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Is  Antishadowing in DIS  
Non-Universal, Flavor-Dependent?

Do Nuclear PDFS 
Obey Momentum and other Sum Rules?
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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FIG. 3: (Color online) Comparison with experimental data of
R = F A

2 /F C,Li
2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 4: (Color online) Comparison with Drell-Yan data of

R = σpA
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DY . The ratios (Rexp − Rtheo)/Rtheo are shown.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.

5

Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].
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Figure 3.21: The ratio of nuclear over nucleon F2 structure function, R2, as a function of
Bjorken x, with data from existing fixed target DIS experiments at Q2 > 1 GeV2, along with
the QCD global fit from EPS09 [153]. Also shown are the respective coverage and resolution
of the same measurements at the EIC at Stage-I and Stage-II. The purple error band is the
expected systematic uncertainty at the EIC assuming a ±2% (a total of 4%) systematic error,
while the statistical uncertainty is expected to be much smaller.

suppressed by the small perturbative probing
size, they can be enhanced by the number of
nucleons at the same impact parameter in a
nucleus and large number of soft gluons in
nucleons. Coherent multiple scattering nat-
urally leads to the observed phenomena of
nuclear shadowing: more suppression when
x decreases, Q decreases, and A increases.
But, none of these dependences could have
been predicted by the very successful lead-
ing power DGLAP-based QCD formulation.

When the gluon density is so large at
small-x and the coherent multi-parton inter-
actions are so strong that their contributions
are equally important as that from single-
parton scattering, measurements of the DIS
cross-section could probe the new QCD phe-
nomenon - the saturation of gluons discussed
in the last section. In this new regime, which
is referred to as a Color Glass Condensate
(CGC) [137, 134], the standard fixed order
perturbative QCD approach to the coherent

multiple scattering would be completely in-
effective. The resummation of all powers of
coherent multi-parton interactions or new ef-
fective field theory approaches are needed.
The RHIC data [171, 172] on the correla-
tion in deuteron-gold collisions indicate that
the saturation phenomena might take place
at x ! 0.001 [171, 172]. Therefore, the re-
gion of 0.001 < x < 0.1, at a sufficiently
large probing scale Q, could be the most
interesting place to see the transition of a
large nucleus from a diluted partonic sys-
tem — whose response to the resolution of
the hard probe (the Q2-dependence) follows
linear DGLAP evolution — to matter com-
posed of condensed and saturated gluons.

This very important transition region
with Bjorken x ∈ (0.001, 0.1) could be best
explored by the EIC, as shown in Fig. 3.21.
At stage-I, the EIC will not only explore this
transition region, but will also have a wide
overlap with regions that have been and will
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

No anti-shadowing in deep inelastic neutrino scattering !

Is Anti-Shadowing Quark Specific?



The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Diffraction via Pomeron gives destructive interference!

Shadowing



Di�ractive DIS ep� epX where there is a large rapidity gap and the target
nucleon remains intact probes the final state interaction of the scattered quark
with the spectator system via gluon exchange.

Di�ractive DIS on nuclei eA� e⇥AX and hard di�ractive reactions such as
��A� V A can occur coherently leaving the nucleus intact.

Diffractive Deep Inelastic Scattering
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

β

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(

1 − y +
y2

2

)

σD(4)
r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫

dt σD(4)
r .
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interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
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by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
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defined via
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb



Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF !  

 Dynamical effect due to virtual photon interacting in nucleus

Stodolsky 
Pumplin, sjb 

Gribov

Shadowing depends on understanding leading twist-diffraction in DIS

Diffraction via Reggeon gives constructive interference!

Anti-shadowing not universal



The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

  Observed HERA DDIS produces nuclear shadowing

Interior nucleons shadowed



The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Regge

        constructive in phase
thus increasing the flux reaching N2

  Regge Exchange in DDIS produces nuclear anti-shadowing

Interior nucleons anti-shadowed

Schmidt, Lu, Yang, sjb
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N N 0

Reggeon Exchange Contribution to DDIS

V ⇤

�⇤n ! pV ⇤�



Non-singlet 
Reggeon 
Exchange

x0.5

Kuti-Weisskopf 
behavior

F2p(x)� F2n(x) / x

1/2

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

↵R ' 1/2



Regge Behavior of  Scattering Amplitudes

d�

dt
/ |M |2

s2

R = Pomeron(↵P ' 1 + ✏), C = +, phase = Imaginary

Odderon(↵O ' 1), C = �, phase = Real

Reggeon(↵R ' 1/2), C = ±, phase = Real + Imaginary

FP(↵FP ' 0), C = +, phase = Real

F2(x) ⇠ x

1�↵R

M =
X

R

s↵R(t)FR(t)ei�R



Origin of Regge Behavior of        Deep 
Inelastic Structure Functions

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1 gives F2N ⇥
x1��R

Nonsinglet Kuti-Weissko� F2p � F2n ⇤
⌅

xbj
at small xbj.

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

Landshoff, 
Polkinghorne, Short 

Close, Gunion, sjb 

Schmidt, Yang,  Lu, 
sjb 

F2p(x)� F2n(x) / x

1/2



Reggeon Exchange

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Phase of two-step amplitude relative to one
step:

1⇧
2
(1� i)⇥ i = 1⇧

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Di�erent for couplings of �⇤, Z0, W±

↵R ' 1/2

Test: Tagged Drell-Yan



�

I=1 Reggeon Exchange on N1 

Two-step and One-Step Glauber processes

Regge Phase can give 
constructive 
interference!

N N’

N N’

� X

X

N2

N2 Anomalous 
Z, A-Z dependence

V



Nuclear Antishadowing not universal !

Lu, Schmidt, Yang; sjb

Modifies 
NuTeV extraction of 

sin2 �W

Test in flavor-tagged  
DIS at the EIC 



Shadowing and Antishadowing  of DIS 
Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, “Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

Modifies 
NuTeV extraction of 

sin2 �W

Test in flavor-tagged  
lepton-nucleus collisions
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A-1

�⇤

N
interior

Two-Step Process in the  q+=0 Parton Model Frame

Front-Face Nucleon remains intact

q+ = 0

Q2 q2
? = Q2 = �q2

Illustrates the LF time sequence

N
front�face



A

q+ = 0 q2
? = Q2 = �q2

A-1

One-Step / Two-Step Interference
Front-Face Nucleon N1 not struckFront-Face Nucleon N1 struck

�⇤

Q2
�⇤

Study Double Virtual Compton Scattering �⇤A! �⇤A

Illustrates the
LF time sequence

Cannot reduce to matrix element of local operator!  No Sum Rules!

N1
N2 N2

N1
A

Q2

Liuti, sjbLFWFs are real for stable hadrons, nuclei



Crucial JLab Experiments
• Measure Diffractive DIS:   Agree with 

Shadowing of Nuclear Structure 
Functions? 

• Isospin Dependence of Diffractive DIS — 
Reggeon Exchange -  

• Use deuteron: see n to p 

• Flavor Dependence of Antishadowing: 
Tagged Quark Distributions? 



“Handbag” Approximation
• Parton model: assumes current-current correlator carried by single 

quark propagator at high photon virtuality 

• Imaginary Part of  Virtual Forward Compton Amplitude gives DIS 
structure Functions 

• Leading-Twist Dominance — Motivated by the Operator Product 
Expansion 

• Produces Momentum and  Baryon Number Sum Rules 

• Real Part: J=0 Fixed Pole from local two-photon operators 

• Will show: Handbag Approximation invalid for DVCS on a nuclear 
target because of shadowing, antishadowing! 

• Recall:  Sivers Effect and Diffractive DIS are leading twist!

g



Handbag modified by leading-twist lensing!



25

Color Transparency

• Fundamental test of gauge theory in hadron physics 

• Small color dipole moment interacts weakly in nuclei 

• Complete coherence at high energies 

• Many tests in hard exclusive processes 

• Clear Demonstration of CT from Diffractive Di-Jets 

• Explains Baryon Anomaly at RHIC

Bertsch, Gunion, Goldhaber, sjb 
Mueller, sjb 

Frankfurt, Strikman, Miller

d�

dt
(eA! ep(A� 1)) = Z

d�

dt
(ep! ep) at high momentum transfer

See Strikman Talk



p 

p’ 

Color Transparency
d�

dt
(eA! ep(A� 1)) = Z

d�

dt
(ep! ep)

e

e’

�⇤

• Small color dipole moment interacts weakly in nuclei

ep! e0p0

A
eA! e0p0(A� 1)

A.H. Mueller and sjb



Fermilab E791 Experiment, Ashery et al.

Small color-dipole moment pion not absorbed;  
interacts with each nucleon coherently  

QCD COLOR Transparency

q

q̄

g

�
q

q̄

g

�

q

q̄

g

�
N

M � i s �2
s b⇥

⇥ bN
⇥

⇤ � �4
s (b⇥

⇥)2 (bN
⇥)2

M � b⇥

M � s

q

q̄

Target left intact

Diffraction, Rapidity gap

MA = A MN

d⇤
dt (⇥A � qq̄A⇤) = A2 d⇤

dt (⇥N � qq̄N ⇤) F2
A(t)

M ⇥ i s �2
s b⇥

⌅ bN
⌅

⇤ ⇥ �4
s (b⇥

⌅)2 (bN
⌅)2

M ⇥ b⌅

M ⇥ s

q

MA = A MN

d⇤
dt (⇥A � qq̄A⇤) = A2 d⇤

dt (⇥N � qq̄N ⇤) F2
A(t)

M ⇥ i s �2
s b⇥

⌅ bN
⌅

⇤ ⇥ �4
s (b⇥

⌅)2 (bN
⌅)2

M ⇥ b⌅

M ⇥ s

q

A

A⇥

� = x� = ct � x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)

A

A⇥

� = x� = ct � x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)

Frankfurt Miller Strikman

large k?, small b?



E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

Measure pion LFWF in diffractive dijet production  
Confirmation of color transparency  

Mueller, sjb; Bertsch et al; 
Frankfurt, Miller, Strikman

Conventional Glauber Theory Ruled Out ! Factor of 7

Ashery E791 
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Figure 7: (left) p/π and p̄/π ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for π± (π0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ γ+q , (4.3)

with q+ q̄→ γ + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from π0 → γ+ γ and η → γ+ γ decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a π0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius Δr =
√

(Δη)2+(Δφ)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter (Δη×Δφ ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent γ and π0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4

11

Particle ratio changes with centrality! 
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Figure 7: (left) p/π and p̄/π ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for π± (π0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ γ+q , (4.3)

with q+ q̄→ γ + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from π0 → γ+ γ and η → γ+ γ decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a π0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius Δr =
√

(Δη)2+(Δφ)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter (Δη×Δφ ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent γ and π0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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Peripheral  

Central  

Protons less absorbed  
in nuclear collisions than pions 

because of  dominant 
color-transparent higher twist process

Tannenbaum:  
Baryon Anomaly

Arleo, Hwang, Sickles, sjb



Evidence for  Direct, Higher-Twist,  
Color Transparent Subprocesses at RHIC

• Anomalous power behavior at fixed xT 

• Protons more likely to come from direct 
subprocess than pions 

• protons not from jets!  No same-side hadrons 

• Protons less absorbed than pions in “central” 
nuclear collisions because of color transparency 

• Predicts increasing proton to pion ratio in 
“central” collisions 

• Exclusive-inclusive connection at xT = 1

EIC:  Resolves complex physics signals at hadron and ion colliders



General remarks about orbital angular mo-
mentum
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deuteron

Nuclear Physics: 
Two color-singlet combinations of three 3C

n

p

⇤d(xi,�k⇧i) = ⇤body
d ⇥ ⇤n ⇥ ⇤p

Antiquark interacts with target nucleus at
energy ŝ ⌅ 1

xbj

Regge contribution: ⇥q̄N ⇤ ŝ�R�1 gives F2N ⇤
x1��R

Nonsinglet Kuti-Weissko� F2p � F2n ⌅
⌃

xbj
at small xbj.

