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Global (nuclear) PDF fit
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 One of the most standardized procedures in High-Energy Physics.
 Main goal: provide a set of Parton Distribution Functions (PDFs)

Main difference in the nuclear case: 
**Normally ratios with free proton used due to lack of constraints
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where �
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� 0 and A
ref

= 12. By construction, the nu-
clear e↵ects (deviations from unity) are now larger for
heavier nuclei. Without the factor y
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) � 1 in the
exponent one can more easily fall into a peculiar situa-
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which seems physically unlikely. For the valence quarks
and gluons the values of y
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are determined by requiring
the sum rules
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separately for each nucleus and thus the A dependence
of these y

0

is not parametrized. All other parameters
than y

0

, y
a

, y
e

are A-independent. In our present frame-
work we consider the deuteron (A = 2) to be free
from nuclear e↵ects though few-percent e↵ects at high
x are found e.g. in Ref. [60]. The bound neutron PDFs

f
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(x,Q2) are obtained from the bound proton PDFs

by assuming isospin symmetry,
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Above the parametrization scale Q2 > Q2

0

the nu-
clear PDFs are obtained by solving the DGLAP evo-
lution equations with 2-loop splitting functions [61,62].
We use our own DGLAP evolution code which is based
on the solution method described in Ref. [63] and also
explained and benchmarked in Ref. [64]. Our parametri-
zation scale Q2

0

is fixed to the charm pole mass Q2

0

=
m2

c

where m
c

= 1.3GeV. The bottom quark mass is
m

b

= 4.75GeV and the value of the strong coupling
constant is set by ↵

s

(M
Z

) = 0.118, where M
Z

is the
mass of the Z boson.

As is well known, at NLO and beyond the PDFs do
not need to be positive definite and we do not impose
such a restriction either. In fact, doing so would be ar-
tificial since the parametrization scale is, in principle,
arbitrary and positive definite PDFs, say, at Q2

0

= m2

c

may easily correspond to negative small-x PDFs at a
scale just slightly below Q2

0

. As we could have equally
well parametrized the PDFs at such a lower value of Q2

0

,
we see that restricting the PDFs to be always positive
would be an unphysical requirement.

3 Experimental data

All the `�A DIS, pA DY and RHIC DAu pion data sets
we use in the present analysis are the same as in the
EPS09 fit. The only modification on this part is that we
now remove the isoscalar corrections of the EMC, NMC
and SLAC data (see the next subsection), which is im-
portant as we have freed the flavour dependence of the
quark nuclear modifications. The `�A DIS data (cross
sections or structure functions F

2

) are always normal-
ized by the `�D measurements and, as in EPS09, the
only kinematic cut on these data is Q2 > m2

c

. This
is somewhat lower than in typical free-proton fits and
the implicit assumption is (also in not setting a cut in
the mass of the hadronic final state) that the possi-
ble higher-twist e↵ects will cancel in ratios of structure
functions/cross sections. While potential signs of 1/Q2

e↵ects have been seen in the HERA data [65] already
around Q2 = 10GeV2, these e↵ects occur at signifi-
cantly smaller x than what is the reach of the `�A DIS
data.

From the older measurements, also pion-nucleus DY
data from the NA3 [51], NA10 [52], and E615 [53] col-
laborations are now included. These data have been

EPPS16 fitting function

RA
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fp
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EPS09
JHEP0904 (2009) 065

DSSZ
PRD85 (2012) 074028

nCTEQ
PRD93 (2016) 085037

EPPS16
EPJC77 (2017) 163

data 
included

e-DIS

Drell-Yan pA

RHIC hadrons also without

neutrino DIS

LHC data

Flavor decomposition (partial)

# data points 929 1579 740 1811

accuracy NLO NLO NLO NLO

proton PDF CTEQ6.1 MSTW2008 ~CTEQ6.1 CT14NLO

[Also Khanpour, Atashbar 2016 (NNLO)]  

Recent sets
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What is new?
EPPS16 supersedes our previous EPS09 analysis 

[most widely used of nuclear PDFs to date]

5

Neutrino DIS
Flavor decomposition

LHC dijet data More constraints on gluons
[with no extra weights to specific data sets]

LHC W/Z production
pion-nucleus DY
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Neutrino DIS
Flavor decomposition

LHC dijet data More constraints on gluons
[with no extra weights to specific data sets]

LHC W/Z production
pion-nucleus DY

Also improvements on the error analysis, heavy-flavor prescription, 
isospin corrections to old DIS data…



 IPN Orsay - June 2017                                                                    From EPS09 to EPPS16

Experimental data sets

6

Main addition is information on lead nuclei [whole data table in backup]
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Table 1 The data sets used in the EPPS16 analysis, listed in the order of growing nuclear mass number. The number of data
points and their contribution to �

2 counts only those data points that fall within the kinematic cuts explained in the text.
The new data with respect to the EPS09 analysis are marked with a star.

Experiment Observable Collisions Data points �

2 Ref.

SLAC E139 DIS e

�He(4), e�D 21 12.2 [72]
CERN NMC 95, re. DIS µ

�He(4), µ�D 16 18.0 [73]

CERN NMC 95 DIS µ

�Li(6), µ�D 15 18.4 [74]
CERN NMC 95, Q2 dep. DIS µ

�Li(6), µ�D 153 161.2 [74]

SLAC E139 DIS e

�Be(9), e�D 20 12.9 [72]
CERN NMC 96 DIS µ

�Be(9), µ�C 15 4.4 [75]

SLAC E139 DIS e

�C(12), e�D 7 6.4 [72]
CERN NMC 95 DIS µ

�C(12), µ�D 15 9.0 [74]
CERN NMC 95, Q2 dep. DIS µ

�C(12), µ�D 165 133.6 [74]
CERN NMC 95, re. DIS µ

�C(12), µ�D 16 16.7 [73]
CERN NMC 95, re. DIS µ

�C(12), µ�Li(6) 20 27.9 [73]
FNAL E772 DY pC(12), pD 9 11.3 [76]

SLAC E139 DIS e

�Al(27), e�D 20 13.7 [72]
CERN NMC 96 DIS µ

�Al(27), µ�C(12) 15 5.6 [75]

SLAC E139 DIS e

�Ca(40), e�D 7 4.8 [72]
FNAL E772 DY pCa(40), pD 9 3.33 [76]
CERN NMC 95, re. DIS µ

�Ca(40), µ�D 15 27.6 [73]
CERN NMC 95, re. DIS µ

�Ca(40), µ�Li(6) 20 19.5 [73]
CERN NMC 96 DIS µ

�Ca(40), µ�C(12) 15 6.4 [75]

SLAC E139 DIS e

�Fe(56), e�D 26 22.6 [72]
FNAL E772 DY e

�Fe(56), e�D 9 3.0 [76]
CERN NMC 96 DIS µ

�Fe(56), µ�C(12) 15 10.8 [75]
FNAL E866 DY pFe(56), pBe(9) 28 20.1 [77]

CERN EMC DIS µ

�Cu(64), µ�D 19 15.4 [78]

SLAC E139 DIS e

�Ag(108), e�D 7 8.0 [72]

