
Embedded
System:
AMchip Interfacing
and driving, R&D

M. Vincent Voisin
CNRS, Software Engineer
LPNHE,
ATLAS group, AMchip team
Contact:

vvoisin@lpnhe.in2p3.fr

Content:

1. Embedded Linux System
● Embedded Linux Development Environment
● FSBL+Uboot
● Kernel
● Root FileSystem

2. DMA
● New Development SoC Platform
● DMA interface
● DMA performance

3. “Full-Chain” Bandwidth
● File systems
• Results

4. Specific Development for AMchip
• JTAG communication

5. Future works
● AMchip

● Complete DMA communication with Ali’s IP
● “Full-Chain” Bandwidth
● Documentation

1

mailto:vvoisin@lpnhe.in2p3.fr

New development platform based on ZYNQ-FPGA and
AMchip for different applications

 Linux Embedded System

New AMchip test-bench and development
platform

New AMchip test-bench and development
platform

ZYNQ
SOC

AMchip
board

AMchip

2

Hardware of The
Development Platform

Zynq
FPGA

AMchip
board

Zynq FPGA
board

3
Hardware requirements

AMchip

Embedded Linux
Development Environment

 Linux Embedded System
4

Boot-loaders

 Linux Embedded System
5

 First Stage Boot-loader

● Setup the PS and load the second stage Boot-
Loader

 U-boot (The second stage Boot-Loader)

● A standard on embedded system

● Execute the linux kernel

● https://github.com/Xilinx/u-boot-xlnx

https://github.com/Xilinx/u-boot-xlnx

The kernel

 Linux Embedded System
6

 The Official Linux Kernel from Xilinx

● Very recent Kernel: Linux v4.4.x

● https://github.com/Xilinx/linux-xlnx

● The kernel is on a TFTP server

https://github.com/Xilinx/linux-xlnx

The Root File System

 Linux Embedded System
7

 Based on Ubuntu Core 16.04.02

● Very recent version and LTS support

● The RFS is on a NFS file system on the Host
PC

● http://cdimage.ubuntu.com/ubuntu-base/releas
es/16.04.2/release/ubuntu-base-16.04-core-ar
mhf.tar.gz

http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.2/release/ubuntu-base-16.04-core-armhf.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.2/release/ubuntu-base-16.04-core-armhf.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.2/release/ubuntu-base-16.04-core-armhf.tar.gz

Hardware of The
Development Platform

Zynq
FPGA

AMchip
board

Zynq FPGA
board

8
Direct Memory access

AMchip

Direct Memory Access

 Direct Memory Access
9

 The purpose of using DMA :

● Transfer a large amount of data to/from the
Programmable Logic to UserSpace Memory

● Avoid the use of CPU load for transfer of large
amount of data

New Development
Platform/Architecture based on
ZYNQ-SOC

 Platform10

Full-chain high-speed link for data
communication and accelerators

 Direct Memory Access

Algorith
m/driver
and IP
core

AMchi
p

ZYNQ FPGA-
PL

ZYNQ FPGA-PS
(ARM
processor)

User
application

(C++
code/python

script

Scoring
potential
candidate
Hamming

weight

Primary
pattern

matching
with AMchip

Local
sequence
alignment
using SW
algorithm

11

Full-chain high-speed link for data
communication

 DMA Testbench

ZYNQ FPGA-PLZYNQ FPGA-PS
(ARM processor)

User
application

(C++
code/python

script)

FIFODMA Transfer

12

FIFO

The libgannet solution

 DMA Testbench
13

 A complete framework to create DMA
interface

● Programmable Logic

● Softwares (linux driver + user-space library to
handle DMA)

 https://gitlab.com/SmartAcoustics/libgannet

 Python wrappers were created to make the
development easier

https://gitlab.com/SmartAcoustics/libgannet

DMA Bandwidth

 DMA Testbench14

Max = 1.4 GBytes/s

“Full-Chain” bandwidth

 “Full-chain” Bandwidth
15

 Evaluation of “full-chain” bandwidth:

● Data are read from a file and put in memory

● Data in memory are send to PL (here a FIFO)
through DMA

● Data are read back to Memory from FIFO

● Data in memory are saved in another file

Full-Chain bandwidth

 “Full-chain” Bandwidth
16

 Two kinds of file format

● Data File is in a binary format

● Data File is in a JSON format

 Three types of file systems

● NFS (slow)
● SDCard
● tmpfs (fastest, useful to discover bottlenecks)

With files in binary format

 “Full-chain” Bandwidth17

NFS = 730 KBytes/s

SD = 5.36 MBytes/s

TMPFS = 23.25 MBytes/s

With files in JSON format

 “Full-chain” Bandwidth18

NFS = 205 KBytes/s

SD = 256 KBytes/s

TMPFS = 259 KBytes/s

Publications of the results

 Results

Result and publication:

19

This paper has already been
accepted and will be presented

by Vincent VOISIN in 4 - 6
May 2017 Thessaloniki Greece

JTAG Communication
20

 To configure the AMchip we need to communicate
through a JTAG port

● No standard output JTAG on Zynq

● A solution was found, we use “standard” ZYNQ GPIO
to “emulate” a JTAG bus

● Inspired by a library in Kovan-JTAG project:
https://github.com/xobs/kovan-jtag

● Simple but slow method
At the moment it is slow and takes 2minutes to load
reference patterns, however the high-speed solution
is found and under development

Specific Development
 for AMchip

https://github.com/xobs/kovan-jtag

On AMchip

Future Works
21

 Finish to develope a complete system to
communicate with AMchip

● JTAG is ready for AMchip configuration

● DMA software is ready

● Need to test Smith-Waterman Scoring IP core

Full-chain high-speed link for data
communication

 Future Works

ZYNQ FPGA-
PL

ZYNQ FPGA-PS
(ARM
processor)

User
application

(C++
code/python

script

FIFODMA Transfer

22

FIFO

Full-chain high-speed link for data
communication and accelerators

 Future Works

Algorith
m/driver
and IP
core

AMchi
p

ZYNQ FPGA-
PL

ZYNQ FPGA-PS
(ARM
processor)

User
application

(C++
code/python

script

Scoring
potential
candidate
Hamming

weight

Primary
pattern

matching
with AMchip

Local
sequence
alignment
using SW
algorithm

23

On AMchip

Future Works
24

 Finish to develope a complete system to
communicate with AMchip

● JTAG is ready for AMchip configuration

● DMA software is ready

● Need to test Smith-Waterman Scoring IP core

On “Full Chain” Bandwidth

Future Works
25

 Speed up the read/write of data

● Use a database such MongoDB rather than files

● Use a >1Gbits/s network adapter (speed up NFS)

● Use a SATA disk

● Receive/send data from an external PC through a
>1Gbits/s using on-board SFP socket

● Use OProfile to investigate and trace software
performance and data communication

Documentation

Future Works
26

 Need a lot of works to document the
developments and distribute it

 Modify and improve this presentation for
MOCAST Conference

 Add results to this presentation for MOCAST
Conference

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26