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

Weak binding:



General remarks about orbital angular mo-
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5 X 5  Matrix Evolution Equation  for deuteron 
distribution amplitude

General remarks about orbital angular mo-
mentum
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Lepage, Ji, sjb



dσ
dt (γd! ∆++∆�)' dσ

dt (γd! pn) at high Q2

dσ
dt (γd! ∆++∆�)' dσ

dt (γd! pn) at high Q2

Lepage, Ji, sjb
• Deuteron six-quark wavefunction:

•  5 color-singlet combinations of six color-triplets -- 

• Only one of the five states  is |n  p>

• Components evolve towards equality at short distances

• Hidden color states dominate deuteron form factor and 
photodisintegration at high momentum transfer

• Dominates x > 1 domain of deep inelastic scattering on nuclei:  
quark carries momentum of more than one nucleus!

Hidden Color in QCD

Gluon or Quark Exchange within nucleus



    Hidden Color in QCD

• Deuteron six-quark wavefunction 

•  5 color-singlet combinations of 6 color-triplets --      
only one state  is  | n  p> 

• Components evolve towards equality at short distances 

• Hidden color states dominate deuteron form factor and 
photodisintegration at high momentum transfer 

• Expense Dominance at x > 1 

• Predict 

dσ
dt (γd! ∆++∆�)' dσ

dt (γd! pn) at high Q2

dσ
dt (γd! ∆++∆�)' dσ

dt (γd! pn) at high Q2

Lepage, Ji, sjb

Study the Deuteron as a QCD Object



Asymptotic Solution has Expansion

Deuteron six-quark state has five color-singlet 
configurations, only one of which is n-p.

ERBL Evolution: Transition to Delta-Delta

Hidden Color of Deuteron

Lepage, Ji, sjb
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QCD Prediction for Deuteron Form Factor 

Define “Reduced” Form Factor

Same large momentum transfer 
behavior as pion form factor

Lepage, Ji, sjb



Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidt, and Alfredo Vega

Nuclear physics in soft-wall AdS/QCD: deuteron 
electromagnetic form factors

FD(Q2) ⌘ fD(Q2)Fp(
Q2

4
)Fn(

Q2

4
)

2

Then we derive the Schrödinger-type equation of motion (EOM) for the bulk profile Φn(z) with

[

−
d2

dz2
+

4(L+ 4)2 − 1

4z2
+ κ4z2 + κ2U0

]

Φn(z) = M2
d,nΦn(z) . (4)

The analytical solutions of this EOM read

Φn(z) =

√

2n!

(n+ L+ 4)!
κL+5 zL+9/2 e−κ2z2/2 LL+4

n (κ2z2) ,

M2
d,n = 4κ2

[

n+
L+ 5

2
+

U0

4

]

, (5)

where Lm
n (x) are the generalized Laguerre polynomials. Restricting to the ground state (n = 0, L = 0) we get

Md = 2κ
√

5
2 + U0

4 . Using the experimental value of the deuteron mass Md = 1.875613 GeV and κ = 190 MeV

(constrained by data on electromagnetic deuteron form factors), we fix U0 = 87.4494. Note that the scale parameter
κ = 190 MeV is two times smaller than the corresponding parameter for the nucleon [3], which means that the size
of deuteron is two times larger than the one of the nucleon.
In the case of the vector field dual to the electromagnetic field we perform a Fourier transform with respect to the

Minkowski coordinate

Vµ(x, z) =

∫

d4q

(2π)4
e−iqxVµ(q)V (q, z) (6)

where V (q, z) is its bulk profile obeying the following EOM

∂z

(

e−ϕ(z)

z
∂zV (q, z)

)

+ q2
e−ϕ(z)

z
V (q, z) = 0 . (7)

Its analytical solution [1] can be written in the form of an integral representation introduced in Ref. [13]

V (Q, z) = κ2z2
1

∫

0

dx

(1− x)2
e−κ2z2x/(1−x) xa , a =

Q2

4κ2
, Q2 = −q2 . (8)

The gauge-invariant matrix element describing the interaction of the deuteron with the external vector field (dual to
the electromagnetic field) reads

Mµ
inv(p, p

′) = −

(

G1(Q
2)ϵ∗(p′) · ϵ(p)−

G3(Q2)

2M2
d

ϵ∗(p′) · q ϵ(p) · q

)

(p+ p′)µ

− G2(Q
2)

(

ϵµ(p) ϵ∗(p′) · q − ϵ∗µ(p′) ϵ(p) · q

)

(9)

where ϵ(ϵ∗) and p(p′) are polarization and four–momentum of the initial (final) deuteron, with q = p′ − p being the
momentum transfer. The three EM form factors G1,2,3 of the deuteron are related to the charge GC , quadrupole GQ

and magnetic GM form factors by

GC = G1 +
2

3
τdGQ , GM = G2 , GQ = G1 −G2 + (1 + τd)G3, τd =

Q2

4M2
d

. (10)

These form factors are normalized at zero recoil as

GC(0) = 1 , GQ(0) = M2
dQd = 25.83 , GM (0) =

Md

MN
µd = 1.714 , (11)

where Md and MN are deuteron and nucleon masses, Qd = 7.3424 GeV−2 and µd = 0.8574 are the quadrupole
and magnetic moments of the deuteron. Since the deuteron is a spin–1 particle it has three EM form factors in the
one–photon–exchange approximation, due to current conservation and the P and C invariance of the EM interaction.

AdS/QCD,  LF Holography

Chertok, sjb

Ji, Lepage, sjb

Katz, et al

de Tèramond, sjb

3

In our approach the deuteron form factors Gi(Q2), i = 1, 2, 3 are given by the analytical expressions [3]

G1(Q
2) = F (Q2) , Gi(Q

2) = ciF (Q2) , i = 2, 3 (12)

where F (Q2) is the universal form factor predicted by soft-wall AdS/QCD, which is given by the overlap of the square
of bulk profile dual to deuteron wave function and the confined electromagnetic current

F (Q2) =

∞
∫

0

dzΦ2(z)V (Q, z) =
Γ(6)Γ(a+ 1)

Γ(a+ 6)
(13)

where a = Q2/(4κ2). The form factor F (Q2) has the correct power-scaling F (Q2) ∼ 1/(Q2)5 at large Q2 → ∞. Also,
it can be written in the Brodsky-Ji-Lepage form derived within perturbative QCD, which gives the factorization of
the deuteron form factor in terms of the nucleon form factor FN (Q2/4) and the so-called “reduced” nuclear form
factor fd(Q2) [9]: Fd(Q2) = fd(Q2)F 2

N (Q2/4). In particular, our result reads

Fd(Q
2) ≡ F (Q2) =

Γ(6)Γ(a+ 1)

Γ(a+ 6)
=

5!

(a+ 1) . . . (a+ 5)
= fd(Q

2)F 2
N (Q2/4) (14)

where our predictions for fd(Q2) and FN (Q2/4) are

fd(Q
2) =

30(a+ 1)(a+ 2)

(a+ 3)(a+ 4)(a+ 5)
, FN (Q2/4) =

2

(a+ 1)(a+ 2)
(15)

where a = Q2/(4κ2). Our predictions for the charge GC(Q2), quadrupole GQ(Q2) and magnetic GM (Q2) form factors
are in good agreement with data (see Figs.1-3). The data points are taken from Ref. [5, 7]. Also we would like to note

that our result for the deuteron charge radius rC = (−6dGC(Q2)/dQ2|Q2=0)
1/2 =

√

137
40κ2 −Qd = 1.846 fm compares

well with data rC = 2.130± 0.010 fm [4].
In conclusion, we stress again the main result of this paper. As a further application of the soft-wall AdS/QCD

model we calculated the deuteron electromagnetic form factors, which are given by analytical expressions in terms of
a universal form factor F (Q2). In comparison with other theoretical approaches our framework gives a description of
the deuteron form factors in a very simple form and with the use of four free parameters. Two of them, c2 and c3,
are fixed by the normalization of the deuteron form factors, the parameter U0 is fixed using the deuteron mass and
the parameter κ is related to the nucleon size.
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Valparáıso, Chile for warm hospitality.

[1] A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74, 015005 (2006).
[2] O. Andreev, Phys. Rev. D 73, 107901 (2006); S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 77, 056007 (2008).
[3] T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012); Phys. Rev. D 86, 036007

(2012); Phys. Rev. D 87, 016017 (2013); Phys. Rev. D 87, 056001 (2013); A. Vega, I. Schmidt, T. Branz, T. Gutsche and
V. E. Lyubovitskij, Phys. Rev. D 80, 055014 (2009); T. Branz, T. Gutsche, V. E. Lyubovitskij, I. Schmidt, A. Vega, Phys.
Rev. D 82, 074022 (2010).

[4] M. Garcon and J. W. Van Orden, Adv. Nucl. Phys. 26, 293 (2001).
[5] D. Abbott et al. [JLAB t20 Collaboration], Eur. Phys. J. A 7, 421 (2000).
[6] M. Kohl, Nucl. Phys. A 805, 361 (2008).
[7] R. J. Holt and R. Gilman, Rept. Prog. Phys. 75, 086301 (2012).
[8] R. G. Arnold, C. E. Carlson and F. Gross, Phys. Rev. C 21, 1426 (1980); Phys. Rev. C 23, 363 (1981).
[9] S. J. Brodsky, C. R. Ji and G. P. Lepage, Phys. Rev. Lett. 51, 83 (1983).

[10] S. Kolling, E. Epelbaum and D. R. Phillips, Phys. Rev. C 86, 047001; E. Epelbaum, A. M. Gasparyan, J. Gegelia and
M. R. Schindler, Eur. Phys. J. A 50, 51 (2014).

[11] Y. B. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. C 78, 035205 (2008).
[12] A. Buchmann, Y. Yamauchi and A. Faessler, Phys. Lett. B 225, 301 (1989).
[13] H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 76, 095007 (2007).

a = Q2/42 = Q2/m2
⇢ Q2fd(Q2)! const



Shadowing of ⇤q̄M produces shadowing of
nuclear structure function.

�

R =
d⇤
dt (�d⇥�++���)

d⇤
dt (�d⇥pn)

should be an increasing function of t.

At small t one can generate �++�� from
np by final-state ⇥+ exchange. However, the

Compare

dp ⇤�++��+ p

dp ⇤ p n + p

at high t.

Use deuteron beam

⌅ ⌅

• Measure Elastic Proton-Proton Scattering

Compare

dp ⇤�++��+ p

dp ⇤ p n + p

at high t.

Use deuteron beam

⌅ ⌅

• Measure Elastic Proton-Proton Scattering

Test QCD scaling in hard exclusive nuclear
amplitudes

Manifestations of Hidden Color in Deuteron
Wavefunction

pp� d�+

pd� pd

pp� �c(cud)D0(cu)p

p

⇥(pp� cX)

Total open charm cross section at threshold

⇥(pp� cX) ⇥ 1µb

needed to explain Krisch ANN

Compare with strangeness channels

pp� �(sud)K+(su)p

Compare

dp ⇤�++��+ p

dp ⇤ p n + p

at high t.

Use deuteron beam

⌅ ⌅

• Measure Elastic Proton-Proton Scattering

vs.

Ratio predicted to approach 2:5

Compare

dp ⇥�++��+ p

dp ⇥ p n + p

at high t.

Use deuteron beam

⇤ ⇤

Test of Hidden Color in Deuteron Photodisintegration

Test QCD scaling in hard exclusive nuclear
amplitudes

Manifestations of Hidden Color in Deuteron
Wavefunction

pp� d�+

pd� pd

Shadowing of ⇤q̄M produces shadowing of
nuclear structure function.

�

R =
d⇤
dt (�d⇥�++���)

d⇤
dt (�d⇥pn)

should be an increasing function of t.

At small t one can generate �++�� from
np by final-state ⇥+ exchange. However, the

Shadowing of ⇤q̄M produces shadowing of
nuclear structure function.

�

R =
d⇤
dt (�d⇥�++���)

d⇤
dt (�d⇥pn)

should be an increasing function of t.