CERN NMC 96 DIS µ

�Sn(117), µ�C(12) 15 12.5 [75]
CERN NMC 96, Q2 dep. DIS µ

�Sn(117), µ�C(12) 144 87.6 [79]

FNAL E772 DY pW(184), pD 9 7.2 [76]
FNAL E866 DY pW(184), pBe(9) 28 26.1 [77]
CERN NA10F DY ⇡

�W(184), ⇡�D 10 11.6 [52]
FNAL E615F DY ⇡

+W(184), ⇡�W(184) 11 10.2 [53]

CERN NA3F DY ⇡

�Pt(195), ⇡�H 7 4.6 [51]

SLAC E139 DIS e

�Au(197), e�D 21 8.4 [72]
RHIC PHENIX ⇡

0 dAu(197), pp 20 6.9 [28]

CERN NMC 96 DIS µ

�Pb(207), µ�C(12) 15 4.1 [75]
CERN CMSF W± pPb(208) 10 8.8 [43]
CERN CMSF Z pPb(208) 6 5.8 [45]
CERN ATLASF Z pPb(208) 7 9.6 [46]
CERN CMSF dijet pPb(208) 7 5.5 [34]
CERN CHORUSF DIS ⌫Pb(208), ⌫Pb(208) 824 998.6 [50]

Total 1811 1789
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CERN CMSF dijet pPb(208) 7 5.5 [34]
CERN CHORUSF DIS ⌫Pb(208), ⌫Pb(208) 824 998.6 [50]

Total 1811 1789Only this set (15 points) for Pb in EPS09 
+ 41 data points for Au

Notice that in addition to x and Q2, a new variable for nuclei: A

The dependence on the atomic number A is also parametrized 
in nPDFs (as x in proton PDFs)



Neutrino DIS data

[Paukkunen, Salgado arXiv:1302.2001 / PRL110 (2013) 212301]
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CONCLUSIONS

 Incompatibility of neutrino DIS with charged lepton DIS (?)

- incompatibility a "precision" effect - the result changes e.g. when using uncorrelated errors

- tension in NuTeV data → high     of the fit to NuTeV alone → problem of NuTeV data ?

- NOMAD data can help decide

�2

 The impact of nuclear PDF from neutrino DIS on proton PDF
- how does the incompatibility of neutrino DIS impact the uncertainty of strange quark PDF ?

- conclusions heavily rely on only NuTeV data - most precise

[Slide stolen from K. Kovari’s talk at DIS 2012]

Neutrino data had a problem
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analysis did not use the absolute cross sections, but the far more scarce structure function data.

Given all this, the neutrino data did not carry as heavy an importance as in [14]. For more

comprehensive review of the present situation, see [19].

In this Letter, we will show that when accounting for the overall normalization of the experimen-

tal data in neutrino DIS, all three data sets do show a uniform pattern of nuclear modifications, well

reproduced by the existing nPDFs. This reinforces the conclusions of [16], in a model-independent

way, supporting the functionality of the factorization in neutrino DIS. We make the point even

more concrete by employing a method based on the Hessian error analysis to verify the consistency

of these data with CTEQ6.6 [8] and EPS09 [9] global fits.
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FIG. 1: The neutrino and antineutrino data presented as Rν

Average (left-hand panels), and as R
ν

Average (right-

hand panels). The CHORUS (blue circles) and CDHSW (green diamonds) data have been horizontally

shifted from the NuTeV (black squares) data points for clarity.

We utilize the neutrino-nucleus DIS data from the NuTeV [15], CHORUS [18] and CDHSW

[17] experiments. The difficulty in dealing with the neutrino data is that no reference data from

hydrogen or deuterium target are available and we are forced to use the absolute experimental cross

sections σν
exp instead of cross section ratios. However, in order to better see the nuclear effects we

still prefer to present the data as ratios

Rν(x, y,E) ≡
σν
exp(x, y,E)

σν
CTEQ6.6(x, y,E)

, (1)

where the theoretical cross sections σν
CTEQ6.6 are calculated with the CTEQ6.6M central set. As in

[16], the theoretical calculations include corrections for the target mass and electroweak radiation,
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The neutrino DIS data
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FIG. 2: The experimental R
ν

Average compared to the predictions from CTEQ6.6 and EPS09.

the bound proton PDFs fA
i (x,Q2) obtained standardly by

fA
i (x,Q2) ≡ RA,EPS09

i (x,Q2)fCTEQ6.6M
i (x,Q2), (5)

where the factor RA,EPS09
i represents the EPS09 [9] nuclear modification in free proton PDF

fCTEQ6.6M
i (x,Q2). The results are shown in Figure 2, where the data points are the same as

in the right-hand panels of Figure 1, and the band indicates the theoretical calculations with all

PDF uncertainties added in quadrature [9]. The good agreement indicates that it should be pos-

sible to include these data in global fits without significant mutual disagreement or tension with

the other data sets. We note that in the normalization procedure described here, also part of the

PDF uncertainties cancel thereby making the theoretical predictions more solid.

We turn now to a more quantitative description of the data sets accounting for the normalization.

The technique described here is based on the Hessian uncertainty analysis [21] performed e.g. in

the EPS09 and CTEQ6.6 global fits [24]. The neighborhood of the minimum χ2 is approximated

by an expansion

χ2 ≈ χ2
0 +

∑

ij

δaiHijδaj = χ2
0 +

∑

i

z2
i , (6)

where δaj is the deviation of the fit parameter aj from its best-fit value. By diagonalizing the

Neutrino DIS data on Pb or Fe - no ratios.  
Good description of normalized cross-sections with EPS09
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NuTeV data 
not used in EPPS16

4

and are carried out in the SACOT-prescription [20] of the variable flavor number scheme. In order

to avoid higher-twist effects we restrict the virtuality Q2 and the final state invariant mass W

by conditions Q2
cut > 4GeV2, and W 2

cut > 12.25GeV2. This leaves us with 2136 NuTeV, 824

CHORUS, and 937 CDHSW data points. For a concise presentation of this large amount of data,

we form an average

Rν
Average(x) ≡

(

N
∑

i∈fixed x

Rν
i

δi

)(

N
∑

i∈fixed x

1

δi

)−1

±N ×

(

N
∑

i∈fixed x

1

δi

)−1

, (2)

where δi is the experimental error (statistical and systematic added in quadrature), and the sum

runs over all data points in the same x bin. This procedure neatly summarizes the main features

of the neutrino data as a function of x, but we stress that it is used here only for plotting the data,

the numerical results being computed using the absolute cross sections. The ratios constructed this

way are shown in the left-hand panels of Figure 1. Although the data from different experiments

appear to be in rough mutual agreement, the scatter is still non-negligible. In particular, the

NuTeV neutrino data seem to lie systematically below the rest and as such are likely to trigger

tension in a global fit — especially so if the NuTeV correlated systematic errors are taken seriously

as in [14] [23] . However, as a function of x the shape of the data seems to follow the usual nuclear

effect, suggesting that the problem is rather in the absolute normalization, as already conjectured

in [16]. For this reason, we define

Iνexp(E) ≡
∑

i∈fixedE

σexp,i(x, y,E) ×Bi(x, y), (3)

and similarly for the theoretical calculation. The factor Bi(x, y) represents the size of the experi-

mental (x, y) bin making Iνexp(E) thereby an estimate for the integrated cross section. Now, instead

of Eq. (1) we consider the ratio of the normalized cross sections

R
ν
(x, y,E) ≡

σν
exp(x, y,E)/Iνexp(E)

σν
CTEQ6.6(x, y,E)/IνCTEQ6.6(E)

. (4)

The averaged neutrino and antineutrino data normalized in this way are plotted in the right-

hand panels of Figure 1, demonstrating how all the considered data seem to fall in agreement.

