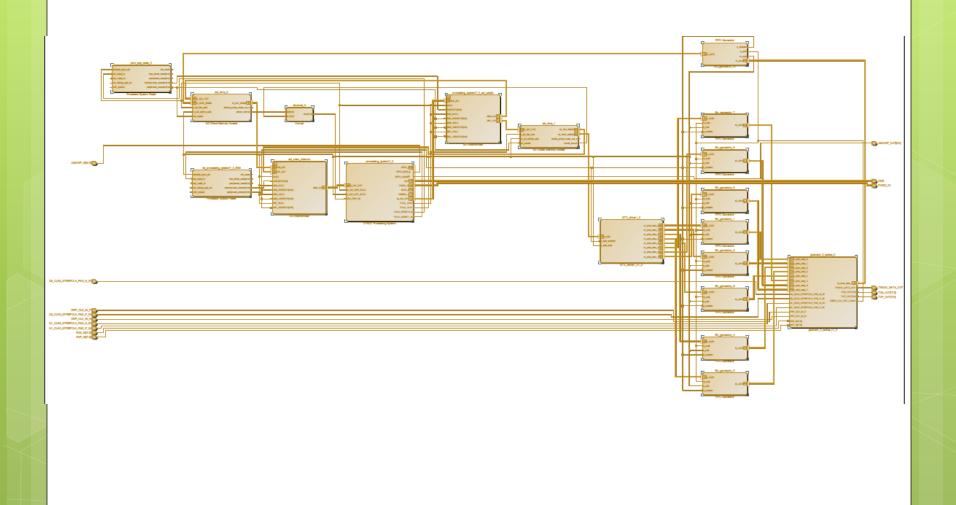
JTAG test



The aim of the JTAG test is to implement following table using above state machine

IR value	width	name	description	access
0xFF	1	BYPASS	Bypass	RW
0x01	32	IDCODE	ID Code	R
0xC5	145	JPATT_DATA	Pattern data	RW
0xE5	145	JPATT_DATA	Read back pattern data	R
0xC4	16	JPATT_ADDR	Pattern address	RW
0xE4	16	JPATT_ADDR	Read back pattern address	R
0xC6	97	JPATT_CTRL	Pattern bank configuration	RW
0xE6	97	JPATT_CTRL	Read back pattern bank configuration	RW
0xE8	25	REC_ADDRESS	Bank output status	R
0xC9	7	SERDES_SEL	Select target SER/DES register	RW
0xCA	32	SERDES_REG	Write register selected by SERDES_SEL	RW
0xCB	32	IDLE_CFG	Idle output configuration	RW
0xEA	32	SERDES_STAT_CFG	Reads information selected by SERDES_SEL	R
0xED	32	CRC_REG	Reads output stream CRC32	R
0xCD	42	PATT_TEST_REG	Internal pattern test configuration	RW

zoom out JTAG read/write operation


High-speed GTX part I

Jest-bench 2 (ZYNQ-7 FPGA)

₃₈est-bench 2 (ZYNQ-7 FPGA)

Full chain link including GTX

Summary and documentation

- A wiki has already been setup
- Further help is needed to document the developments and distribute
- another technical meeting will be set soon to explain above activities in more detail
- Integrating AMchip in more applications
- Using current platform and sharing knowledge with other researcher