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• Gluon saturation
• Factorization in the dense regime
• From dense to dilute
• When can we use standard PDFs ?
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Gluon Saturation
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What do we know from QCD?

• Asymptotic freedom + time dilation in a high energy hadron
explain why the partons appear as almost free at large Q2

• QCD loop corrections lead to violations of Bjorken scaling, that
are visible as a Q2 dependence of the structure functions
(1/Q is the spatial resolution at which the hadron is probed)

• Parton distributions are non-perturbative in QCD, but their Q2

and x dependence are governed by equations that are
perturbative (DGLAP, BFKL)

• One can prove that the parton distributions are universal, i.e.
are the same in all inclusive processes
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DIS results for F2 and DGLAP fit at NLO :
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Small x data displayed differently... (Geometrical scaling)

Small xdata (x ≤ 10−2) displayedagainst τ ≡ log(x0.32 Q2) :
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NNLO parton distributions – and possible caveats
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NNLO parton distributions – and possible caveats

Large x : dilute, dominated by single parton scattering
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NNLO parton distributions – and possible caveats

Small x : dense, multi-parton interactions become likely
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• When their occupation number becomes large,
gluons can recombine :

Gluon Saturation

Saturation criterion [Gribov, Levin, Ryskin (1983)]

αsQ
−2︸ ︷︷ ︸

σgg→g

× A−2/3xG(x,Q2)︸ ︷︷ ︸
surface density

≥ 1

Q2 ≤ Q2
s ≡ αsxG(x,Q2

s)

A2/3︸ ︷︷ ︸
(saturation momentum)2

∼ A1/3x−0.3
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Saturation domain

• At LHC, x ∼ 10−3–10−4

(for bulk particle
production at
mid-rapidity)

• Q2
s(A ∼ 200) ≈ 2–4 GeV2
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Degrees of freedom

y

+yprojyobs

• p2
⊥ ∼ Q2

s ∼ ΛQCD eλ(yproj−y) , pz ∼ Qs e
y−yobs

• Fast partons : frozen dynamics, negligible p⊥ ⇒ classical sources
• Slow partons : evolve with time ⇒ gauge fields
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Degrees of freedom

y

+yprojyobs

-
1

4
F

µν
Fµν + A µ J

µ

J
µ
 = ρ δ

µ+

W[ρ]

+ycut

sourcesfields

• p2
⊥ ∼ Q2

s ∼ ΛQCD eλ(yproj−y) , pz ∼ Qs e
y−yobs

• Fast partons : frozen dynamics, negligible p⊥ ⇒ classical sources
• Slow partons : evolve with time ⇒ gauge fields
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Cancellation of the cutoff dependence

y

+yprojyobs

ycut  from

the loops

J
µ
 = ρ δ

µ+

Wyproj - ycut
[ρ]

+ycut

sourcesfields

• The cutoff ycut is arbitrary and should not affect the result
• The probability densityW[ρ] changes with the cutoff
• Loop corrections cancel the cutoff dependence fromW[ρ]
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B-JIMWLK evolution equation

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

∂W
Y
[ρ]

∂Y
=

1

2

∫
~x⊥,~y⊥

δ

δρa(~x⊥)
χab(~x⊥, ~y⊥)

δ

δρb(~y⊥)︸ ︷︷ ︸
H (JIMWLK Hamiltonian)

W
Y
[ρ]

• Mean field approx. (BK equation) : [Kovchegov (1999)]

• Langevin form of B-JIMWLK : [Blaizot, Iancu, Weigert (2003)]

• First numerical solution : [Rummukainen, Weigert (2004)]
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• Mean field approx. (BK equation) : [Kovchegov (1999)]

• Langevin form of B-JIMWLK : [Blaizot, Iancu, Weigert (2003)]

• First numerical solution : [Rummukainen, Weigert (2004)]

Recent developments :

Running coupling correction
[Lappi, Mäntysaari (2012)]

B-JIMWLK equation at Next to Leading Log
[Kovner, Lublinsky, Mulian (2013)]
[Caron-Huot (2013)] [Balitsky, Chirilli (2013)]
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• Mean field approx. (BK equation) : [Kovchegov (1999)]

• Langevin form of B-JIMWLK : [Blaizot, Iancu, Weigert (2003)]

• First numerical solution : [Rummukainen, Weigert (2004)]

Recent developments :

Running coupling correction
[Lappi, Mäntysaari (2012)]

B-JIMWLK equation at Next to Leading Log
[Kovner, Lublinsky, Mulian (2013)]
[Caron-Huot (2013)] [Balitsky, Chirilli (2013)]

Open questions for practical uses :

• Does the NLO evolution preserve the
positivity of W[ρ]? (non trivial if the JIMWLK
Hamiltonian contains higher derivatives at
NLO)