In particular, the NuTeV neutrino data have moved upwards while the CHORUS and CDHSW

neutrino data have remained essentially unchanged. This observation suggests that the origin of the

difficulties in accommodating the neutrino data in a global fit [14] is due to an unnoticed problem

in the experimental normalization of the NuTeV data — that the uncertainties have probably been

underestimated by the experiment.



LHC data

[Armesto, Paukkunen, Penin, Salgado, Zurita arXiv:1512.01528]
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To avoid (large) sensitivity to proton PDFs: two solutions
Use neutrino DIS method (self-normalize cross sections) 
Use forward-backward ratios

Cancel some experimental/theoretical uncertainties but some 
information is lost - pp benchmark (same energy) needed
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Reweighting
Page 1

Reweighting to check impact on new data before a global fit



Figure 2. Forward-to-backward asymmetries for W+ (upper panels) and W

� (lower panels) mea-
sured by the CMS collaboration [21], as a function of the charged-lepton pseudorapidity in the
laboratory frame. The left-hand (right-hand) graphs correspond to the theoretical calculations
with EPS09 (DSSZ) nPDFs. Results with no nuclear e↵ects are included as dashed lines.

the leptons are measured within |⌘
lab

| < 2.4 with a slightly lower minimum p

T

for both

leptons (p
T

> 20 GeV), and 60GeV < Ml+l� < 120GeV. The A

F/B data are binned as

a function of yl
+l�
c.m. (rapidity of the lepton pair). Figure 3 presents a comparison between

the data and theory values before the reweighting (NNE stands for no nuclear modification

of parton densities but includes isospin e↵ects) and Table 2 (the right-hand column) lists

the �

2 values. The data appear to slightly prefer the calculations which include nuclear

modifications. Similarly to the case of W production, the use of nuclear PDFs eads to a

suppression in A

F/B. The rapid fall-o↵ of A
F/B towards large y

l+l�
c.m. comes from the fact

that the lepton pseudorapidity acceptance is not symmetric in the nucleon-nucleon c.m.

frame. Indeed the range |⌘
lab

| < 2.4 translates to �2.865 < ⌘

c.m. < 1.935 and since there

is less open phase space in the forward direction, the cross sections at a given y

l+l�
c.m. tend

to be lower than those at �y

l+l�
c.m. . This is clearly an unwanted feature since it gives rise to

higher theoretical uncertainties (which we ignore in the present study) than if a symmetric

acceptance (e.g. �1.935 < ⌘

c.m. < 1.935) had been used.

The ATLAS data correspond to the full phase space of the daughter leptons within

66GeV < Ml+l� < 116GeV and |yZ
c.m.| < 3.5. The data are only availabe as absolute cross

sections from which we have constructed the forward-to-backward ratio A

F/B. A compar-

ison between the theoretical predictions (with and without nuclear modifications) and the

– 7 –
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Reweighting EW bosons

Mild effect



Figure 10. Impact of the LHC Run I data on the nPDFs of EPS09 (left) and DSSZ (right) before
(black/grey) and after the reweighting (red/light red), for valence (upper panels), sea (middle
panels) and gluon (lower panels) distributions at Q2 = 1.69GeV2, except the DSSZ gluons that are
plotted at Q2 = 2GeV2.

p-Pb will also still appear (at least CMS inclusive jets, W production from ATLAS) and

many of the data sets used here are only preliminary.

5 Summary

In the present work we have examined the importance of PDF nuclear modifications in

describing some p-Pb results from Run I at the LHC, and the impact that the considered

data have on the EPS09 and DSSZ global fits of nPDFs. We have found that while some

– 16 –
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Reweighting Gluons

Some extra constraints - no need of weights in global fit

H. Paukkunen et.al. / Nuclear Physics A 00 (2014) 1–4 3

3. Quantitative constraints: reweighting of EPS09

p
s

Figure 3. The preliminary CMS dijet data [11] compared to pre-
dictions with di↵erent PDFs. Figure adapted from [12].

As Figure 3 already indicated, EPS09 agrees with the
CMS data. However, to better understand what kind of
further constraints these data might provide, we invoke the
method of Hessian PDF reweighting [14, 15]: We recall
that the central set of EPS09 corresponds to a minimum of
a certain global �2-function which can be expanded in the
vicinity of the minimum as

�2{a} ⇡ �2
0 +
X

i j

(ai � a0
i )Hi j(a j � a0

j ) = �
2
0 +
X

i

z2
i . (2)

Here, ai denote the fit parameters (the best fit corresponds
to ai = a0

i ) and Hi j is the second-derivative matrix (the
Hessian matrix) which has been diagonalized in the last
step. The central PDF set S 0 corresponds to the origin of
this “z-space” and the PDF error sets S ±k are defined by
zi(S ±k ) = ±

p
��2�ik, where ��2 = 50 for EPS09. If we

were to include a new set of data into our global fit, we
would naturally add its �2-contribution on top of every-
thing else in Eq. (2). Now, as the the PDF error sets are
available we can realize this approximately by defining

�2
new ⌘ �2

0 +
X

k

z2
k +
X

i, j

⇣
yi[ f ] � ydata

i

⌘
C�1

i j

⇣
y j[ f ] � ydata

j

⌘
,

where ydata
i are the new data points with covariance matrix Ci j. We can estimate the theory values yi[ f ] linearly by

yi
⇥
f
⇤ ⇡ yi [S 0] +

X

k

@yi[S ]
@zk

����
S=S 0

zk ⇡ yi [S 0] +
X

k

yi[S +k ] � yi[S �k ]
2

zkp
��2
, (3)

and, in this way, �2
new becomes a quadratic function of the variables zi and it has a well-defined minimum denoted here

by zi = zmin
k . The corresponding set of PDFs f new

i (x,Q2) can be computed by

f new
i (x,Q2) ⇡ f S 0

i (x,Q2) +
X

k

f S +k
i (x,Q2) � f S �k

i (x,Q2)
2

zmin
kp
��2
. (4)

After finding the minimum, one can also construct the new error sets similarly as sketched above.

Figure 4. Left-hand panel: The EPS09 nuclear modification RG(x,Q2 = 1.69 GeV2) before and after the reweighting with CMS p+Pb dijet data.
Right-hand panel: As the left-hand panel but giving the dijet data an extra weight of 10.

