

Coherent and incoherent DVCS and π^0 production on $^4{\rm He}$

S. Stepanyan (JLAB)

Partons and Nuclei IPN-ORSAY, June 1 – 2, 2017

Outline

- DVCS and π^0 production on spin and isospin zero target
- CLAS/EG6 experiment at JLAB
- Radial Time Projection Chamber
- BSA in coherent and incoherent DVCS
- BSA in coherent and incoherent π⁰ production
- Future measurements with CLAS12 in Hall-B
- Summary

Beam Spin Asymmetry in DVCS on nuclei

✓ Coherent DVCS, $\vec{e}A \rightarrow e'A'\gamma$:

Study the partonic structure of the nucleus. For spinless nuclei (4 He, 12 C, 12 O ...), in the forward limit only one chiral-even GPD ($H_A(x,\xi,t)$) is needed to parametrize the nucleus structure and hence the BSA -

$$A_{LU} = \frac{\alpha_0(\phi) \cdot \mathcal{H}_{Im}}{\alpha_1(\phi) + \alpha_2(\phi) \cdot \mathcal{H}_{Re} + \alpha_3(\phi) \cdot [\mathcal{H}_{Re}^2 + \mathcal{H}_{Im}^2]}$$

 \mathcal{H} – Compton Form-factor

 $\alpha_j(\phi)$ - Functions of angle between lepton and hadron scattering planes

✓ Incoherent DVCS, $\vec{e}A \rightarrow e'N'\gamma X$:

Study the partonic structure of the bound nucleon. Four ciral-even GPDs $(H(x,\xi,t), \widetilde{H}(x,\xi,t), E(x,\xi,t), \widetilde{E}(x,\xi,t))$

 $A_{LU} \propto \alpha(\phi) \{ F_1 H + \xi (F_1 + F_2) \widetilde{H} + \kappa F_2 E \}$

Beam Spin Asymmetry in π^0 production

$$\frac{d^{2}\sigma}{d\varphi dt} = \frac{1}{2\pi} \left[\frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\varphi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos(2\varphi) + h\sqrt{2\varepsilon(\varepsilon-1)} \frac{d\sigma_{LT}}{dt} \sin(\varphi) \right]$$

✓ Coherent π^0 production, $eA \rightarrow e'A'\pi^0$:

At $Q^2\sim$ few GeV^2 , transverse virtual photon contribution dominates the production on the nucleon. Contribution of a longitudinal virtual photon increases in the production on a spinless nuclei, cross section of the photo-production on a spinless nuclei (4 He, ^{12}C , ^{12}O ...) vanishes with $\theta_{cm}\rightarrow 0$:

$$\frac{1}{F^2(t)}\frac{d\sigma_T}{d\Omega} \sim \sin^2 \vartheta_{cm}$$

✓ For the proton target, the flavor structure for π^0 production process is 2^*u+d .

For an isospin zero target, e.g. ⁴He, the flavor structure is u+d

CLAS/Eg6 experiment, Nov-Dec 2009

- Meson Spectroscopy and DVCS (coherent and incoherent) on ⁴He
- Both experiments make use of zero spin and isospin of the target to restrict production mechanisms
- **Both experiments require detection and identification of recoil** α -particles
 - 2nd Generation Radial Time Projection Chamber with 20 cm long, 6 atm, ⁴He gaseous target located inside of the Hall-B superconducting solenoid magnet

20-cm-long, 15 cm in diameter cylindrical detector positioned around the 6 atm ⁴He gaseous target. The target cell is a 25-cm-long and 6-mm-diameter Kapton tube with 27-µm-thick walls.

