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New development platform based on ZYNQ-FPGA and 
AMchip for different applications

 Linux Embedded System
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Hardware requirements
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Embedded Linux 
Development Environment

          Linux Embedded System
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Boot-loaders

           Linux Embedded System
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 First Stage Boot-loader

● Setup the PS and load the second stage Boot-
Loader
 

 U-boot (The second stage Boot-Loader)

● A standard on embedded system

● Execute the linux kernel

● https://github.com/Xilinx/u-boot-xlnx

https://github.com/Xilinx/u-boot-xlnx


The kernel

           Linux Embedded System
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 The Official Linux Kernel from Xilinx

● Very recent Kernel: Linux v4.4.x

● https://github.com/Xilinx/linux-xlnx

● The kernel is on a TFTP server
 

https://github.com/Xilinx/linux-xlnx


The Root File System

           Linux Embedded System
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 Based on Ubuntu Core 16.04.02

● Very recent version and LTS support

● The RFS is on a NFS file system on the Host 
PC

● http://cdimage.ubuntu.com/ubuntu-base/releas
es/16.04.2/release/ubuntu-base-16.04-core-ar
mhf.tar.gz

 

http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.2/release/ubuntu-base-16.04-core-armhf.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.2/release/ubuntu-base-16.04-core-armhf.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.2/release/ubuntu-base-16.04-core-armhf.tar.gz
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Direct Memory Access

           Direct Memory Access
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 The purpose of using DMA :

● Transfer a large amount of data to/from the 
Programmable Logic to UserSpace Memory

● Avoid the use of CPU load for transfer of large 
amount of data

 



New Development 
Platform/Architecture based on 
ZYNQ-SOC
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Full-chain high-speed link for data 
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Full-chain high-speed link for data 
communication

       DMA Testbench
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The libgannet solution

           DMA Testbench
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 A complete framework to create DMA 
interface

● Programmable Logic
 

● Softwares (linux driver + user-space library to 
handle DMA)

 https://gitlab.com/SmartAcoustics/libgannet

 Python wrappers were created to make the 
development easier

 

https://gitlab.com/SmartAcoustics/libgannet


DMA Bandwidth

           DMA Testbench14

Max = 1.4 GBytes/s



“Full-Chain” bandwidth

           “Full-chain” Bandwidth
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 Evaluation of “full-chain” bandwidth:

● Data are read from a file and put in memory

● Data in memory are send to PL (here a FIFO) 
through DMA

 
● Data are read back to Memory from FIFO 

● Data in memory are saved in another file

 



Full-Chain bandwidth

           “Full-chain” Bandwidth
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 Two kinds of file format

● Data File is in a binary format

● Data File is in a JSON format

 Three types of file systems

● NFS (slow)
● SDCard
● tmpfs (fastest, useful to discover bottlenecks)

 



With files in binary format

      “Full-chain” Bandwidth17

NFS = 730 KBytes/s

SD   = 5.36 MBytes/s

TMPFS = 23.25 MBytes/s



With files in JSON format

      “Full-chain” Bandwidth18

NFS = 205 KBytes/s

SD   = 256 KBytes/s

TMPFS = 259 KBytes/s



Publications of the results

                 Results

Result and publication:
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This paper has already been 
accepted and will be presented 

by Vincent VOISIN in 4 - 6 
May 2017 Thessaloniki Greece



JTAG Communication
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 To configure the AMchip we need to communicate 
through a JTAG port

● No standard output JTAG on Zynq

● A solution was found, we use “standard” ZYNQ GPIO 
to “emulate” a JTAG bus

● Inspired by a library in Kovan-JTAG project:
https://github.com/xobs/kovan-jtag

● Simple but slow method
At the moment it is slow and takes 2minutes to load 
reference patterns, however the high-speed solution 
is found and under development

 

Specific Development
        for AMchip

https://github.com/xobs/kovan-jtag


On AMchip

Future Works
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 Finish to develope a complete system to 
communicate with AMchip 

● JTAG is ready for AMchip configuration

● DMA software is ready

● Need to test Smith-Waterman Scoring IP core
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FIFO



Full-chain high-speed link for data 
communication and accelerators
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On AMchip

Future Works
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 Finish to develope a complete system to 
communicate with AMchip 

● JTAG is ready for AMchip configuration

● DMA software is ready

● Need to test Smith-Waterman Scoring IP core



On “Full Chain” Bandwidth

Future Works
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 Speed up the read/write of data

● Use a database such MongoDB rather than files

● Use a >1Gbits/s network adapter (speed up NFS)

● Use a SATA disk

● Receive/send data from an external PC through a 
>1Gbits/s using on-board SFP socket

● Use OProfile to investigate and trace software 
performance and data communication



Documentation

Future Works
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 Need a lot of works to document the 
developments and distribute it

 Modify and improve this presentation for 
MOCAST Conference

 Add results to this presentation for MOCAST 
Conference
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