At small t one can generate �++�� from
np by final-state ⇥+ exchange. However, the

Ratio should grow with transverse momentum as the hidden color 
component of the deuteron  grows in strength. 

Possible contribution from pion charge exchange at small t.



Deuteron Photodisintegration 

PQCD and AdS/CFT:

sntot�2dσdt (A+B!C+D) =
FA+B!C+D(θCM)

s11dσdt (γd! np) = F(θCM)

ntot�2=
(1 + 6 + 3+ 3 ) - 2 = 11

Reflects conformal invariance  



Tests of Novel QCD Effects in Nuclei  Stan Brodsky
CDR QCD:  

Partons and Nuclei    
Orsay,  June 1, 2017

• Control Collisions of Flux Tubes and Ridge Phenomena 

• Study Flavor-Dependence of Anti-Shadowing 

• Heavy Quarks at Large x; Exotic States 

• Direct, color-transparent hard subprocesses and the baryon anomaly 

• Tri-Jet Production and the proton’s LFWF 

• Odderon-Pomeron Interference 

• Digluon-initiated subprocesses and anomalous nuclear dependence 
of quarkonium production 

• Factorization-Breaking Lensing Corrections

Novel QCD Physics at the EIC



Each element of  
flash photograph   

illuminated   
along the light front  

at a fixed 

� = t + z/c

Evolve in LF time

P� = i
d

d�

HQCD
LF |�h >= M2

h|�h >

P� =
M2 + ~P 2

?
P+

Eigenvalue



Advantages of the Dirac’s Front Form for Hadron Physics

• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent: no boosts, no pancakes! 

• Same structure function measured at an e p collider and 
the proton rest frame 

• No dependence on observer’s frame 

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no vacuum condensates! 

• Profound implications for Cosmological Constant

Roberts, Shrock, Tandy, sjb

Independent of Observer’s Motion
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ẑ

↵L = ↵R⇥ ↵P

↵Li = (xi
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A(⇤,�⇤) = 1
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xiP
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ẑ

L = R⇥ P

Li = (xi
R⇤+b⇤i)⇥ P

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

x =
k+

P+
=

k0 + k3

P 0 + P 3

Measurements of hadron LF 
wavefunction are at fixed LF time

Like a flash photograph xbj = x =
k

+

P

+

 n(xi,
~

k?i ,�i)

e

e’

Eigenstate of LF Hamiltonian :  
Off-shell in  Invariant Mass



General remarks about orbital angular mo-
mentum
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xi
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i xi = 1
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↵⇧i = ↵Li � xi
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xiP
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2p·q

ẑ

L = R⇥ P

Li = (xi
R⇤+b⇤i)⇥ P

Light-Front Wavefunctions:  rigorous representation of composite 
systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Causal, Frame-independent.  Creation Operators on Simple Vacuum, 
Current Matrix Elements are Overlaps of LFWFS

|p, Jz >=
X

n=3

 n(xi,
~

k?i,�i)|n;xi,
~

k?i,�i >

Invariant under boosts!  Independent of P
μ 

Eigenstate of LF Hamiltonian : Off-shell in  Invariant Mass

 n(xi,
~

k?i ,�i)

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Fixed LF time

Sum Rules



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

+ Factorization-Breaking Lensing Corrections: Sivers, T-odd 



|p,Sz>= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi>|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

~k?i =~0?.

sum over states with n=3, 4, ...constituents

Intrinsic heavy quarks    s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep⇥ e�+n

P�/p ⇤ 30%

Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Deuteron: Hidden Color

Fixed LF time
⌧ = t + z/c



! E866/NuSea (Drell-Yan)

Intrinsic sea quarks

d̄(x) �= ū(x)

Interactions of quarks at same
rapidity in 5-quark Fock state



Do heavy quarks exist in the proton at high x?

Conventional wisdom:
gluon splitting

Heavy quarks generated only at low x 
via DGLAP evolution 
from gluon splitting

Conventional wisdom is wrong even in QED!

s(x, µ

2
F ) = c(x, µ

2
F ) = b(x, µ

2
F ) ⌘ 0

at starting scale Q2
0 = µ2

F

Maximally off-shell  -  requires low x, high W2 

g Q

Q



• Non-symmetric strange and antistrange sea? 

• Non-perturbative physics; e.g  

• Important for interpreting NuTeV anomaly 

|uudss̄ >' |�(uds)K+(s̄u) >

k2
F /

�k2
?

1�x

⇤(Q2, Q2
0) = 1

4⌅

R Q2

Q2
0

d�2 �s(�2)
�2

⇤(Q2, Q2
0) = 1

4⌅

R Q2

Q2
0

d�2 �s(�2)

�2+
k2?
1�x

⇥p! J/⇧p

⇥d! J/⇧np

s

s̄

|uudss̄ >' |�(uds)K+(s̄u) >

ep ! e0KX

k2
F /

�k2
?

1�x

⇥(Q2, Q2
0) = 1

4⇤

R Q2

Q2
0

d⌦2 �s(⌦2)
⌦2

s

s̄

|uudss̄ >' |�(uds)K+(s̄u) >

ep ! e0KX

k2
F /

�k2
?

1�x

⇥(Q2, Q2
0) = 1

4⇤

R Q2

Q2
0

d⌦2 �s(⌦2)
⌦2

Measure strangeness distribution  
in Semi-Inclusive DIS at JLab

Is s(x) = s̄(x)?

Tag struck quark flavor in semi-inclusive DIS ep! e0K+X

B. Q. Ma, sjb



Barger, Halzen, Keung

Evidence for charm at large x

intrinsic charm



• EMC data: c(x, Q2) > 30�DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp⇤ J/�X

• High xF pp⇤ J/�J/�X

• High xF pp⇤ �cX

• High xF pp⇤ �bX

• High xF pp⇤ ⇥(ccd)X (SELEX)

Critical Measurements at threshold for JLab, PANDA
Interesting spin, charge asymmetry, threshold, spectator effects

Important corrections to B decays; Quarkonium decays

Gardner, Karliner, sjb



Some Key QCD Issues in Electroproduction

• Intrinsic Heavy Quarks at high x;  

• Role of Color Confinement in DIS 

• Hadronization at the Amplitude Level 

• Leading-Twist Lensing: Sivers Effect 

• Diffractive DIS 

• Static versus Dynamic Structure Functions 

• Origin of Shadowing and Anti-Shadowing 

• Is Anti-Shadowing Non-Universal: Flavor Specific? 

• Nuclear Correlations and Effects 

s(x) 6= s̄(x)



Do heavy quarks exist in the proton at high x?

Conventional wisdom: impossible!

Standard Assumption: Heavy quarks are generated 
via DGLAP evolution 
from gluon splitting

Conventional wisdom is wrong even in QED!

s(x, µ

2
F ) = c(x, µ

2
F ) = b(x, µ

2
F ) ⌘ 0

at starting scale µ2
F



56

• Rigorous prediction of QCD, OPE

• Color-Octet Color-Octet Fock State! 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production at 
high xF (Kopeliovich, Schmidt, Soffer, Goldhaber, sjb)

• Severely underestimated in conventional parameterizations of heavy 
quark distributions (Pumplin, Tung)

• Many empirical tests  (Gardener, Karliner, ..)

PQQ̄ ⇥
1

M2
Q

Pcc̄/p � 1%

Q

Q̄

b⇤ = O(1/MQ)

�(DDIS)
�(DIS) �

�2
QCD

M2
Q

PQQ̄ ⇥
1

M2
Q

Pcc̄/p � 1%

Q

Q̄

b⇤ = O(1/MQ)

�(DDIS)
�(DIS) �

�2
QCD

M2
Q

PQQ̄ ⇤
1

M2
Q

PQQ̄QQ̄ � �2
sPQQ̄

Pcc̄/p ⇥ 1%

Q

Q̄

b⌅ = O(1/MQ)

Hoyer, Peterson, Sakai, sjb

Intrinsic Heavy-Quark Fock States
M. Polyakov, et. al



J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for Intrinsic Charm

Measurement of Charm Structure  
Function! 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

factor of 30 !

Two Components (separate evolution):

c(x, Q

2) = c(x, Q

2)
extrinsic

+ c(x, Q

2)
intrinsic

gluon splitting 
(DGLAP)

Hoyer, Peterson, Sakai, sjb



Ratio 
insensitive to 

gluon PDF, 
scales

�⇥(p̄p� �cX)
�⇥(p̄p� �bX)

Signal for 
significant IC  

at x > 0.1 

Measurement of !þ bþ X and !þ cþ X Production Cross Sections
in p !p Collisions at

ffiffiffi
s

p ¼ 1:96 TeV
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Figure 3: The cross section of inclusive Higgs production in fb, coming

from the nonperturbative intrinsic bottom distribution, at both LHC

(
√

s = 14 TeV, solid curve) and Tevatron (
√

s = 2 TeV, dashed curve)

energies.

that the cross section for inclusive Higgs production from intrinsic bottom is much

higher than the one coming from intrinsic charm. Although it is true that the Higgs-

quark coupling, proportional to mQ, cancels in the cross section with PIQ ∝ 1/m2
Q,

the matrix element between IQ and Higgs wave functions has an additional mQ factor.

This is because the Higgs wave function is very narrow and the overlap of the two

wave functions results in ΨQQ(0) ∝ mQ. Thus, the cross section rises as m2
Q, as we

see in the results.

We can compare our predictions for inclusive Higgs production coming from

IB with our previous ansatz for the Higgs production gluon-gluon fusion process

xdN/dx = 6(1 − x)5. At the maximum (xF = 0.9) of the IB curve we get a value of

roughly 50 fb, while there gluon-gluon gives 0.067 fb. Thus this high-xF region is the

ideal place to look for Higgs production coming from intrinsic heavy quarks.

We obtain essentially the same curves for Tevatron energies (
√

s = 2 TeV) , al-

though the rates are reduced by a factor of approximately 3.

We also show in Fig.4 the results for Higgs production coming from the perturba-

tive charm distribution. The magnitude of the production cross section is considerably
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threshold in σ/v, where it is expected to dominate (here
v = 1/16π(s − m2

p)
2 is the usual phase space factor). It

produces the ηcp, χcp and other C even resonances, but
also J/ψ.

For elastic charm production (when the proton target
remains bound), it is also necessary to take into account
the recombination of the three valence quarks into the
proton via its form factor, as well as the coupling of the
photon to the cc pair. For two gluon exchange the cross
section of the γp → J/ψp takes the form:

dσ

dt
= N2gv

(1 − x)2

R2M2
F 2

2g(t)(s − m2
p)

2 (3)

while for three gluon exchange it takes the form:

dσ

dt
= N3gv

(1 − x)0

R4M4
F 2

3g(t)(s − m2
p)

2 (4)

where F2g(t) and F3g(t) are proton form factors that take
into account the fact that the three target quarks recom-
bine into the final proton after the emission of two or
three gluons. While they are analogous to the proton
elastic form factor F1(t), they are not known. In the
numerical applications, we have parameterized them as
F 2 = exp(1.13t), according to the experimental t de-
pendency of the cross section [11]. The (s − m2

p)
2 term

comes from the coupling of the incoming photon to the
cc pair and the spin-1 nature of gluon exchange (see,
for instance, Ref. [12]). It compensates the same term
in the phase space v. The normalization coefficient N
is determined assuming that each channel saturates the
experimental cross section measured at SLAC [13] and
Cornell [11] around Eγ = 12 GeV.
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FIG. 3. Variation of the J/ψ photoproduction cross sec-
tion near threshold. Solid line: two gluon exchange (Eqs. 3).
Dashed line: three gluon exchange (Eq. 4).