3



EPPS16
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shown [66,67] to carry some sensitivity to the flavour-
dependent EMC e↵ect. However, more stringent flavour-
dependence constraints at large x are provided by the
CHORUS (anti)neutrino-Pb DIS data [50], whose treat-
ment in the fit is detailedly explained in Section 3.2.

The present analysis is the first one to directly in-
clude LHC data. To this end, we use the currently pub-
lished pPb data for heavy-gauge boson [43,45,46] and
dijet production [34]. These observables have already
been discussed in the literature [68–71,36,41] in the
context of nuclear PDFs. Importantly, we include the
LHC pPb data always as forward-to-backward ratios in
which the cross sections at positive (pseudo)rapidities
⌘ > 0 are divided by the ones at negative rapidities
⌘ < 0. This is to reduce the sensitivity to the chosen
free-proton baseline PDFs as well as to cancel the ex-
perimental luminosity uncertainty. However, upon tak-
ing the ratio part of the information is also lost as, for
example, the points near ⌘ = 0 are, by construction, al-
ways close to unity and carry essentially no information.
In addition, since the correlations on the systematic er-
rors are not available, all the experimental uncertainties
are added in quadrature when forming these ratios (ex-
cept for the CMS W measurement [43] which is taken
directly from the publication) which partly undermines
the constraining power of these data. The baseline pp
measurements performed at the same

p
s as the pPb

runs may, in the future, also facilitate a direct usage of
the nuclear modification factors d�pPb/d�pp. The tech-
nicalities of how the LHC data are included in our anal-
ysis are discussed in Section 3.3.

In Fig. 2 we illustrate the predominant x and Q2 re-
gions probed by the data. Clearly, the LHC data probe
the nuclear PDFs at much higher in Q2 than the ear-
lier DIS and DY data. For the wide rapidity coverage
of the LHC detectors the new measurements also reach
lower values of x than the old data, but for the lim-
ited statistical precision the constraints for the small-x
end still remain rather weak. All the exploited data sets
including the number of data points, their �2 contribu-
tion and references are listed in Table 3. We note that,
approximately half of the data are now for the 208Pb
nucleus while in the EPS09 analysis only 15 Pb data
points (NMC 96) were included. Most of this change is
caused by the inclusion of the CHORUS neutrino data.

3.1 Isoscalar corrections

Part of the charged-lepton DIS data that have been
used in the earlier global nPDF fits had been “cor-
rected”, in the original publications, for the isospin ef-
fects. That is, the experimental collaborations had tried

1
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Fig. 2 The approximate regions in the (x,Q2) plane at which
di↵erent data in the EPPS16 fit probe the nuclear PDFs.

to eliminate the e↵ects emerging from the unequal num-
ber of protons and neutrons when making the com-
parison with the deuteron data. In this way the ratios
FA

2

/FD

2

could be directly interpreted in terms of nuclear
e↵ects in the PDFs. However, this is clearly an unnec-
essary operation from the viewpoint of global fits, that
has previously caused some confusion regarding the nu-
clear valence quark modifications: the particularly mild
e↵ects found in the nDS [20] and DSSZ [31] analyses
(see Fig. 27 ahead) most likely originate from neglect-
ing such a correction.

The structure function of a nucleus A with Z pro-
tons and N neutrons can be written as

FA

2

=
Z

A
F p,A

2

+
N

A
F n,A

2

, (10)

where F p,A

2

and F n,A

2

are the structure functions of
the bound protons and neutrons. The corresponding
isoscalar structure function is defined as the one con-
taining an equal number of protons and neutrons,

F̂A

2

=
1

2
F p,A

2

+
1

2
F n,A

2

. (11)

Using Eq. (10), the isoscalar structure function reads

F̂A

2

= �FA

2

, (12)

where

� =
A

2

 
1 +

F n,A

2

F p,A

2

!
/

 
Z +N

F n,A

2

F p,A

2

!
. (13)

Usually, it has been assumed that the ratio F n,A

2

/F p,A

2

is free from nuclear e↵ects,

F n,A

2

F p,A

2

=
F n

2

F p

2

, (14)

New in  
EPPS16

 Larger kinematic reach in x (and Q) and new constraints at large-x 
 More data from 2016 pPb run - large impact expected 
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Fig. 1 Illustration of the EPPS16 fit function R

A
i (x,Q2

0

).

would otherwise (that is, if ↵ = 1) develop if x
a

< 0.1.
The coe�cients a

i

, b
i

, c
i

are fully determined by the
asymptotic small-x limit y

0

= RA

i

(x ! 0, Q2

0

), the an-
tishadowing maximum y

a

= RA

i

(x
a

, Q2

0

) and the EMC
minimum y

e

= RA

i

(x
e

, Q2

0

), as well as requiring con-
tinuity and vanishing first derivatives at the matching
points x

a

and x
e

. The A dependencies of y
0

, y
a

, y
e

are
parametrized as

y
i

(A) = y
i

(A
ref

)

✓
A

A
ref

◆
�i[yi(Aref

)�1]

, (3)

where �
i

� 0 and A
ref

= 12. By construction, the nu-
clear e↵ects (deviations from unity) are now larger for
heavier nuclei. Without the factor y

i

(A
ref

) � 1 in the
exponent one can more easily fall into a peculiar situa-
tion in which e.g. y

i

(A
ref

) < 1, but y
i

(A � A
ref

) > 1,
which seems physically unlikely. For the valence quarks
and gluons the values of y

0

are determined by requiring
the sum rules

Z
1

0

dxfp/A

u

V

(x,Q2

0

) = 2, (4)

Z
1

0

dxf
p/A

d

V

(x,Q2

0

) = 1, (5)

Z
1

0

dxx
X

i

f
p/A

i

(x,Q2

0

) = 1, (6)

separately for each nucleus and thus the A dependence
of these y

0

is not parametrized. All other parameters
than y

0

, y
a

, y
e

are A-independent. In our present frame-
work we consider the deuteron (A = 2) to be free
from nuclear e↵ects though few-percent e↵ects at high
x are found e.g. in Ref. [60]. The bound neutron PDFs

f
n/A

i

(x,Q2) are obtained from the bound proton PDFs

by assuming isospin symmetry,

f
n/A

u,u

(x,Q2) = f
p/A

d,d

(x,Q2), (7)

f
n/A

d,d

(x,Q2) = f
p/A

u,u

(x,Q2), (8)

f
n/A

i

(x,Q2) = f
p/A

i

(x,Q2) for other flavours. (9)

Above the parametrization scale Q2 > Q2

0

the nu-
clear PDFs are obtained by solving the DGLAP evo-
lution equations with 2-loop splitting functions [61,62].
We use our own DGLAP evolution code which is based
on the solution method described in Ref. [63] and also
explained and benchmarked in Ref. [64]. Our parametri-
zation scale Q2

0

is fixed to the charm pole mass Q2

0

=
m2

c

where m
c

= 1.3GeV. The bottom quark mass is
m

b

= 4.75GeV and the value of the strong coupling
constant is set by ↵

s

(M
Z

) = 0.118, where M
Z

is the
mass of the Z boson.