- Production data taking ~200mC of beam on target (20 PAC days) with 6.06 GeV polarized electrons
- RTPC calibration runs at 1.2 GeV

RTPC Calibration

- Beam energy 1.2 GeV, the same detector configuration as for production data taking
- Both exclusive and inclusive elastic scattering
 - □ i.e. with and without ⁴He detection
 - ratio is the RTPC tracking efficiency

Example Fits

Coherent DVCS analysis

M. Hattawy (ORSAY/ANL)

$$\vec{e}^4He \rightarrow e'^4He'\gamma$$

- One electron in CLAS, one photon with E>2 GeV in the inner calorimeter
- The recoil α-particles (4 He) has been detected and identified in RTPC
- Set of cuts on kinematical variables define the exclusivity of the reaction: §
 - the coplanarity angle $\Delta \varphi$ between the (γ, γ^*) and $(\gamma^*, {}^4\text{He'})$ planes,
 - the missing energy, mass, and transverse momentum of the $(e'^4He'\gamma)$ system,
 - the missing mass squared of the e'4He' system, and
 - the angle θ between the measured photon and the missing momentum of the e'4He' system.

[§] At some point these cuts should be part of global kinematic fit

BSA: coherent DVCS

3m and Re parts of the Compton Amplitude

Curves from – S. Liuti and K. Taneja, Phys. Rev. C 72, 032201 (2005)

HERMES

Curves:

Convolution-Dual – V. Guzey, Phys. Rev. C 78, 025211 (2008)

Convolution-VGG – M. Guidal, M. V. Polyakov, A. V. Radyushkin and M. Vanderhaeghen, Phys. Rev. D 72, 054013 (2005).

OFf-shell model – J. O. Gonzalez-Hernandez, S. Liuti, G.R. Goldstein and K. Kathuria, Phys. Rev. C 88, no. 6, 065206, (2013).

$$A_{LU} = \frac{\alpha_0(\phi) \cdot \mathcal{H}_{Im}}{\alpha_1(\phi) + \alpha_2(\phi) \cdot \mathcal{H}_{Re} + \alpha_3(\phi) \cdot [\mathcal{H}_{Re}^2 + \mathcal{H}_{Im}^2]}$$

PRL draft is in collaboration review

Incoherent DVCS

$\vec{e}^4 He \rightarrow e' p \gamma X$

- Detected particles: scattered electron and recoil proton in CLAS, DVCS photon with E>2 GeV in the inner calorimeter
- Exclusivity cuts on kinematical variables, similar to hydrogen-DVCS analysis.

Bound nucleon GPDs

DVCS BSA on bound protons

$$A_{LU} = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{1}{P_{B}} \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

$$A_{LU} \propto \alpha(\phi) \{ F_1 H + \xi (F_1 + F_2) \widetilde{H} + \kappa F_2 E \}$$

- bins in $t=(p-p')^2$ smeared due to Fermi motion
- bins in $t'=(q-q')^2$ smeared due to radiative effects

Both effects are small in out kinematics

BSA and Generalized EMC Ratio

- EMC effect: nucleon structure is modified.
- Compare BSA measured in incoherent DVCS with the one measured on the hydrogen target.
- Incoherent BSA is dominated by DVCS off of MF protons (no tagging)

DVCS and NN-short range correlations

DVCS with high energy spectator tagging can provide valuable information on the nucleon structure modification through measuring the GPDs of a strongly bound (off-shell) nucleon

Coherent π^0 Production

B. Torayev (ODU)

$$\vec{e}^4He \rightarrow e'^4He'\pi^0$$

- Detected particles: scattered electron in CLAS, two photons in the inner calorimeter, the recoil ⁴He is identified in RTPC
- Exclusivity cuts on kinematical variables, similar to coherent-DVCS analysis.

Yellow shaded region - all events Blue shaded region = after all other exclusivity cuts

 $MM_X^2(e^i\pi^0)$ (GeV²)

Coherent π^0 Production

Total of ~800 coherent π^0 events.

$$A_{LU}^{\sin(\varphi)} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{1}{P_B} \left(\frac{N^+ - N^-}{N^+ + N^-} \right)$$

$$\Delta A_{LU}^{\sin(\varphi)} = \frac{2}{P_B} \left(\frac{\sqrt{\left(N^- \Delta N^+\right)^2 + \left(N^+ \Delta N^-\right)^2}}{\left(N^+ + N^-\right)^2} \right)$$

 χ^2 and un-binned maximum log-likelihood fits to BSA ϕ -dependence

$$A_{LU}^{\sin(\varphi)}(\chi^2) = -0.09 \pm 0.05(stat.)$$

$$A_{LU}^{\sin(\varphi)}(LL) = -0.10 \pm 0.05(stat.)$$

Incoherent "exclusive" π^0 Production

$\vec{e}^4 He \rightarrow e' p \pi^0 X$

Detected particles: scattered electron and the recoil proton in CLAS, two photons in the inner calorimeter.