Notice that expressions (3) and (4) are valid in a lim-
ited energy range near threshold, where x ∼ 1. To be

more specific, x = 0.82 at Elab
γ = 10 GeV and x = 0.69

at Elab
γ = 12 GeV. So we expect that our model still

makes sense up to the lowest energy range where exper-
imental data exist. At higher energies one has to rely on
the variation of the gluon distribution in the vicinity of
x ∼ 0 to reproduce the steep rise of charm photoproduc-
tion [16,17] above Elab

γ ≈ 100 GeV (x ≤ 0.082).
As shown in Fig. 3, the threshold dependence of our

conjectured cross sections (3) and (4) is consistent with
the scarce existing data [11,13]. Indeed, there is also
evidence [14] that the energy dependence of the J/ψ
elastic photoproduction cross section at forward angles
is roughly flat up to Eγ ≈ 12 GeV, in contrast to the
steep variation observed at higher energies. More accu-
rate measurements of the J/ψ elastic photoproduction
cross section up to about 20 GeV are clearly needed.

The existence of five-quark resonances near threshold
in the γp → pcc̄ process [15] would modify our picture.
However, the qualitative features of the two- and three-
gluon-exchange cross sections (which differ by orders of
magnitude near threshold) should remain valid.

On few body targets, each exchanged gluon may cou-
ple to a colored quark cluster and reveal the hidden-color
part of the nuclear wave function, a domain of short-
range nuclear physics where nucleons lose their identity.
The existence of such hidden-color configurations is pre-
dicted by QCD evolution equations [3]. It is striking that
in γd → J/ψpn, (Fig. 4), the |B8B8 > hidden-color state
of the deuteron couples so naturally via two gluons to
the J/ψpn final state [18], since the coupling of a single
gluon to a three-quark cluster turns it from a color octet
to a singlet.

γ ψ

FIG. 4. The simplest diagram which reveals a hid-
den-color state in deuterium [18].

When the nucleon is embedded in a nuclear medium,
two mechanisms govern the photo- and electroproduc-
tion of J/ψ mesons. The first, the quasi-free production
mechanism, contributes the following cross section to the
γd → J/ψpn reaction, when integrated over the angles
of the spectator neutron [19]:

dσ

dtd | n⃗ |
=

dσ

dt

∣

∣

∣

∣

γp→J/ψp

4πn⃗2ρ(| n⃗ |) (5)

∫

ρ(| n⃗ |)dn⃗ = 1 (6)

SLAC

Cornell

two factors: a heavy quark loop diagram connecting the
photons to the exchanged gluons, times the gauge invari-
ant matrix element of a product of gluon field strengths
< p|Gn

µν |p >. Because of the non-Abelian coupling, a sin-
gle field strength can correspond to one or two exchanged
gluons. For heavy quark masses, m2

Q ≫ Λ2
QCD the heavy

quark loop contracts to an effective local operator, so that
the field strengths in the matrix element are all evaluated
at the same local point. The minimal gluon exchange
contribution (n = 2) gives the leading twist photon-
gluon fusion contribution. Since < p|Gn|p > scales as

(Λ2
QCD)

n−1
, each extra gluon field strength connecting

to the heavy quark loop must give a factor of (1/m2
Q).

(Higher derivatives in the matrix element are further sup-
pressed.) Thus one pays a penalty of a factor (Λ2/m2

Q) as
the number of exchanged gluon fields is increased. How-
ever, as we shall see, the suppression from the multiple
gluon exchange contributions are systematically compen-
sated by fewer powers of energy threshold factors, so that
at threshold multi-gluon contributions will dominate. A
similar effective field theory operator analysis has been
used [4] to estimate the momentum fraction carried by
intrinsic heavy quarks in the proton [5,6].

In this paper, we will use reasonable conjectures for
the short distance behavior of hadronic matter inferred
from properties of perturbative QCD and effective heavy
quark field theory to estimate the behavior of the reaction
cross section.

The effective proton radius in charm photoproduction
near threshold can be determined from the following ar-
gument [7,8]. As indicated in Fig. 2a, most of the pro-
ton momentum may first be transferred to one (valence)
quark, followed by a hard subprocess γq → ccq. If the
photon energy is Eγ = ζEth

γ , where Eth
γ is the energy

at kinematic threshold (ζ ≥ 1), the valence quark must
carry a fraction x = 1/ζ of the proton (light-cone) mo-
mentum. The lifetime of such a Fock state (in the light-
cone or infinite momentum frame) is τ = 1/∆E, where

∆E =
1

2p

[

m2
p −

∑

i

p2
i⊥ + m2

i

xi

]

≃
Λ2

QCD

2p(1 − x)
(1)

For x = 1/ζ close to unity such a short lived fluctuation
can be created (as indicated in Fig. 2a) through momen-
tum transfers from valence states (where the momentum
is divided evenly) having commensurate lifetimes τ and
transverse extension

r2
⊥ ≃

1

p2
⊥

≃
ζ − 1

Λ2
QCD

(2)

This effective proton size thus decreases towards thresh-
old (ζ → 1), reaching r2

⊥ ≃ 1/m2
c at threshold (ζ − 1 ≃

Λ2
QCD/m2

c).
As the lifetimes of the contributing Fock states ap-

proach the time scale of the cc creation process, the time

ordering of the gluon exchanges implied by Fig. 2a ceases
to dominate higher-twist contributions such as that of
Fig. 2b [8]. There are in fact reasons to expect that the
latter diagrams give a dominant contribution to charmo-
nium production near threshold. First, there are many
more such diagrams. Second, they allow the final state
proton to have a small transverse momentum (the glu-
ons need p⊥ ≃ mc to couple effectively to the cc pair, yet
the overall transfer can still be small in Fig. 2b). Third,
with several gluons coupling to the charm quark pair its
quantum numbers can match those of a given charmo-
nium state without extra gluon emission.

c
γ

(a)

c
_

p

g

g

g

c

p

γ

(b)

c
_

gg

FIG. 2. Two mechanisms for transferring most of the
proton momentum to the charm quark pair in γp → ccp near
threshold. The leading twist contribution (a) dominates at
high energies, but becomes comparable to the higher-twist
contribution (b) close to threshold.

The above discussion is generic, and does not indicate
how close to threshold the new effects actually manifest
themselves. While this question can only be settled by
experiment, we rely on a simple model to get an estimate
of the cross section.

Near-threshold charm production probes the x ≃ 1
configuration in the target, the spectator partons car-
rying a vanishing fraction x ≃ 0 of the target momen-
tum. This implies that the production rate behaves near
x → 1 as (1 − x)2ns where ns is the number of specta-
tors [9]. Perturbative QCD predicts three different glu-
onic components of the photoproduction cross-section:
i) The leading twist (1 − x)4 distribution for the process
γq → ccq, which leaves two quarks spectators (Fig. 2a);
ii) Scattering on two quarks in the proton with a net

distribution (1−x)2

R2M2 , γqq → ccqq, leaving one quark spec-
tator; iii) Scattering on three quark cluster (Fig. 2b) in

the proton with a net distribution (1−x)0

R4M4 , γqqq → ccqqq,
leaving no quark spectators. There is some arbitrariness
in the definition of x close to threshold. We shall use
x = (2mpM + M2)/(s − m2

p), where s = E2
CM and M

is the mass of the cc pair, which has the property x = 1
at threshold. The relative weight of scattering from mul-
tiple quarks is given by the probability 1/R2M2 that a
quark in the proton of radius R ≃ 1 fm is found within
a transverse distance 1/M (see Ref. [10]).

The two-gluon exchange contribution produces odd
C quarkonium γgg → J/ψ, thus permitting exclusive
γp → J/ψp production. The photon three-gluon cou-
pling γggg → cc produces a roughly constant term at

Dominant near 
threshold

Leading twist 
contribution
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Charmonium Production on Nuclei at Threshold
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Open Charm Production at Threshold
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Z+
c tetraquark resonance

|uudcc̄dd̄i

Produce Charged Tetraquarks at JLab!

�⇤p! Z+
c n



Open Charm Production at Threshold

n
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c̄

c
u

d

u

D0

n

d

[⇤cn]

�⇤d! D
0(c̄u)[⇤cn](cududd)

Possible charmed B= 2 nucleus 

Nuclear binding at low relative velocity



• First suggested by F. Dyson and N-H Xuong (1964) 

• Hidden-Color Six-Quark Configuration 

• Decays to Δ++Δ++ 

Produce Charge  Q=4,I=3,B=2  
Hidden-Color Dibaryon State  

at JLab

|u"Ru"Bu"Y u#Ru#Bu#Y >

Bashkanov, Clement, sjb

[B = 2, Q = +4]

 Discover at JLab!

“Hexaquark”

�d! [B = +2, Q = +4]⇡�⇡�⇡�



Octoquark Production at Threshold

�⇤ c̄

c

d

�⇤D ! |uuduudcc̄ >

Explains Krisch Effect!

M
octoquark

⇠ 5 GeV



JLab 12 GeV: An Exotic Charm Factory!

• Charm quarks at high x -- allows charm states to 
be produced with minimal energy

• Charm produced at  low velocities in the target 
-- the target rapidity domain 

• Charm at threshold -- maximal domain for 
producing exotic states containing charm quarks

• Attractive QCD Van der Waals interaction -- 
“nuclear-bound quarkonium”                         
Miller, sjb; de Teramond,sjb

• Dramatic Spin Correlations in the threshold 
Domain   

• Strong SSS Threshold Enhancement

xF ⇠ �1

�L vs. �T , ANN



Charm at Threshold

• Intrinsic charm Fock state puts 80% of the proton 
momentum into the electroproduction process

• 1/velocity enhancement from FSI

• CLEO data for quarkonium production at threshold

• Krisch effect shows  B=2 resonance

• all particles produced at small relative rapidity--
resonance production

• Many exotic hidden and open charm resonances will 
be produced at JLab (12 GeV)



Tests of Novel QCD Effects in Nuclei  Stan Brodsky
CDR QCD:  

Partons and Nuclei    
Orsay,  June 1, 2017
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Example of Multiple BLM/PMC Scales

 Angular distributions of massive quarks close to threshold.

Hoang, Kuhn, Teubner, sjb

 QCD coupling at small scales at low relative 
velocity v

F1 + F2 =
⇥
1� 2

↵s(se3/4/4)
⇡

⇤
⇥

⇥
1 +

⇡↵s(sv2)
4v

⇤



Properties of Hard Exclusive Reactions

• Dimensional Counting Rules at fixed CM angle 

• Hadron Helicity Conservation 

• Color Transparency 

• Hidden color 

• s >> -t >> ΛQCD: Reggeons have negative-integer intercepts at 
large -t 

• J=0 Fixed pole in DVCS 

• Quark interchange — no gluon exchange evident 

• Renormalization group invariance 

• No renormalization scale ambiguity 

• Exclusive inclusive connection with spectator counting rules 

• Diffractive reactions from pomeron, Reggeon, odderon 
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Form Factors are 
Overlaps of LFWFs

Interaction  
picture

Drell &Yan, West 
Exact LF formula!

Front Form

Drell, sjb

Lepton sees quarks at same LF time τ



For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =
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a

⌥
[dx][d2k⇧]

⇧

j

ej

�
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whereas the Pauli and electric dipole form factors are given by
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.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤
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where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjb
A(⇤,�⌅) = 1
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2⇤�M(�,�⌅)

P+, �P⌅

xiP
+, xi

�P⌅+ �k⌅i

� = Q2

2p·q

x̂, ŷ plane

M2(L) ⇤ L

Must have �↵z = ±1 to have nonzero F2(q2)

-

� = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

⇤(x, b⌅)

x

b⌅(GeV)�1

Identify z ⇤ ⇥ =
q
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Nonzero Proton Anomalous Moment --> 
Nonzero orbital  quark angular momentum

Exact LF Formula for Pauli Form Factor



p

�⇤

p + q

Must include vacuum-induced currents to compute form factors and other 
current matrix elements in instant form

Instant Form

Boost are dynamical in instant form

Acausal event



zero for q+ = 0

Calculation of Form Factors in  Equal-Time Theory

Instant Form

Calculation of Form Factors in  Light-Front Theory

Front Form

Absent for q+ = 0 zero !!