As is well known, at NLO and beyond the PDFs do
not need to be positive definite and we do not impose
such a restriction either. In fact, doing so would be ar-
tificial since the parametrization scale is, in principle,
arbitrary and positive definite PDFs, say, at Q2

0

= m2

c

may easily correspond to negative small-x PDFs at a
scale just slightly below Q2

0

. As we could have equally
well parametrized the PDFs at such a lower value of Q2

0

,
we see that restricting the PDFs to be always positive
would be an unphysical requirement.

3 Experimental data

All the `�A DIS, pA DY and RHIC DAu pion data sets
we use in the present analysis are the same as in the
EPS09 fit. The only modification on this part is that we
now remove the isoscalar corrections of the EMC, NMC
and SLAC data (see the next subsection), which is im-
portant as we have freed the flavour dependence of the
quark nuclear modifications. The `�A DIS data (cross
sections or structure functions F

2

) are always normal-
ized by the `�D measurements and, as in EPS09, the
only kinematic cut on these data is Q2 > m2

c

. This
is somewhat lower than in typical free-proton fits and
the implicit assumption is (also in not setting a cut in
the mass of the hadronic final state) that the possi-
ble higher-twist e↵ects will cancel in ratios of structure
functions/cross sections. While potential signs of 1/Q2

e↵ects have been seen in the HERA data [65] already
around Q2 = 10GeV2, these e↵ects occur at signifi-
cantly smaller x than what is the reach of the `�A DIS
data.

From the older measurements, also pion-nucleus DY
data from the NA3 [51], NA10 [52], and E615 [53] col-
laborations are now included. These data have been

2

[24]) perturbative QCD.1 For the rather limited kine-
matic coverage of the fixed-target data and the fact that
only two types of data were used in these fits, signifi-
cant simplifying assumptions had to be made e.g. with
respect to the flavour dependence of the nuclear e↵ects.
The constraints on the gluon distribution are also weak
in these analyses, and it is only along with the RHIC
pion data [28] that an observable carrying direct infor-
mation on the nuclear gluons has been added to the
global fits — first in EPS08 [29] and EPS09 [30], later
in DSSZ [31] and nCTEQ15 [32]. The interpretation of
the RHIC pion production data is not, however, entirely
unambiguous as the parton-to-pion fragmentation func-
tions (FFs) may as well undergo a nuclear modification
[33]. This approach was adopted in the DSSZ fit, and
consequently their gluons show clearly weaker nuclear
e↵ects than in EPS09 (and nCTEQ15) where the FFs
were considered to be free from nuclear modifications.
To break the tie, more data and new observables were
called for. To this end, the recent LHC dijet measure-
ments [34] from pPb collisions have been most essential
as a consistent description of these data is obtained with
EPS09 and nCTEQ15 but not with DSSZ [35,36].

Another observable that has caused some contro-
versy and debate during the past years is the neutrino-
nucleus DIS. It has been claimed [37] (see also Ref. [38])
that the nuclear PDFs required to correctly describe
neutrino data are di↵erent than those optimal for the
charged-lepton induced DIS measurements. However, it
has been demonstrated [39,40] that problems appear
only in the case of one single data set and, furthermore,
that it seems to be largely a normalization issue (which
could e.g. be related to the incident neutrino flux which
is model-dependent). The neutrino data were also used
in the DSSZ fit without visible di�culties.

New data from the LHC 2013 p-Pb run have grad-
ually become available and their impact on the nuclear
PDFs has been studied [36,41] in the context of PDF
reweighting [42]. Apart from the aforementioned dijet
data [34] which will e.g. require a complete renovation
of the DSSZ approach, the available W [43,44] and Z
[45,46] data were found to have only a rather mild e↵ect
mainly for the limited statistical precision of the data.
However, the analysis of Ref. [36] used only nuclear
PDFs (EPS09, DSSZ) in which flavour-independent va-
lence and light sea quark distributions were assumed at
the parametrization scale. Thus, it could not reveal the
possible constraints that these electroweak observables
could have for a particular quark flavour. On the other
hand, the analysis of Ref. [41] involves some flavour de-
pendence but the usage of absolute cross sections which

1For studies addressing origins of the nuclear e↵ects, see e.g.
Refs. [25,26,27].

are sensitive to the free proton baseline PDFs compli-
cates the interpretation of the results.

In the present paper, we update the EPS09 analysis
by adding a wealth of new data from neutrino DIS [47],
pion-nucleus DY process [48,49,50], and especially LHC
pPb dijet [34], Z [45,46] and W [43] production. By this,
we take the global nuclear PDF fits onto a completely
new level in the variety of data types. In addition, in
comparison to EPS09, a large part of the whole frame-
work is upgraded: we switch to a general-mass formal-
ism for the heavy quarks, relax the assumption of the
flavour independent nuclear modifications for quarks at
the parametrization scale, undo the isospin corrections
that some experiments had applied on their data, and
also importantly, we now assign no extra weights to any
of the data sets. In this updated analysis, we find no sig-
nificant tension between the data sets considered, which
lends support to the assumption of process-independent
nuclear PDFs in the studied kinematical region. The
result of the analysis presented in this paper is also
published as a new set of next-to-leading order (NLO)
nuclear PDFs, which we call EPPS16 and which super-
sedes our earlier set EPS09. The new EPPS16 set will
be available at [51].

2 Parametrization of nuclear PDFs

Similarly to our earlier works, the bound proton PDF
f
p/A

i

(x,Q2) for mass number A and parton species i is
defined relative to the free proton PDF fp

i

(x,Q2) as

f
p/A

i

(x,Q2) = RA

i

(x,Q2)fp

i

(x,Q2), (1)

where RA

i

(x,Q2) is the scale-dependent nuclear mod-
ification. Our free proton baseline is CT14NLO [52].
Consistently with this choice, our analysis here uses the
SACOT (simplified Aivazis-Collins-Olness-Tung) gener-
al-mass variable flavour number scheme [53,54,55] for
the DIS cross sections. The fit function for the nuclear
modifications RA

i

(x,Q2

0

) at the parametrization scale
Q2

0

, illustrated in Fig. 1, is also largely inherited from
our earlier analyses [15,17,29,30],

RA

i

(x,Q2

0

) =

8
<

:

a
0

+ a
1

(x� x
a

)2 x  x
a

b
0

+ b
1

x↵ + b
2

x2↵ + b
3

x3↵ x
a

 x  x
e

c
0

+ (c
1

� c
2

x) (1� x)��

x
e

 x  1,

(2)

where ↵ = 10x
a

and the i and A dependencies of the
parameters on the r.h.s. are left implicit.2 The pur-
pose of the exponent ↵ is to avoid the “plateau” that

2See Ref. [56] for a study experimenting with a more flexible
fit function at small x.

A-dep implicit  
Total 40 param

Error analysis: needed to check compatibility of 
(new) different sets of data
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Above, the index k labels the parameters controlling
the experimental systematic uncertainties and �k

i

are
the cross section shifts corresponding to a one standard
deviation change in the kth parameter. We note that
�̃k

i

in Eq. (20) for the relative cross sections in Eq. (16)
are constructed such that if the �k

i

correspond only to
the same relative normalization shift for all points, then
�̃k

i

are just zero. We also note that in Eq. (18) we have
assumed that the response of d�̃⌫,⌫

i,exp

/dxdy to the sys-
tematic uncertainty parameters is linear.