Kinematic cuts to optimize signal over background from the fits to the MM-distributions.

N_{ba} = 6.961e+02 ± 1726

N_{so} = 2.780e+03 ±81.71

N_ = 1.176e+03 ± 2692.

N_{so} = 2.214e+03 ± 67.7

N_{bg} = 8.657e+02 ± 1947

u = -0.005 ± 0.000

Incoherent "semi-exclusive" π^0 Production

$$\vec{e}^4 He \rightarrow e' N\pi^0 X$$

- Detected particles: scattered electron in CLAS, two photons in the inner calorimeter.
- Number of events in each beam helicity and ϕ -bin is extracted from the fit to the MM distribution of $(e'\pi^0)$ assuming $\vec{e}N \to e'\pi^0 X$

BSA in coherent and in-coherent π^0 production

Note the asymmetry sign change between spin/isospin zero target and the nucleon

Hadronic exchanges in π^0 production

J.M. Laget / Physics Letters B 695 (2011) 199-204

Quark degrees of freedom in π^0 production on 4 He

• The BSA for this process is:

$$A_{LU} \sim \sigma_{LT'} \sim \widetilde{H} * \widetilde{H}_T$$

 These GPDs are proportional (normalized) to:

$$\Delta q \cdot \Delta q_T$$

where Δq is the polarized PDF and Δq_T is the tensor anomalous moment.

• For the proton target, the flavor structure for this process is:

$$2u + d$$

- ✓ For ⁴He, the flavor structure is u+d. Since Δd and Δu are opposite in sign, the enhancement of the d-quark contribution for ⁴He should decrease the resulting beam-spin asymmetry relative to the proton case. (*Note clear if this is enough to flip the sign*)
- ✓ Will be interesting to study BSA in coherent π^0 production on ²H

V. Guzay, private communication

Low energy recoil tagging with CLAS12

New proposal to JLAB PAC45 – very ambitious program tuned for studies of partonic structure of light nuclei and bound nucleons using low energy recoil tagging technique.

Measurement	Particles detected	p range	θ range
Nuclear GPDs	$^4{ m He}$	230	$\pi/4 < \theta < \pi/2 \text{ rad}$
Tagged EMC	p, ³ H, ³ He	As low as possible	As close to π as possible
Tagged DVCS	$p, {}^{3}H, {}^{3}He$	As low as possible	As close to π as possible

Summary

- CLAS experiment for coherent photo- and electro-production of the photon and mesons on a spin and isospin zero target, ⁴He, run in 2009
- □ Scattering of a 6.06 GeV polarized electrons on a 6 atm., 20 cm long 4 He gas target was used to collect data for DVCS and π^0 electroproproduction
- A low energy recoil detector, a cylindrical RTPC, has been deployed for detection and identification of the recoiling α –particles
- □ BSA in the fully exclusive final state, for the first time, have been measured in coherent DVCS and π^0 production on 4 He. Coherent DVCS allows modelindependent extraction of the \Re and \Im m parts of Compton amplitude. The BSA of π^0 production has different sign of asymmetry than BSA on the nucleon.
- BSA in incoherent DVCS opens up a new opportunities for studying the partonic structure of bound nucleons through spectator tagging
- A new measurements are planned for CLAS12 using up to 11 GeV longitudinally polarized electron beams, a high pressure gaseous target, and a new low energy recoil detector, ALERT, with much improved PID that is very important for spectator tagging (proposal have been re-submitted to PAC45)

Thanks you