Need vacuum-induced currents

Exact Answer!
No vacuum graphs



Tests of Novel QCD Effects in Nuclei  Stan Brodsky
CDR QCD:  

Partons and Nuclei    
Orsay,  June 1, 2017

Calculation of proton form factor in Instant Form 

• Need to boost proton wavefunction from p to 
p+q:  Extremely complicated dynamical problem; 
even the particle number changes 

• Need to couple to all currents arising from 
vacuum!! Remains even after normal-ordering 

• Each time-ordered contribution is frame-
dependent 

• Divide by disconnected vacuum diagrams 

• Instant form: Violates causality

< p + q|Jµ(0)|p >

p + qp p + qp



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

Sivers, T-odd from lensing



Tests of Novel QCD Effects in Nuclei  Stan Brodsky
CDR QCD:  

Partons and Nuclei    
Orsay,  June 1, 2017

N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP 
region

DGLAP 
region

ERBL 
region

Diehl, Hwang, sjb,  NPB596, 2001
DVCS/GPD



�⇤

�
�

`+
`+

`� `�

Virtual Compton Bethe-Heitler

Interference produces `+ vs. `� asymmetry

�⇤

Measures Real Part of Compton Amplitude

Close, Gunion, sjb

• Timelike virtual photon couples to product of timelike VM poles



“Handbag” Approximation
• Parton model: assume current-current correlator carried by single 

quark propagator at high photon virtuality 

• Imaginary Part of  Virtual Forward Compton Amplitude gives DIS 
structure Functions 

• Leading-Twist Dominance — Motivated by the Operator Product 
Expansion 

•  Predicts Momentum and  Baryon Number Sum Rules 

• Real Part: J=0 Fixed Pole from local two-photon operators 

• Regge Behavior of Compton Amplitude 

• Timelike virtual photon couples to product of timelike VM poles 

• High t, s:  Counting rules, hadron helicity conservation,         ERBL 
evolution; quark interchange; distribution amplitudes, color 
transparency …



�⇤ �⇤

Leading-Twist Contribution to Real Part of DVCS

p p

Origin of ‘D-Term’ 
in QCD

T = �2
X

q

e

2
q

xq
~✏ · ~✏0

LF Instantaneous interaction

s-independent  
‘J=0 fixed pole’

T / s0FC=+(t = 0)

Damashek, Gilman 
Close, Gunion, sjb 

Szczepaniak,                   
Llanes Estrada, sjb

Analytic continuation 
in αR



J=0 Fixed Pole  Contribution to DVCS

p

�� �

p�

�� �

p�
p

• J=0 fixed pole -- direct test of QCD locality -- from seagull or 
instantaneous contribution to Feynman propagator

Szczepaniak, Llanes-Estrada, 
sjb

Real amplitude, independent of Q2
at fixed t

Close, Gunion, sjb

squarks

quarks



Hard Reggeon 
 Domain

Deeply Virtual Compton Scattering

p

�⇤

�R(t) ⇠ 1
t2

Reflects elementary coupling of two photons to quarks

s >> �t, Q2 >> ⇤2
QCD

�⇤p! �p

p

↵R(t)! 0

T (�⇤(q)p! �(k) + p) ⇠ ✏ · ✏0
X

R

s↵
R(t)�R(t)

Seagull interaction
(instantaneous quark 
exchange or Z-graph)

d�
dt ⇠

1
s2

1
t4 ⇠

1
s6 at fixed

Q2

s , t
s



J=0 Fixed pole in real and virtual Compton scattering

Damashek, Gilman; 
Close, Gunion, sjb 

Llanes-Estrada, 
Szczepaniak, sjb

• Effective two-photon contact term 

•  Seagull for scalar quarks

• Real phase

• Independent of Q2 at fixed t

• <1/x> Moment: Related to Feynman-Hellman Theorem

• Fundamental test of local gauge theory

s2 d⇥

dt
(��p� �p) = F 2(t)

Q2-independent contribution to Real DVCS amplitude

�

p p

��(q)

M = s0
�

e2
qFq(t)

independent of s
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T (�⇤p! ⇡+n) ⇠ ✏ · pi

X

R

s↵
R(t)�R(t)

�R(t) ⇠ 1
t2

Fundamental test of QCD

Regge domain  

s >> �t, Q2

-0.5

↵R(t)! 0 at t! �1

↵R(t)! 0 at t! �1

Reflects elementary coupling 
of two photons to quarks

d�
dt (�⇤p! �p)! 1

s2 �2
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s2t4 ⇠
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s6 at fixed

t
s , Q2

s

J=0 fixed pole



“Handbag” Approximation
• Parton model: assume current-current correlator carried by single 

quark propagator at high photon virtuality 

• Imaginary Part of  Virtual Forward Compton Amplitude gives DIS 
structure Functions 

• Leading-Twist Dominance — Motivated by the Operator Product 
Expansion 

•  Predicts Momentum and  Baryon Number Sum Rules 

• Real Part: J=0 Fixed Pole from local two-photon operators 

• Regge Behavior of Compton Amplitude 

• Timelike virtual photon couples to product of timelike VM poles 

• High t, s:  Counting rules, hadron helicity conservation,         ERBL 
evolution; quark interchange; distribution amplitudes, color 
transparency …
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�⇤
T

g

Uses dominant twist-2 pion distribution amplitude

Vanishes at t = 0 because of Lz 6= 0

No quark chiral flip

No proton spin flip

Sz
� = +1

scalar diquark
Lz = 0

Lz = 0

Lz(⇡0, p0) = +1
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2

p0
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2

� 1
2

No quark chiral flip

Proton spin flipscalar diquark

Lz = �1Lz = 0

+
1

2
+
1

2

Pauli Form Factor: Amplitude vanishes at t=0.

ep ! ep0

Lz(e0, p0) = +1

Involves overlap of the

Jz
p = (+

1
2 )(L

z
= 0) and

Jz
p = (� 1

2 )(L
z
= �1)

|q(+ 1
2 )[qq] > proton LF Fock states.
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Finite at t = 0

No quark chiral flip

Proton spin flipscalar diquark
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g

Uses dominant twist-2 pion distribution amplitude

� 1
2

Sz = �1

No quark chiral flip

Use He4 target and t = 0 to isolate twist-3 pion contribution!

Lz(⇡0 �He4) = �1

Vanishes at t =0

�⇤
THe4 ! ⇡0He4

He4 He4



Odderon  has never been observed!

p
p0

�⇤(q) ⇡0, ⌘, ⌘c, ⌘b

Look for Charge Asymmetries from Odderon-Pomeron 
Interference

Merino, Rathsman, 
sjb



Odderon-Pomeron Interference leads to  K+ K- , D+ D-  and  B+ B- 

charge and angular asymmetries

p
p0

�⇤(q)

p
p0

�⇤(q)
c

c̄

c

c̄
D+

D+

D�
D�

Strong enhancement at heavy-quark 
pair threshold from QCD Sakharov-

Schwinger-Sommerfeld effect
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f�1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz �= 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes 
data compatible with BHS model

Schmidt, Lu: Hermes 
charge pattern follow quark 

contributions to anomalous moment

In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are ⟨x⟩ = 0.09, ⟨z⟩ =
0.36, ⟨y⟩ = 0.54, ⟨Q2⟩ = 2.41 GeV2 and
⟨Pπ⊥⟩ = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Sivers asymmetry from HERMES

3. INTERPRETATION

The Collins moment for π+, averaged over acceptance, is positive: Aπ+
C = 0.042 ±

0.014stat.. This agrees with expectations for the transversity distributions hq
1(x), derived

from the similarities to the well measured valence helicity distributions g q
1(x) [13], namely

positive hu
1(x) and negative hd

1(x). The acceptance averaged Collins moment for π− is
large and negative, especially at large x: Aπ−

C = −0.076 ± 0.0016stat.. This comes as a
surprise, as neither u nor d flavor dominates π− production and also |hd

1(x)| < |hu
1(x)| is

expected. This observation may be explained if the disfavored Collins function was larger
and opposite in sign, as e.g. suggested by the string fragmentation model of Ref. [14].
Note that little dependence on z is seen for the Collins moments.

The Sivers moments averaged over acceptance are Aπ+
S = 0.034 ± 0.008stat. and Aπ−

S =
−0.004 ± 0.010stat., i.e. positive for π+ and consistent with zero for π−. The former
result is the first indication for the existence of a non-zero Sivers distribution function
f⊥,u

1T . However, this conclusion has to be taken with caution, as presently an unknown
systematic uncertainty has to be attributed to this result, due to the yet unmeasured
asymmetry in the pion yield from exclusive ρ0 production. More data is presently collected
at Hermes, both for semi-inclusive pion and exclusive vector meson production, which
is hoped to allow a firm conclusion on the existence of a non-zero Sivers function.
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represented in terms of parton distribution and fragmentation functions [7]:
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UT (φ, φS) ∝ sin(φ + φS)
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Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are ⟨x⟩ = 0.09, ⟨z⟩ =
0.36, ⟨y⟩ = 0.54, ⟨Q2⟩ = 2.41 GeV2 and
⟨Pπ⊥⟩ = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Final-State Interactions Produce  
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling! 

• Requires nonzero orbital angular momentum of quark 

• Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves;  

• Wilson line effect  --  lc gauge prescription 

• Relate to the quark contribution to the target proton                                                
anomalous magnetic moment and final-state QCD phases 

• QCD phase at soft scale! 

• New window to QCD coupling and running gluon mass in the IR 

• QED S and P Coulomb phases infinite -- difference of phases finite! 

• Alternate: Retarded and Advanced Gauge: Augmented LFWFs
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Sivers Effect in Di-Lepton Production is Predicted to 
have Opposite Sign compared to SIDIS
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 DY                 correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.
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I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally
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Example of Leading-Twist Lensing Correction
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER
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Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ̸= 0, ν ̸= 0 and
λ ̸= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions  
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations 

Double ISI

Hard gluon radiation

⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

If �s(Q�2) ⇤ constant

⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

If �s(Q�2) ⇤ constant

⇤(QT )

Q = 8GeV

⌅N ⇥ µ+µ�X NA10

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⌅(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

Violates Lam-Tung relation!

Boer, Hwang, sjb

ar
X

iv
:h

ep
-p

h
/0

5
1
1
0
2
5
 v

1
  
 3

 N
o
v
 2

0
0
5

ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ̸= 0, ν ̸= 0 and
λ ̸= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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PQCD Factorization (Lam Tung):

Model: Boer,



c

c̄

g

Q4F1(Q2)⇤ const

x⇤ 1 ⇥ kz ⇤ �⌅

�(t) = �(0)
1��(t)

2⇥⇤(x, b, Q)

c

c̄

g

Q4F1(Q2)⇤ const

x⇤ 1 ⇥ kz ⇤ �⌅

�(t) = �(0)
1��(t)

2⇥⇤(x, b, Q)

Problem for factorization when both ISI and FSI occur

g

See also: Collins and Qiu



QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

Reproduces lab-frame color dipole approach 
DDIS: Input for leading twist nuclear shadowing

Hoyer, Marchal, Peigne, Sannino, sjb
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!*

e– 

quark

Single-spin 
asymmetries in 

exclusive channels

Exclusive 
Sivers Effect 
connects to 

Inclusive Effect

~Sp ·~q⇥~pq

Light-Front Wavefunction   
S and P- Waves
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• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation

• Process-Independent                      Process-Dependent - From Collision

• T-even Observables                        T-Odd (Sivers, Boer-Mulders, etc.)

• No Shadowing,  Anti-Shadowing      Shadowing,  Anti-Shadowing, Saturation

• Sum Rules: Momentum and Jz               Sum Rules Not Proven

• DGLAP Evolution; mod. at large x   DGLAP Evolution

• No Diffractive DIS                         Hard Pomeron and Odderon Diffractive DIS

Static                           Dynamic

General remarks about orbital angular mo-
mentum

�n(xi,⇥k�i, �i)

�n
i=1(xi

⇥R�+⇥b�i) = ⇥R�

xi
⇥R�+⇥b�i

�n
i
⇥b�i = ⇥0�

�n
i xi = 1

2
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current 
quark jet
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spectator 
system

proton

e– 

!*

e– 

quark

Mulders, Boer

Qiu, Sterman

 Pasquini, Xiao,  
Yuan, sjb

Collins, Qiu

Hwang, Schmidt, 
sjb,

Liuti, sjb!