As shown in e.g. Ref. [39], the Q2 dependence of
nuclear e↵ects in neutrino DIS data is weak. Hence,
for a concise graphical presentation of the data as a
function of x, we integrate over the y variable by

d�̃⌫,⌫

exp

dx
(E) =

X

j

d�̃⌫,⌫

j,exp

dxdy
�y

j

�
x,xj�E,Ej , (22)

where �y

j

is the size of the y bin to which the jth data
point belongs, and x

j

the corresponding value of the x
variable. The overall statistical uncertainty to the rela-
tive cross section in Eq. (22) is computed as

�stat(E, x) =

sX

j

⇣
�̃stat
j

�y

j

⌘
2

�
x,xj�E,Ej , (23)

and the total systematic uncertainty is given by

�sys(E, x) =

sX

k

[�sys
k

(E, x)]
2

, (24)

where

�sys
k

(E, x) =
X

j

�̃k

j

�y

j

�
x,xj�E,Ej . (25)

In the plots for d�̃⌫,⌫

exp

/dx presented in Section 5 (Figs. 20
and 21 ahead), the statistical and total systematic un-
certainties have been added in quadrature. We also di-
vide by the theory values obtained by using the CT14-
NLO free proton PDFs (but still with the correct amount
of protons and neutrons). We stress that Eqs. (22)–(25)
are used only for a simple graphical presentation of the
data but not for the actual fit.

3.3 Look-up tables for LHC observables and others

In order to e�ciently include the LHC observables in
our fit at the NLO level, a fast method to evaluate the
cross sections is essential. We have adopted the follow-
ing pragmatic approach: For a given observable, a hard-
process cross section �pPb in pPb collisions, we set up a

grid in the x variable of the Pb nucleus, x
0

, . . . , x
N

= 1,
and evaluate, for each x bin k and parton flavor j

�pPb

j,k

=
X

i

fp

i

⌦ �̂
ij

⌦ fPb

j,k

, (26)

where �̂
ij

are the coe�cient functions appropriate for a
given process and fPb

j,k

involve only proton PDFs with
no nuclear modifications,

fPb

j,k

(x) ⌘
X

`

h
Zfp,Pb

`

(x) +Nfn,Pb

`

(x)
i ����

R

Pb

j =1,R

Pb

i 6=j=0

⇥ ✓ (x� x
k�1

) ✓ (x
k

� x) . (27)

Thus, the functions fPb

j,k

pick up the partonic weight of

the nuclear modification RPb

j

in a given interval x
k�1

<

x < x
k

. Since the nuclear modification factors RA

i

are
relatively slowly varying functions in x (e.g. in compar-
ison to the absolute PDFs), the observable �pPb can be
computed as a sum of �pPb

j,k

weighted by the appropriate
nuclear modification,

�pPb =
X

j,k

�pPb

j,k

RPb

j

(x
k�1

< x < x
k

). (28)

As an illustration, in Fig. 3, we show the histograms
of �pPb

j,k

corresponding to W+ production measured by
CMS in the bin 1 < ⌘

lab

< 1.5. For the electroweak
LHC observables we have used the MCFM code [83] to
compute the grids, and for dijet production the modi-
fied EKS code [84,85,86].

We set up similar grids also for inclusive pion pro-
duction in DAu collisions at RHIC using the INCNLO
[87] code with KKP FFs [88], and for the DY process
in ⇡A collisions using MCFM with the GRV pion PDFs
[89]. In all cases, we have checked that the grids repro-
duce a direct evaluation of the observables within 1%
accuracy in the case of EPS09 nuclear PDFs.

4 Analysis procedure

The standard statistical procedure for comparing ex-
perimental data to theory is to inspect the behaviour
of the overall �2 function, defined as

�2 (a) ⌘
X

k

�2

k

(a) , (29)

where a is a set of theory parameters and �2

k

(a) denotes
the contribution of each independent data set k,

�2

k

(a) ⌘
X

i,j

[T
i

(a)�D
i

]C�1

ij

[T
j

(a)�D
j

] . (30)

Here, T
i

(a) denote the theoretical values of the observ-
ables in the data set k, D

i

are the corresponding ex-
perimental values, and C

ij

is the covariance matrix. In
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Above, the index k labels the parameters controlling
the experimental systematic uncertainties and �k

i

are
the cross section shifts corresponding to a one standard
deviation change in the kth parameter. We note that
�̃k

i

in Eq. (20) for the relative cross sections in Eq. (16)
are constructed such that if the �k

i

correspond only to
the same relative normalization shift for all points, then
�̃k

i

are just zero. We also note that in Eq. (18) we have
assumed that the response of d�̃⌫,⌫

i,exp

/dxdy to the sys-
tematic uncertainty parameters is linear.

As shown in e.g. Ref. [39], the Q2 dependence of
nuclear e↵ects in neutrino DIS data is weak. Hence,
for a concise graphical presentation of the data as a
function of x, we integrate over the y variable by

d�̃⌫,⌫

exp

dx
(E) =

X

j

d�̃⌫,⌫

j,exp

dxdy
�y

j

�
x,xj�E,Ej , (22)

where �y

j

is the size of the y bin to which the jth data
point belongs, and x

j

the corresponding value of the x
variable. The overall statistical uncertainty to the rela-
tive cross section in Eq. (22) is computed as

�stat(E, x) =

sX

j

⇣
�̃stat
j

�y

j

⌘
2

�
x,xj�E,Ej , (23)

and the total systematic uncertainty is given by

�sys(E, x) =

sX

k

[�sys
k

(E, x)]
2

, (24)

where

�sys
k

(E, x) =
X

j

�̃k

j

�y

j

�
x,xj�E,Ej . (25)

In the plots for d�̃⌫,⌫

exp

/dx presented in Section 5 (Figs. 20
and 21 ahead), the statistical and total systematic un-
certainties have been added in quadrature. We also di-
vide by the theory values obtained by using the CT14-
NLO free proton PDFs (but still with the correct amount
of protons and neutrons). We stress that Eqs. (22)–(25)
are used only for a simple graphical presentation of the
data but not for the actual fit.