• Can the NLO B-JIMWLK equation still be
mapped into a Langevin equation?
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Factorization in the dense regime

• Deep inelastic scattering

• Nucleus-nucleus collisions
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Handwaving argument for factorization

τcoll ∼ E
-1

• The duration of the collision is very short: τcoll ∼ E−1

• The logarithms we want to resum are due to the radiation of soft
gluons, which takes a long time
B it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
B the logarithms are intrinsic properties of the projectiles,
independent of the measured observable
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Handwaving argument for factorization

τcoll ∼ E
-1

space-like interval

• The duration of the collision is very short: τcoll ∼ E−1

• The logarithms we want to resum are due to the radiation of soft
gluons, which takes a long time
B it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
B the logarithms are intrinsic properties of the projectiles,
independent of the measured observable
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Deep Inelastic Scattering
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Inclusive DIS at Leading Order

• CGC effective theory with cutoff at the scale Λ−
0 :

k
-

P
-

Λ
-

0

fields sources

• At Leading Order, DIS can be seen as the interaction between
the target and a qq̄ fluctuation of the virtual photon :
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Inclusive DIS at NLO

• Consider now quantum corrections to the previous result,
restricted to modes with Λ−

1 < k− < Λ−
0 (the upper bound

prevents double-counting with the sources):

k
-

P
-

Λ
-

0
Λ

-

1

fields sources

• At NLO, the qq̄ dipole must be corrected by a gluon, e.g. :
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Inclusive DIS at NLO

k
-

P
-

Λ
-

0
Λ

-

1

fields sources

δT
NLO

T
LO

• At leading log accuracy, the contribution of the quantum
modes in that strip is :

δT
NLO

(~x⊥, ~y⊥) = ln

(
Λ−

0

Λ−
1

)
H T

LO
(~x⊥, ~y⊥)
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Inclusive DIS at NLO

• These NLO corrections can be absorbed in the LO result,

〈
T

LO
+ δT

NLO

〉
Λ−

0

=
〈
T

LO

〉
Λ−

1

provided one defines a new effective theory with a lower cutoff
Λ−

1 and an extended distribution of sourcesWΛ−
1
[ρ]:

k
-

P
-

Λ
-

1
Λ

-

0

fields sources

T
LO

WΛ−
1
≡

[
1+ ln

(
Λ−

0

Λ−
1

)
H
]
WΛ−

0
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Nucleus-Nucleus collisions
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Leading Log corrections in AA collisions

• By keeping only the terms that contain logarithms of the cutoff,
the NLO result can be written as :

ONLO =
Leading Log

[
log

(
Λ+

)
H1 + log

(
Λ−

)
H2

]
OLO

H1,2 : JIMWLK Hamiltonians for the two nuclei

• Note : the logs do not mix the two nuclei ⇒ Factorization
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Factorization of the logarithms

• By integrating over ρ1,2’s, one can absorb the logarithms into
universal distributionsW1,2[ρ1,2]

Inclusive observables at Leading Log accuracy

Oleading log =

∫ [
Dρ

1
Dρ

2

]
W1

[
ρ

1

]
W2

[
ρ

2

]
OLO︸︷︷︸

fixed ρ1,2

• Logs absorbed into the evolution ofW1,2 with the scales

Λ
∂W

∂Λ
= HW (JIMWLK equation)
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From dense to dilute
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Dense→ dilute limit

• Factorization in the saturated regime:

〈O〉
LLog

=

∫ [
Dρ

1
Dρ

2

]
W1 [ρ1

]
W2

[
ρ

2

]
O[ρ

1,2
]

(O[ρ
1,2

] can only be calculated numerically)

• When ρ
1
is a weak source (projectile 1 is dilute):

O[ρ
1,2

] =

∫
~k1⊥

ρ2
1
(~k1⊥) O2[~k1⊥, ρ2

] + ρ4
1
(~k1⊥) O4[~k1⊥, ρ2

] + · · ·

and O2[~k1⊥, ρ2
] has a compact analytical expression
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Dense→ dilute limit

• One gets the non-integrated gluon distribution:∫
[Dρ

1
] W1[ρ1

] ρ2
1
(~k1⊥) ≡ ϕ1(~k1⊥)

• The expectation value of O can be rewritten as

〈O〉
LLog

=

∫
~k1⊥

ϕ1(~k1⊥)

∫ [
Dρ

2

]
W2

[
ρ

2

]
O2[~k1⊥, ρ2

]

• O2[~k1⊥, ρ2
] is made of correlators of Wilson lines
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Example : heavy quarks production in pA collisions

Pair production cross-section:

dσqq̄

d2~p⊥d
2~q⊥dypdyq

=
α2
sN

8π4d
A

∫
~k1⊥,~k2⊥

δ(~p⊥ + ~q⊥ − ~k1⊥ − ~k2⊥)

k2
1⊥k

2
2⊥

×
{∫

~k⊥,~k
′
⊥

tr
[
(/q+m)Tqq̄(~k⊥)(/p−m)T∗

qq̄(~k
′
⊥)

]
φ(4)

A
(~k2⊥|~k⊥,~k

′
⊥)

+

∫
~k⊥

tr
[
(/q+m)Tqq̄(~k⊥)(/p−m)/L∗ + h.c.