What is measured!



Two(parBcle(correlaBons:(CMS(results(

�Discovery� 

!  Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 
                  for two hadrons in the intermediate 1 < pT, qT < 3 GeV   

Raju Venugopalan

Ridge in high-multiplicity p p collisions

-
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Ridge may reflect collision of aligned flux tubes

Bjorken, Goldhaber, sjb



q̄

q

p�⇤(q2)

Electron-Ion Collider: 
Virtual Photon-Ion Collider

e

e’

variable space-like photon virtuality, 
various primary flavors

proton or 
ions

p

q q plane aligned with lepton scattering plane ~ cos2φ 

Perspective from the e-p collider frame

ŝ = x� ⇥ xp s

Front-surface dynamics: shadowing/antishadowing

 �⇤(x, k?,�)

 p,A(x, k?,�)

S. Glazek, P. Kubiczek, sjb  
(in progress)



p�⇤(q2)
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x

1-x
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High Q2 virtual photon at an EIC acts as a precision, small bore,  
linearly oriented, flavor-dependent probe acting on a proton or nuclear target.  

Study final-state hadron multiplicity distributions, 
ridges, nuclear dependence, etc.
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EIC: Virtual Weak Boson-Proton Collider

e

νe

variable W* virtuality, 
variable flavors

proton or ions

pW*
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• Universal Regge slopes
the quadratic mass correction

�M2[m1, · · · ,mn] =
�2

F

dF

d�
, (22)

with F [�] =
R 1

0 · · ·
R
dx1 · · · dxn e

� 1
�

✓P
n

i=1
m

2
i

x

i

◆

�(
Pn

i=1 xi � 1).

The resulting expressions for the squared masses of all light mesons and baryons are:

Mesons M2 = 4�(n+ L) + 2� s+�M2[m1,m2], (23)

Baryons M2 = 4�(n+ L+ 1) + 2� s+�M2[m1,m2,m3], (24)

where the di↵erent values of the mass corrections within the supermultiplet break super-

symmetry explicitly. For the tetraquark the mass formula is the same as for the baryon

except for the quark mass correction �M2[m1,m2,m3,m4] given by Eq. (22).

The pion mass of ⇠ 0.140 GeV is obtained if the non-strange light-quark mass is

m = 0.045 GeV [11]. In the case of the K-meson, the resulting value for the strange

quark mass is ms = 0.357 GeV [11]. The trajectories of K, K⇤ and �-mesons can then

be readily calculated. (The predictions are compared with experiment in Ref. [11]. ) In

Eq. (22) the values of xi for the quarks are assumed to be uncorrelated. If one instead

assumes maximal correlations in the cluster, i.e. x2 = x3, this a↵ects the final result

by less than 1 % for light quarks and less than 2 % for the ⌦� which has three strange

quarks. Therefore, the previously obtained agreement with the data [16] for the baryon

spectra is hardly a↵ected.

One can fit the value of the fundamental mass parameter
p
� for each meson and

baryon Regge trajectory separately using Eqs. (23) and (24) . The results are displayed

in Fig. 2. The best fit gives
p
� = 0.52 GeV as the characteristic mass scale of QCD.

3 Conclusions

Inspired by the correspondence of classical gravitational theory in 5-dimensional AdS

space with superconformal quantum field theory in physical 4-dimensional space-time,

as originally proposed by Maldacena, we have arrived at a novel holographic application

of supersymmetric quantum mechanics to light-front quantized Hamiltonian theory in

physical space-time. The resulting superconformal algebra, which is the basis of our

semiclassical theory, not only determines the breaking of the maximal symmetry of the

dual gravitational theory, but it also provides the form of the frame-independent color-

13

M2
H = 4�(n + L) + · · ·

and Tetraquarks

 =
p

�

Dosch, de Teramond, 
Lorce, sjb

Best Fit:  =
p

� = 0.523± 0.024 GeV
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⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

�(x, k�)(GeV)

�(x, k�)

• Light Front Wavefunctions:                                   

AdS5:  Conformal Template for QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Duality of AdS5 with LF 
Hamiltonian Theory

•Light-Front Holography

Light-Front Schrödinger Equation
Spectroscopy and Dynamics with Guy de Teramond,  Alexandre Deur, 

Cedric Lorce, Hans Guenter Dosch



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale ΛQCD come from?  

How does color confinement arise?

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

Unique confinement potential!



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential!  

HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

Semiclassical first approximation to QCD  

U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD

AdS/QCD:

�2 = x(1� x)b2
�

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Sums an infinite # diagrams

LQCD

Eliminate higher Fock states              
and retarded interactions

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

mq = 0



x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Invariant transverse  
separation



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

Unique confinement potential!

QCD does not know what MeV units mean! 
Only Ratios of Masses Determined



Need a First Approximation to QCD 

 Comparable in simplicity to 
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining 

Origin of hadronic mass scale if mq=0

AdS/QCD
Light-Front Holography

BLFQ

h  0
(Hoyer)

Semi-Classical Approximation to QCD



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Preserves Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2

Single scheme-independent 
fundamental mass scale 

mq = 0



U is the exact QCD potential  
Conjecture: ‘H’-diagrams generate U?

Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)
AdS/QCD:

mq ⇠ 0



• A first, semi-classical approximation to 
nonpertubative QCD

• Hadron Spectroscopy and LF Dynamics

• Color Confinement Potential

• Running QCD Coupling α(Q2) at All Scales Q2

• What sets the QCD Mass Scale?

• Connection of Hadron Masses to 

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

AdS/QCD and Light-Front Holography

⇤MS



Tests of Novel QCD Effects in Nuclei  Stan Brodsky
CDR QCD:  

Partons and Nuclei    
Orsay,  June 1, 2017

• Soft-wall dilaton profile breaks conformal 
invariance

• Color Confinement

• Introduces confinement scale

e'(z) = e+2z2

Dilaton-Modified AdS/QCD



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light Front Holography: Unique mapping derived from equality of LF and 
AdS  formula for EM and gravitational current matrix elements

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potential



Tests of Novel QCD Effects in Nuclei  Stan Brodsky
CDR QCD:  

Partons and Nuclei    
Orsay,  June 1, 2017
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Prediction from AdS/QCD

mu = md = 0



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2
= h |

X

a

m2
a

/x
a

| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�

m

2
q

x

+
m

2
q

1�x

�

e�
1
2� ⇣

2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S

= M2
K

± + 4�

✓

n +

J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

m
u

= m
d

= 46 MeV, m
s

= 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
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       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z
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Pion Form Factor predicted from AdS/QCD and Light-Front Holography

Counting Rules from Leading Twist Obeyed
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G. de Teramond & sjb

Timelike Pion Form Factor from AdS/QCD  
          and Light-Front Holography
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Prescription for 
Timelike poles :

1
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p
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� = 0.17
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= 42(1/2 + n)

Frascati data 14% four-quark 
 probability



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20



⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

Prediction from  
Light-Front Holography

Nuclear effects:
Sergey Gevorkyan
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� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM ) Same κ!

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

G22

G11

G11

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 
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Superconformal Algebra 

Dosch, de Teramond, sjb
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].

14

Superconformal AdS Light-Front Holographic QCD (LFHQCD): 
Identical meson and baryon spectra!

Meson-Baryon 
Mass Degeneracy 

for LM=LB+1

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].
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contributions in different angular-momentum configura-
tions from the broad and overlapping resonances. Thus,
there is now the chance to clarify the “missing” resonance
problem. The attempt to assign (nearly) all baryon reso-
nances to SU(3) multiplets should be helpful to identify
problems and to serve as guidance for further discussions.
This assignment requires to identify the leading orbital
angular momenta L and the spin S within the three-
quark system. Measured quantities are only the total an-
gular momentum, the spin J of the baryon, and its mass.
Here, theoretical input is required. We use a holographic
mass formula derived in [11] which reproduces the known
spectrum of nucleon and ∆ resonances with remarkable
precision.

In this paper, we shall use the word missing resonance
in a restricted sense. E.g., we may interpret the three
resonances N3/2+(1900), N5/2+(2000), N7/2+(1990) [12]
as members of a spin quartet, with orbital angular mo-
menta L = 2 and quark spin S = 3/2 coupling to the ob-
served particle spin J . In this interpretation, N1/2+(1880)
—observed in recent coupled-channel analyses [13]— was
missing to complete a quark spin quartet [14]. But the
existence of a N1/2+ resonance would be required in any
kind of quark model. More subtle is the question if two ad-
ditional doublets (N3/2+ , N5/2+) and (∆3/2+ , ∆5/2+) as
requested by symmetry arguments (see eq. (9) below) are
realized in nature. None of these states has been observed.
The latter type of resonances, i.e. the non-observation of a
complete L, S multiplet, we shall call missing resonances
in the context of this paper.

We refrain here from a discussion of the possibility that
baryon resonances are formed as parity doublets. If this
conjecture holds true, it gives an exciting new approach to
the internal dynamics of excited hadronic states; we give
here a few references for further reading [15–18]. However,
the predictive power of the conjecture is limited: it pre-
dicts that resonances should occur as parity doublets but
there is no prediction at which mass. In this article we
hence restrict ourselves to a discussion of the data within
the quark model and its symmetries.

The outline of the paper is as follows: In sects. 2 and 3
we summarise the empirical data on light-flavoured delta
and nucleon resonances, respectively. In particular we re-
call that these can be suitable organised according to lead-
ing and daughter Regge trajectories where the resonance
positions follow from a simple mass formula. In sect. 4
we summarise the relevant symmetries for light-flavoured
baryons and the classification of states in multiplets within
the framework of the (harmonic oscillator) constituent
quark model. In sect. 5 we discuss the structure of the
nucleon and ∆ resonances within the framework of this
classification, before concluding in sect. 6.

2 The mass spectrum of ∆ resonances

2.1 Regge trajectories

It is well known that meson and baryon resonances lie on
Regge trajectories, i.e. that their squared masses depend
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Fig. 1. The leading Regge trajectory: ∆ resonances with maxi-
mal J in a given mass range. Also shown is the Regge trajectory
for mesons with J = L + S.

linearly on the total angular momentum J . Figure 1 shows
such a plot; ∆ resonances are plotted having the largest
total angular momentum J in a given mass range. This
trajectory is called the leading Regge trajectory. The reso-
nances are consistent with having even orbital angular mo-
mentum L = 0, 2, 4, 6 and quark spin S = 3/2 maximally
aligned to form total angular momentum J = L+3/2. The
errors in the fit are given by the PDG errors and a second
systematic error of 30MeV added quadratically. This sys-
tematic error is introduced to avoid hard constraints from
well measured meson or baryon masses like the ∆(1232)
mass; the error can be interpreted as uncertainty due to
variations of the self-energy of different hadrons due to,
e.g., the proximity of (strong) decay thresholds.

Figure 1 also shows the leading Regge trajectory of
natural-parity mesons, again as a function of the total an-
gular momentum. Light mesons with approximate isospin
degeneracy and with J = L+1 are presented. Although it
is customary to plot the meson trajectories for L even and
L odd (for positive- and negative-parity mesons, respec-
tively) separately, there is no problem fitting both trajec-
tories simultaneously: This property is called MacDowell
symmetry [19].

The dotted line represents such a common fit to the
meson masses taken from the PDG [12]; the error in the fit
is given by the PDG errors and a second systematic error
of 30MeV added quadratically. The slope is determined
as 1.142GeV2. The ∆ trajectory is given by the ∆(1232)
mass and the slope as determined from the meson tra-
jectory. Obviously, mesons and ∆’s have the same Regge
slope. This observation is the basis for diquark models;
indeed, the QCD forces between quark and antiquark are
the same as those between quark and diquark.