3.3 Look-up tables for LHC observables and others

In order to e�ciently include the LHC observables in
our fit at the NLO level, a fast method to evaluate the
cross sections is essential. We have adopted the follow-
ing pragmatic approach: For a given observable, a hard-
process cross section �pPb in pPb collisions, we set up a

grid in the x variable of the Pb nucleus, x
0

, . . . , x
N

= 1,
and evaluate, for each x bin k and parton flavor j

�pPb

j,k

=
X

i

fp

i

⌦ �̂
ij

⌦ fPb

j,k

, (26)

where �̂
ij

are the coe�cient functions appropriate for a
given process and fPb

j,k

involve only proton PDFs with
no nuclear modifications,

fPb

j,k

(x) ⌘
X

`

h
Zfp,Pb

`

(x) +Nfn,Pb

`

(x)
i ����

R

Pb

j =1,R

Pb

i 6=j=0

⇥ ✓ (x� x
k�1

) ✓ (x
k

� x) . (27)

Thus, the functions fPb

j,k

pick up the partonic weight of

the nuclear modification RPb

j

in a given interval x
k�1

<

x < x
k

. Since the nuclear modification factors RA

i

are
relatively slowly varying functions in x (e.g. in compar-
ison to the absolute PDFs), the observable �pPb can be
computed as a sum of �pPb

j,k

weighted by the appropriate
nuclear modification,

�pPb =
X

j,k

�pPb

j,k

RPb

j

(x
k�1

< x < x
k

). (28)

As an illustration, in Fig. 3, we show the histograms
of �pPb

j,k

corresponding to W+ production measured by
CMS in the bin 1 < ⌘

lab

< 1.5. For the electroweak
LHC observables we have used the MCFM code [83] to
compute the grids, and for dijet production the modi-
fied EKS code [84,85,86].

We set up similar grids also for inclusive pion pro-
duction in DAu collisions at RHIC using the INCNLO
[87] code with KKP FFs [88], and for the DY process
in ⇡A collisions using MCFM with the GRV pion PDFs
[89]. In all cases, we have checked that the grids repro-
duce a direct evaluation of the observables within 1%
accuracy in the case of EPS09 nuclear PDFs.

4 Analysis procedure

The standard statistical procedure for comparing ex-
perimental data to theory is to inspect the behaviour
of the overall �2 function, defined as

�2 (a) ⌘
X

k

�2

k

(a) , (29)

where a is a set of theory parameters and �2

k

(a) denotes
the contribution of each independent data set k,

�2

k

(a) ⌘
X

i,j

[T
i

(a)�D
i

]C�1

ij

[T
j

(a)�D
j

] . (30)

Here, T
i

(a) denote the theoretical values of the observ-
ables in the data set k, D

i

are the corresponding ex-
perimental values, and C

ij

is the covariance matrix. In

9

with an uncertainty interval �z
i

= (t+
i

+ t�
i

)/2 where
t±
i

are z
i

-interval limits which depend on the chosen
tolerance criterion. The partial derivatives in Eq. (39)
are evaluated with the aid of PDF error sets S±

i

defined
in the space of z

i

coordinates in terms of t±
i

as

z(S±
1

) = ±t±
1

(1, 0, ..., 0) ,

... (40)

z(S±
N

) = ±t±
N

(0, 0, ..., 1) ,

where N is the number of the original parameters a
i

.
It then follows that

�O =
1

2

sX

i

⇥O �
S+

i

��O �
S�
i

�⇤
2

. (41)

Although simple on paper, in practice it is a non-
trivial task to obtain a su�ciently accurate Hessian ma-
trix in a multivariate fit such that Eq. (38) would be
accurate. One possibility, used e.g. in Ref. [96], is to use
the linearized Hessian matrix obtained from Eq. (30)

H linearized

ij

⌘
X

k,`

@T
k

@a
i

C�1

k`

@T
`

@a
j

, (42)

where the partial derivatives are evaluated by finite dif-
ferences. The advantage is that by this definition, the
Hessian matrix is always positive definite and thereby
has automatically positive eigenvalues and e.g. Eq. (34)
is always well-defined.

Another possibility, which is the option chosen in
the present study, is to scan the neighborhood of the
minimum �2 and fit it with an ansatz

�2(a) = �2

0

+
X

i,j

�a
i

h
ij

�a
j

, (43)

whose parameters h
ij

then correspond to the compo-
nents of the Hessian matrix. While this gives more ac-
curate results than the linearized method (where some
information is thrown away), the eigenvalues of the Hes-
sian become easily negative for the presence of third-
and higher-order components in the true �2 profile.
Hence, to arrive at positive-definite eigenvalues, some
manual labour is typically required e.g. in tuning the
parameter intervals used when scanning the global �2.
Yet, the resulting uncertainties always depend some-
what on the chosen parameter intervals, especially when
the uncertainties are large. To improve the precision, we
have adopted an iterative procedure similar to the one
in Ref. [97]: After having obtained the first estimate for
the Hessian matrix and the z coordinates, we recom-
pute the Hessian matrix in the z space by re-scanning
the vicinity of z = 0 and fitting it with a polynomial

�2(z) = �2

0

+
X

i,j

z
i

ĥ
ij

z
j

, (44)

where ĥ
ij

is an estimate for the Hessian matrix in the
z space. We then re-define the z coordinates by

z
k

!
X

`

D̂
k`

�a
`

, (45)

where

D̂
k`

⌘
X

j

p
✏̂
k

v̂
(k)

j

D
j`

, (46)

and ✏̂
k

and v̂(k) are now the eigenvalues and eigenvec-
tors of the matrix ĥ

ij

. Then we repeat the iteration a
few times, using D̂

ij

of the previous round as D
ij

in
Eq. (46). Ideally, one should find that the eigenvalues
✏̂
k

converge to unity during the iteration but in prac-
tice, some deviations will always persist for the presence
of non-quadratic components in the true �2 profile. We
have also noticed that, despite the iteration, the result-
ing uncertainty bands still depend somewhat on the
finite step sizes and grids used in the �2-profile scan-
ning especially in the regions where the uncertainties
are large. In such regions the Hessian method starts to
be unreliable and the found uncertainties represent only
the lower limits for the true uncertainties.

The global �2 profiles as a function of the final eigen-
vector directions, which we arrive at in the present
EPPS16 analysis, are shown in Fig. 4. In obtaining
these, during the iteration, the finite step sizes (z

i

in
Eq. (44)) along each provisional eigenvector direction
were adjusted such that the total �2 increased by 5
units from the minimum. As seen in the figure, in most
cases, the quadratic approximation gives a very good
description of the true behaviour of �2, but in some
cases higher-order (e.g. cubic and quartic) components
are evidently present. The e↵ects of higher-order com-
ponents can be partly compensated by using larger step
sizes during the iteration such that the quadratic poly-
nomial approximates the true �2 better up to larger
deviations from the minimum (but is less accurate near
the minimum). However, we have noticed that with in-
creasing step sizes the resulting PDF uncertainties get
eventually smaller, which indicates that some corners
of the parameter space are not covered as completely
as with the now considered 5-unit increase in �2.

The basic idea in the determination of the PDF un-
certainty sets in the present work is similar to that in
the EPS09 analysis. As in EPS09, for each data set k

with N
k

data points we determine a 90% confidence
limit �2

k,max

by solving

Z
Mk

0

d�2

2� (N
k

/2)

✓
�2

2

◆
Nk/2�1

exp
���2/2

�
= 0.90,

(47)

Define chi2 in terms of the initial parameters a (N-dim vector)

Compute the Hessian matrix and diagonalize 

vectors z are linear combinations of original a now uncorrelated
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Fig. 3 An example of the �

pPb

j,k histograms used in evaluat-

ing the LHC pPb cross sections in Eq. (28). The cross sec-
tion �

pPb is computed as a sum of all the bins weighted by
the appropriate nuclear modification factors. The sum of all
the bins gives the cross section with no nuclear modifications
(RPb

i = 1).

most cases, only the total uncertainty is known, and in
this case C

ij

= (�uncorr.
i

)2�
ij

, where �uncorr.
i

is the point-
to-point uncorrelated data uncertainty. In the case that
the only correlated uncertainty is the overall normaliza-
tion �norm., we can also write

�2

k

(a) =

✓
1� f

N

�norm.