]
φ(3)

A
(~k2⊥|~k⊥)

+tr
[
(/q+m)/L(/p−m)/L∗

]
φ(2)

A
(~k2⊥)

}
ϕ

1
(~k1⊥)

B standard factorization schemes broken for the nucleus: one needs three
different “distributions” in order to describe the target
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Target correlators

φ(2)
A

(~k2⊥) ∝
∫

~x⊥,~y⊥

ei
~k2⊥·(~x⊥−~y⊥) tr

〈
U(~x⊥)U

†(~y⊥)
〉

φ(3)
A

(~k2⊥|~k⊥) ∝
∫

~x⊥,~y⊥,~z⊥

ei
[
~k⊥·~x⊥+(~k2⊥−~k⊥)·~y⊥−~k2⊥·~z⊥

]
× tr

〈
Ũ(~x⊥)t

aŨ†(~y⊥)t
bUba(~z⊥)

〉

φ(4)
A

(~k2⊥|~k⊥,~k
′
⊥) ∝

∫
~x⊥,~y⊥,~x′

⊥,~y′
⊥

ei
[
~k⊥·~x⊥−~k

′
⊥·~x′

⊥+(~k2⊥−~k⊥)·~y⊥−(~k2⊥−~k
′
⊥)·~y′

⊥

]
× tr

〈
Ũ(~x⊥)t

aŨ†(~y⊥)Ũ(~y′
⊥)t

aŨ†(~x′
⊥)

〉
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Limit of Kt factorization

• In the single quark cross-section, the integration over the k
T
of

the antiquark simplifies φ(4)
A

into a 2-point function
• The quark cross-section factorizes in terms of transverse
momentum dependent distributions provided that the the
3-point and 2-point functions are related by:

φ(3)
A

(~k2⊥|~k⊥) = (2π)2
1

2

[
δ(~k⊥) + δ(~k⊥ − ~k2⊥)

]
φ(2)

A
(~k2⊥)

• This relation is satisfied if the QQ pair interacts with the target in
such a way that all the momentum exchanged goes to the quark
or to the antiquark

• The ratio φ(3)
A

(~k2⊥|~k⊥)/φA
(~k2⊥) should be close to the sum of

two delta functions for factorization to be approximately valid
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3-point / 2-point ratio
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Factorization violation for b quarks
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Factorization violation for c quarks
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When can we use standard PDFs?
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Definition

q(x,Q2) ∼

∫
d4y eiq·y

〈
Ψ(0) · · ·Ψ(y)

〉
G(x,Q2) ∼

∫
d4y eiq·y

〈
F(0) · · ·F(y)

〉

• In the OPE classification, these are leading twist operators
• OPE evolution : form a closed set that mix only within itself
• Universality : the same PDFs appear in all observables
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Collinear factorization

• From their operator definition, it is possible to calculate the
PDFs in the dense regime

• Nevertheless, their use would be dubious in this regime
because collinear factorization is broken by power corrections
that become large when k

T
. Qs

Ohadrons = f⊗ Opartons ⊕
∑
n≥1

(
Q2

s

k2
T

)n

︸ ︷︷ ︸
power corrections

Note : some nuclear effects (e.g. leading twist shadowing) may be
included in standard PDFs
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Collinear factorization

• Even when used in the non-saturated domain, PDFs may have
been contaminated by using DGLAP evolution at too low Q. The
initial scale Q0 should be large enough to mitigate this effect

Qs(x)

x

Q

10
-1

10
-2

10
-3

10
-4

10
-5

1 GeV

Q0
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Summary and Conclusions
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• Gluon saturation enhanced in nuclei, reached earlier than in
nucleons

• A form of factorization exists in the dense regime (established
at Next-to-Leading Log for DIS, at Leading Log for
nucleus-nucleus collisions)

• The universal object is a functional distribution of sources
• Complicated to use in practice (evolution hard to solve, initial
condition poorly constrained)

• When one of the projectiles is dilute, the observables depend
only on a few correlators of Wilson lines in the field of the
dense projectile. These correlators are universal but more of
them are needed for more complicated final states

• Collinear factorization in terms of nuclear PDFs valid when
k

T
� Qs. But beware of possible contamination by DGLAP

evolution in unsafe region

François Gelis, June 2017 28