The leading Regge trajectory:  Δ resonances with maximal J in a given mass range. 
Also shown is the Regge trajectory for mesons with J = L+S.
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Some Features of AdS/QCD

• Regge spectroscopy—same slope in n,L for mesons,

• Chiral features for mq=0: mπ =0, chiral-invariant 
proton

• Hadronic LFWFs : Single dynamical LF radial 
variable  ζ

• Counting Rules

• Connection between hadron masses and ⇤MS

Superconformal AdS Light-Front Holographic QCD (LFHQCD) 

Meson-Baryon Mass Degeneracy for LM=LB+1



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1   

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡

]

�AdS
s (Q)/⇥ = e�Q2/4�2
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5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
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Running Coupling from Light-Front Holography and AdS/QCD

�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb
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Superconformal Algebra

• quark-antiquark meson (LM = LB+1))

• quark-diquark baryon (LB)

• quark-diquark baryon (LB+1)

• diquark-antidiquark tetraquark (LT = LB)

• Universal Regge slopes

2X2 Hadronic Multiplets
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Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

x
i

to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2��m2

, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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masses strongly break the conformal symmetry [18].

The structure of the hadronic mass generation obtained from the supersymmetric

Hamiltonian GS, Eq. (17), provides a frame-independent decomposition of the quadratic

masses for all four members of the supersymmetric multiplet. In the massless quark limit:

M2
H/� =

contribution from 2-dim

light-front harmonic oscillator

z }| {
(2n+ LH + 1)| {z }

kinetic

+(2n+ LH + 1)| {z }
potential

+

contribution from AdS and

superconformal algebra

z }| {
2(LH + s) + 2� . (25)

Here n is the radial excitation number and LH the LF angular momentum of the hadron

wave function; s is the total spin of the meson and the cluster respectively, � = �1 for the

meson and for the negative-chirality component of the baryon (the upper components

in the susy-doublet) and � = +1 for the positive-chirality component of baryon and

for the tetraquark (the lower components). The contributions to the hadron masses

squared from the light-front potential �2⇣2 and the light-front kinetic energy in the LF

Hamiltonian, are identical because of the virial theorem.

We emphasize that the supersymmetric features of hadron physics derived here from

superconformal quantum mechanics refers to the symmetry properties of the bound-

state wave functions of hadrons and not to quantum fields; there is therefore no need to

introduce new supersymmetric fields or particles such as squarks or gluinos.

We have argued that tetraquarks – which are degenerate with the baryons with the

same (leading) orbital angular momentum– are required to complete the supermulti-

plets predicted by the superconformal algebra. The tetraquarks are the bound states

of the same confined color-triplet diquarks and anti-diquarks which account for baryon

spectroscopy.

The light-front cluster decomposition [32, 33] for a bound state of N constituents

–as an “active” constituent interacting with the remaining cluster of N�1 constituents–

also has implications for the holographic description of form factors. As a result, the

form factor is written as the product of a two-body form factor multiplied by the form

factor of the N � 1 cluster evaluated at its characteristic scale. The form factor of the

N�1 cluster is then expressed recursively in terms of the form factor of the N�2 cluster,

and so forth, until the overall form factor is expressed as the N � 1 product of two-body

form factors evaluated at di↵erent characteristic scales. This cluster decomposition is

in complete agreement with the QCD twist assignment which leads to counting-rule

scaling laws [34, 35]. This solves a previous problem with the twist assignment for

15
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New World of Tetraquarks

• Diquark Color-Confined Constituents: Color

• Diquark-Antidiquark bound states

• Confinement Force Similar to quark-antiquark 
mesons

• Isospin                            Charge 

3C ⇥ 3C = 3̄C + 6C

3̄C

3̄C ⇥ 3C = 1C

Q = 0,±1,±2I = 0,±1,±2
1/10/2015 NeoFronteras » Confirman Z(4430) - Portada -

http://neofronteras.com/?p=4405 2/11

Los quarks tienen además de carga eléctrica una carga distinta que se ha llamado carga de color y que
puede ser roja, verde o azul (es una analogía, obviamente no tienen color real), con sus correspondientes
anticolores. Combinando quarks se consiguen partículas con carga de color neutra. Los leptones son
partículas de spin semientero, en concreto son el electrón, el muón y el tau con sus correspondientes
neutrinos asociados.
Además de todo ello, hay partículas de spin entero (bosones) que son los portadores de las fuerzas. Los
quarks y leptones interaccionan intercambiando bosones virtuales de fuerza, partículas que no tienen
consistencia real. Un electrón se ve atraído por otro porque se intercambian fotones virtuales (los bosones
de la fuerza electromagnética).

Esquema del modelo estándar. Foto: Fermilab.

Para crear un protón se necesitan tres quaks, dos quark up y uno down que se mantienen unidos gracias a que intercambian unos bosones
virtuales denominados gluones que son los portadores de la fuerza nuclear fuerte.
Los conjuntos de quarks, como el protón, se denominan hadrones. Los hadrones de dos quarks son los mesones (color y anticolor) y los de
tres (tres colores que dan neutro) se llaman bariones. Así que Z(4430) es un hadrón.
La cromodinámica cuántica predice la existencia de hadrones exóticos, además de los bariones y mesones conocidos, esta teoría de campos
predice la existencia de tetraquarks (dos colores y sus correspondientes anticolores), pentaquarks (tres colores y un color y anticolor),

uud̄d̄ uus̄d̄ uus̄s̄

Q= +2
Q= - 1

Bound!

de Tèramond, Dosch, Lorce, sjb

Complete Regge 
spectrum in n, L
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The structure of the hadronic mass generation obtained from the supersymmetric
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same (leading) orbital angular momentum– are required to complete the supermulti-

plets predicted by the superconformal algebra. The tetraquarks are the bound states

of the same confined color-triplet diquarks and anti-diquarks which account for baryon

spectroscopy.

The light-front cluster decomposition [32, 33] for a bound state of N constituents

–as an “active” constituent interacting with the remaining cluster of N�1 constituents–

also has implications for the holographic description of form factors. As a result, the

form factor is written as the product of a two-body form factor multiplied by the form

factor of the N � 1 cluster evaluated at its characteristic scale. The form factor of the

N�1 cluster is then expressed recursively in terms of the form factor of the N�2 cluster,

and so forth, until the overall form factor is expressed as the N � 1 product of two-body

form factors evaluated at di↵erent characteristic scales. This cluster decomposition is

in complete agreement with the QCD twist assignment which leads to counting-rule

scaling laws [34, 35]. This solves a previous problem with the twist assignment for
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• Universal quark light-front kinetic energy 

• Universal quark light-front potential energy 

• Universal Constant Contribution from AdS 
and Superconformal Quantum Mechanics

Equal: 
Virial 

Theorem 

hyperfine spin-spin

plus �M2
quark mass

=
P

q

m

2
q

xq

�M2
LFKE = �(1 + 2n + L)

�M2
LFPE = �(1 + 2n + L)

�M2
spin = �(2L + 2S + 4|B|� 2)

M2
H

�
= (1 + 2n + L) + (1 + 2n + L) + (2L + 2S + 4|B|� 2)

Universal Hadronic Decomposition

� = 2



• Universal Regge slopes
the quadratic mass correction

�M2[m1, · · · ,mn] =
�2

F

dF

d�
, (22)

with F [�] =
R 1

0 · · ·
R
dx1 · · · dxn e

� 1
�

✓P
n

i=1
m

2
i

x

i

◆

�(
Pn

i=1 xi � 1).

The resulting expressions for the squared masses of all light mesons and baryons are:

Mesons M2 = 4�(n+ L) + 2� s+�M2[m1,m2], (23)

Baryons M2 = 4�(n+ L+ 1) + 2� s+�M2[m1,m2,m3], (24)

where the di↵erent values of the mass corrections within the supermultiplet break super-

symmetry explicitly. For the tetraquark the mass formula is the same as for the baryon

except for the quark mass correction �M2[m1,m2,m3,m4] given by Eq. (22).

The pion mass of ⇠ 0.140 GeV is obtained if the non-strange light-quark mass is

m = 0.045 GeV [11]. In the case of the K-meson, the resulting value for the strange

quark mass is ms = 0.357 GeV [11]. The trajectories of K, K⇤ and �-mesons can then

be readily calculated. (The predictions are compared with experiment in Ref. [11]. ) In

Eq. (22) the values of xi for the quarks are assumed to be uncorrelated. If one instead

assumes maximal correlations in the cluster, i.e. x2 = x3, this a↵ects the final result

by less than 1 % for light quarks and less than 2 % for the ⌦� which has three strange

quarks. Therefore, the previously obtained agreement with the data [16] for the baryon

spectra is hardly a↵ected.

One can fit the value of the fundamental mass parameter
p
� for each meson and

baryon Regge trajectory separately using Eqs. (23) and (24) . The results are displayed

in Fig. 2. The best fit gives
p
� = 0.52 GeV as the characteristic mass scale of QCD.

3 Conclusions

Inspired by the correspondence of classical gravitational theory in 5-dimensional AdS

space with superconformal quantum field theory in physical 4-dimensional space-time,

as originally proposed by Maldacena, we have arrived at a novel holographic application

of supersymmetric quantum mechanics to light-front quantized Hamiltonian theory in

physical space-time. The resulting superconformal algebra, which is the basis of our

semiclassical theory, not only determines the breaking of the maximal symmetry of the

dual gravitational theory, but it also provides the form of the frame-independent color-

13

M2
H = 4�(n + L) + · · ·

and Tetraquarks

 =
p

�



Interpretation of Mass Scale 
• Does not affect conformal symmetry of QCD action

• Self-consistent regularization of IR divergences

• Determines all mass and length scales for zero quark mass

• Compute scheme-dependent           determined in terms of

• Value of          itself not determined -- place holder

• Need external constraint such as fπ



⇤MS





 =
p

�



Using SU(6) flavor symmetry and normalization to static quantities
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From overlap of L = 1 and L = 0 LFWFs



Data from I. Aznauryan, et al. CLAS (2009)

IUSS, Ferrara, May 27, 2011 Page 31

Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
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Predictions from AdS Holographic QCD

• Zero-Mass pion for zero quark mass

• Regge Spectroscopy

• Same slope in n, L

• LFWFs, Distribution Amplitudes

• Form Factors, Structure Functions, GPDs

• Non-perturbative running coupling

• Meson-Baryon Supersymmetry for LM= LB+1

164

↵s(Q2) / e�
Q2

42

�⇡(x) / f⇡

p
x(1� x)

M2
⇡(n,L) = 42(n + L)

� = 2

Dosch, Deur, de Teramond, 
sjb



Interpretation of Mass Scale 
• Does not affect conformal symmetry of QCD action

• Self-consistent regularization of IR divergences

• Determines all mass and length scales for zero quark mass

• Compute scheme-dependent           determined in terms of

• Value of          itself not determined -- place holder

• Need external constraint such as fπ


⇤MS







Tests of AdS/QCD and LF Holography 
JLab 12 GeV

• Spacelike-Transition Form Factors 

• Supersymmetric QCD Relations: Spectra, Dynamics

• Baryons: q + diquark

• Pentaquarks: diquark-antidiquark

F⇡!b1(Q2)

[q]3C [qq]3̄C

Fp!N⇤(Q2)

[qq]3̄C [q̄q̄]3C



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Chiral Symmetry 
of Eigenstate!



Features of Supersymmetric Equations

• J =L+S baryon simultaneously satisfies both 
equations of G with L , L+1 for same mass 
eigenvalue

• Jz =  Lz + 1/2 = (Lz + 1) - 1/2

• Baryon spin carried by quark orbital angular 
momentum:  <Jz> =Lz+1/2

• Mass-degenerate meson “superpartner” with 
LM=LB+1. “Shifted  meson-baryon Duality”

Meson and baryon have same κ!

Sz = ±1/2

Counting Rules Obeyed



• Zero mass pion for mq =0  (n=J=L=0) 

• Regge trajectories: equal slope in n and L 

• Form Factors at high Q2: Dimensional counting 

• Space-like and Time-like Meson and Baryon 
Form Factors 

• Running Coupling for NPQCD 

• Meson Distribution Amplitude  

AdS/QCD and Light-Front Holography

[Q2
]

n�1
F (Q2

)! const

�⇡(x) / f⇡

p
x(1� x)

↵s(Q2) / e�
Q2

42

M2
n,J,L = 42

�
n +

J + L

2
�



Features of AdS/QCD
• Color confining potential              and universal mass scale from 

dilaton  

• Dimensional transmutation  

• Chiral Action remains conformally invariant despite mass scale 

• Light-Front Holography: Duality of AdS and                               frame-
independent LF QCD 

• Reproduces observed Regge spectroscopy —                                  same 
slope in n, L, and J for mesons and baryons 

• Massless pion for massless quark 

• Supersymmetric meson-baryon dynamics and spectroscopy:       
LM=LB+1 

4⇣2

de Tèramond, Dosch, Deur, sjb

⇤MS $ $ mH

e�(z) = e2z2

DAFF

    
Superconformal Quantum 

Mechanics
Fubini and Rabinovici

↵s(Q
2
) / exp�Q2/42



Tests of AdS/QCD and LF Holography 
at JLab 12 GeV

• Compare Spacelike-Transition Form Factors, 
Counting Rules 

• Supersymmetric QCD Relations: Spectra, Dynamics 

• Baryons: q + diquark: 

• Tetraquarks: diquark-antidiquark?:

[q]3C [qq]3̄C

F⇡!b1(Q2) Fp!N⇤(Q2)

[qq]3̄C [q̄q̄]3C

vs.

masses strongly break the conformal symmetry [18].

The structure of the hadronic mass generation obtained from the supersymmetric

Hamiltonian GS, Eq. (17), provides a frame-independent decomposition of the quadratic

masses for all four members of the supersymmetric multiplet. In the massless quark limit:

M2
H/� =

contribution from 2-dim

light-front harmonic oscillator

z }| {
(2n+ LH + 1)| {z }

kinetic

+(2n+ LH + 1)| {z }
potential

+

contribution from AdS and

superconformal algebra

z }| {
2(LH + s) + 2� . (25)

Here n is the radial excitation number and LH the LF angular momentum of the hadron

wave function; s is the total spin of the meson and the cluster respectively, � = �1 for the

meson and for the negative-chirality component of the baryon (the upper components

in the susy-doublet) and � = +1 for the positive-chirality component of baryon and

for the tetraquark (the lower components). The contributions to the hadron masses

squared from the light-front potential �2⇣2 and the light-front kinetic energy in the LF

Hamiltonian, are identical because of the virial theorem.

We emphasize that the supersymmetric features of hadron physics derived here from

superconformal quantum mechanics refers to the symmetry properties of the bound-

state wave functions of hadrons and not to quantum fields; there is therefore no need to

introduce new supersymmetric fields or particles such as squarks or gluinos.

We have argued that tetraquarks – which are degenerate with the baryons with the

same (leading) orbital angular momentum– are required to complete the supermulti-

plets predicted by the superconformal algebra. The tetraquarks are the bound states

of the same confined color-triplet diquarks and anti-diquarks which account for baryon

spectroscopy.

The light-front cluster decomposition [32, 33] for a bound state of N constituents

–as an “active” constituent interacting with the remaining cluster of N�1 constituents–

also has implications for the holographic description of form factors. As a result, the

form factor is written as the product of a two-body form factor multiplied by the form

factor of the N � 1 cluster evaluated at its characteristic scale. The form factor of the

N�1 cluster is then expressed recursively in terms of the form factor of the N�2 cluster,

and so forth, until the overall form factor is expressed as the N � 1 product of two-body

form factors evaluated at di↵erent characteristic scales. This cluster decomposition is

in complete agreement with the QCD twist assignment which leads to counting-rule

scaling laws [34, 35]. This solves a previous problem with the twist assignment for

15



Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

m⇢

mP
= 1p

2

Light-Front Holography:

⇤MS

m⇢
= 0.455± 0.031

“In other words, if you manage to calculate mP it better come out pro-

portional to ⇤QCD since ⇤QCD is the only quantity with dimension of mass

around.

Similarly for m⇢.

Put in precise terms, if you publish a paper with a formula giving m⇢/mP in

terms of pure numbers such as 2 and ⇡, the field theory community will hail

you as a conquering hero who has solved QCD exactly.”

(mq = 0)
m⇡ = 0

m⇢ ' 2.2 ⇤MSmp ' 3.21 ⇤MS

de Tèramond, Dosch, sjb



Light-Front vacuum can simulate empty universe

• Independent of observer frame 

• Causal 

• Lowest invariant mass state M= 0. 

• Trivial up to k+=0 zero modes-- already normal-ordering 

• Higgs theory consistent with trivial LF vacuum (Srivastava, sjb) 

• QCD and AdS/QCD: “In-hadron”condensates (Maris, Tandy 
Roberts)  -- GMOR satisfied. 

• QED vacuum; no loops 

• Zero cosmological constant from QED, QCD, EW

Shrock, Tandy, Roberts, sjb



Tests of Novel QCD Effects in Nuclei  Stan Brodsky
CDR QCD:  

Partons and Nuclei    
Orsay,  June 1, 2017

• Anti-Shadowing is Universal 

• ISI and FSI are higher twist effects and universal 

• High transverse momentum hadrons arise only from jet 
fragmentation  -- baryon anomaly! 

• Heavy quarks only from gluon splitting 

• Renormalization scale cannot be fixed 

• QCD condensates are vacuum effects 

• QCD gives 1042 to the cosmological constant 

• QCD Confinement and Mass Scale from 

QCD Myths

⇤MS



• Intrinsic Heavy Quarks

• Breakdown of pQCD Leading-Twist Factorization

• Top/anti-Top asymmetry

• Non-universal antishadowing

• Demise of QCD Vacuum Condensates

• Elimination of the QCD Renormalization Scale 
Ambiguity

• AdS/QCD and Light-Front Holography

Crucial to Understand QCD to High Precision to 
Illuminate New Physics

Hot Topics in QCD



Xing-Gang Wu, Matin Mojaza 
Leonardo  di Giustino, SJB

Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

No renormalization scale ambiguity! 

Result is independent of  
Renormalization scheme  

and initial scale! 

QED Scale Setting at NC=0 

Eliminates unnecessary  
systematic uncertainty

PMC/BLM

Set multiple renormalization scales -- 
Lensing, DGLAP, ERBL Evolution ...

δ-Scheme automatically             
identifies β-terms!

Scale fixed at each order

Principle of Maximum Conformality



The Renormalization Scale Ambiguity for Top-Pair Production 
Eliminated Using the ‘Principle of Maximum Conformality’ (PMC)

Xing-Gang Wu  
 SJB

Conventional guess for renormalization scale  
and range

Experimental  
asymmetry

PMC Prediction

Top quark forward-backward asymmetry predicted by pQCD NNLO 
within 1 σ of CDF/D0 measurements using PMC/BLM scale setting 



Reanalysis of the Higher Order Perturbative QCD corrections to Hadronic Z Decays
using the Principle of Maximum Conformality

S-Q Wang, X-G Wu, sjb P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, and J. Rittinger,
Phys. Rev. Lett. 108, 222003 (2012).



Valparaiso, Chile  May 19-20, 2011 
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Stan Brodsky  

Singapore

with Guy de Tèramond,  Hans Günter Dosch,  Cedric Lorce, Kelly Chiu, and Alexandre Deur

Novel QCD Features of Hadrons and Nuclei

CDR QCD:  Partons and Nuclei          Orsay      June 1, 2017



JLab 12 GeV: An Exotic Charm Factory!

• Charm quarks at high x -- allows charm 
states to be produced with minimal energy

• Charm produced at  low velocities in the 
target -- the target rapidity domain 

• Charm at threshold -- maximal domain for 
producing exotic states containing charm 
quarks

• Attractive QCD Van der Waals interaction -- 
“nuclear-bound quarkonium” 

• Dramatic Spin Correlations in the threshold 
Domain

• Strong SSS Threshold Enhancement

xF ⇠ �1



Novel QCD Phenomena at JLab 12 GeV 
and the EIC

• Intrinsic Heavy Quarks

• Charm at Threshold

• Novel Heavy Quark Resonances at Threshold

• Nuclear-Bound Quarkonium

• Exclusive and Inclusive Sivers Effect.

• Breakdown of pQCD Leading-Twist Factorization

• Non-universal antishadowing

• Hidden Color

• J=0 Fixed pole in DVCS

Illuminate New Hadronic Physics



Stan Brodsky  

c

c̄

Fixed LF time

April 29, 2016

ee’

Novel QCD Phenomena in Nuclear  
Photo - and Electroproduction 

1/10/2015 NeoFronteras » Confirman Z(4430) - Portada -

http://neofronteras.com/?p=4405 2/11

Los quarks tienen además de carga eléctrica una carga distinta que se ha llamado carga de color y que
puede ser roja, verde o azul (es una analogía, obviamente no tienen color real), con sus correspondientes
anticolores. Combinando quarks se consiguen partículas con carga de color neutra. Los leptones son
partículas de spin semientero, en concreto son el electrón, el muón y el tau con sus correspondientes
neutrinos asociados.
Además de todo ello, hay partículas de spin entero (bosones) que son los portadores de las fuerzas. Los
quarks y leptones interaccionan intercambiando bosones virtuales de fuerza, partículas que no tienen
consistencia real. Un electrón se ve atraído por otro porque se intercambian fotones virtuales (los bosones
de la fuerza electromagnética).

Esquema del modelo estándar. Foto: Fermilab.

Para crear un protón se necesitan tres quaks, dos quark up y uno down que se mantienen unidos gracias a que intercambian unos bosones
virtuales denominados gluones que son los portadores de la fuerza nuclear fuerte.
Los conjuntos de quarks, como el protón, se denominan hadrones. Los hadrones de dos quarks son los mesones (color y anticolor) y los de
tres (tres colores que dan neutro) se llaman bariones. Así que Z(4430) es un hadrón.
La cromodinámica cuántica predice la existencia de hadrones exóticos, además de los bariones y mesones conocidos, esta teoría de campos
predice la existencia de tetraquarks (dos colores y sus correspondientes anticolores), pentaquarks (tres colores y un color y anticolor),

⌧ = t + z/c

Exotic Hadrons
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Nuclear Photoproduction with GlueX
 

Nuclear Photoproduction with GlueX
Topical Workshop, April 28 - 29, 2016
Thomas Jefferson National Accelerator Facility
Newport News, VA

Remote Participation

To join this meeting remotely via BlueJeans, click here, or to connect via
phone: (408)740-7256 or (888)240-2560.

Circular

Photoproduction on nuclear targets (A > 1) at multi-GeV energies is being
considered as an interesting future application of the GlueX detector beyond
the meson spectroscopy program. The aim of the workshop is to explore the
physics potential of nuclear photoproduction with GlueX, including theoretical
motivation, experimental methods, equipment needs, and wider context of
such measurements. Unique capabilities that GlueX would bring to
photoproduction physics are linear photon polarization, excellent energy
resolution through tagging, and wide energy coverage from ~5 GeV to 12
GeV. Physics topics include:

Medium modification of light vector mesons (rho, omega, phi)
J/psi as a probe of nuclear color fields
Coherent nuclear processes, including Primakoff production
Polarization observables in nuclear photoproduction

A Letter of Intent for nuclear photoproduction with GlueX was favorably
reviewed by JLab's PAC43 in 2015. The workshop aims to solicit the advice
of world experts and stimulate further development, in order to initiate
preparation of a full proposal to PAC44 in 2016.

The workshop is part of a broader effort by the GlueX collaboration and
Jefferson Lab to explore new physics applications of the GlueX detector
beyond the meson spectroscopy program. An initial assessment of the
physics potential of nuclear photoproduction with GlueX was made at the
2008 Workshop "Photon-hadron physics with the GlueX detector at Jefferson
Lab".

 

Organizing committee:

Curtis Meyer (Carnegie Mellon U.)