◆
2

+
X

i


T
i

(a)� f
N

D
i

�uncorr.
i

�
2

, (31)

which is to be minimized with respect to f
N

. All the
uncertainties are considered additive (e.g. the possible
D’Agostini bias [90] or equivalent is neglected). The
central fit is then defined to correspond to the minimum
value of the global �2 obtainable with a given set of free
parameters,

�2

�
a0

� ⌘ min
⇥
�2 (a)

⇤
. (32)

In practice, we minimize the �2 function using the Leven-
berg-Marquardt method [91,92,93].

In our previous EPS09 analysis, additional weight
factors were included in Eq. (29) to increase the im-
portance of some hand-picked data sets. We emphasize
that in the present EPPS16 study we have abandoned
this practice due to the subjectiveness it entails. In the
EPS09 analysis the use of such data weights was also
partially related to technical di�culties in finding a sta-
ble minimum of �2 (a) when using the MINUIT [94] li-
brary. In the EPS09 analysis an additional penalty term
was also introduced to the �2 (a) function to avoid un-
physical A dependence at small x (i.e. to have larger
nuclear e↵ects for larger nuclei). Here, such a term is

not required because of the improved functional form
discussed in Section 2.

As the nuclear PDFs are here allowed to go negative
it is also possible to drift to a situation in which the lon-
gitudinal structure function FA

L

becomes negative. To
avoid this, we include penalty terms in �2 (a) at small x
that grow quickly if FA

L

< 0. We observe, however, that
the final results in EPPS16 are not sensitive to such a
positiveness requirement.

4.1 Uncertainty analysis

As in our earlier analysis EPS09, we use the Hessian-
matrix based approach to estimate the PDF uncer-
tainties [95]. The dominant behaviour of the global �2

about the fitted minimum can be written as

�2(a) ⇡ �2

0

+
X

ij

�a
i

H
ij

�a
j

, (33)

where �a
j

⌘ a
j

� a0
j

are di↵erences from the best-fit
values and �2

0

⌘ �2(a0) is the lowest attainable �2 of
Eq. (32). The Hessian matrix H

ij

can be diagonalized
by defining a new set of parameters by

z
k

⌘
X

j

D
kj

�a
j

, (34)

with

D
kj

⌘ p
✏
k

v
(k)

j

, (35)

where ✏
k

are the eigenvalues and v
(k)

j

are the compo-
nents of the corresponding orthonormal eigenvectors of
the Hessian matrix,

H
ij

v
(k)

j

= ✏
k

v
(k)

i

, (36)
X

i

v
(k)

i

v
(`)

i

=
X

i

v
(i)

k

v
(i)

`

= �
k`

. (37)

In these new coordinates,

�2(z) ⇡ �2

0

+
X

i

z2
i

. (38)

In comparison to Eq. (33), here in Eq. (38) all the
correlations among the original parameters a

i

are hid-
den in the definition Eq. (34), which facilitates a very
simple error propagation [95]. Indeed, since the direc-
tions z

i

are uncorrelated, the upward/downward-symm-
etric uncertainty for any PDF-dependent quantity O
can be written as

�O =

vuutX

i

(�z
i

)2
✓
@O
@z

i

◆
2

, (39)
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Fig. 3 An example of the �

pPb

j,k histograms used in evaluat-

ing the LHC pPb cross sections in Eq. (28). The cross sec-
tion �

pPb is computed as a sum of all the bins weighted by
the appropriate nuclear modification factors. The sum of all
the bins gives the cross section with no nuclear modifications
(RPb

i = 1).

most cases, only the total uncertainty is known, and in
this case C

ij

= (�uncorr.
i

)2�
ij

, where �uncorr.
i

is the point-
to-point uncorrelated data uncertainty. In the case that
the only correlated uncertainty is the overall normaliza-
tion �norm., we can also write

�2

k

(a) =

✓
1� f

N

�norm.

◆
2

+
X

i


T
i

(a)� f
N

D
i

�uncorr.
i

�
2

, (31)

which is to be minimized with respect to f
N

. All the
uncertainties are considered additive (e.g. the possible
D’Agostini bias [90] or equivalent is neglected). The
central fit is then defined to correspond to the minimum
value of the global �2 obtainable with a given set of free
parameters,

�2

�
a0

� ⌘ min
⇥
�2 (a)

⇤
. (32)

In practice, we minimize the �2 function using the Leven-
berg-Marquardt method [91,92,93].

In our previous EPS09 analysis, additional weight
factors were included in Eq. (29) to increase the im-
portance of some hand-picked data sets. We emphasize
that in the present EPPS16 study we have abandoned
this practice due to the subjectiveness it entails. In the
EPS09 analysis the use of such data weights was also
partially related to technical di�culties in finding a sta-
ble minimum of �2 (a) when using the MINUIT [94] li-
brary. In the EPS09 analysis an additional penalty term
was also introduced to the �2 (a) function to avoid un-
physical A dependence at small x (i.e. to have larger
nuclear e↵ects for larger nuclei). Here, such a term is

not required because of the improved functional form
discussed in Section 2.

As the nuclear PDFs are here allowed to go negative
it is also possible to drift to a situation in which the lon-
gitudinal structure function FA

L

becomes negative. To
avoid this, we include penalty terms in �2 (a) at small x
that grow quickly if FA

L

< 0. We observe, however, that
the final results in EPPS16 are not sensitive to such a
positiveness requirement.

4.1 Uncertainty analysis

As in our earlier analysis EPS09, we use the Hessian-
matrix based approach to estimate the PDF uncer-
tainties [95]. The dominant behaviour of the global �2

about the fitted minimum can be written as

�2(a) ⇡ �2

0

+
X

ij

�a
i

H
ij

�a
j

, (33)

where �a
j

⌘ a
j

� a0
j

are di↵erences from the best-fit
values and �2

0

⌘ �2(a0) is the lowest attainable �2 of
Eq. (32). The Hessian matrix H

ij

can be diagonalized
by defining a new set of parameters by

z
k

⌘
X

j

D
kj

�a
j

, (34)

with

D
kj

⌘ p
✏
k

v
(k)

j

, (35)

where ✏
k

are the eigenvalues and v
(k)

j

are the compo-
nents of the corresponding orthonormal eigenvectors of
the Hessian matrix,

H
ij

v
(k)

j

= ✏
k

v
(k)

i

, (36)
X

i

v
(k)

i

v
(`)

i

=
X

i

v
(i)

k

v
(i)

`

= �
k`

. (37)

In these new coordinates,

�2(z) ⇡ �2

0

+
X

i

z2
i

. (38)

In comparison to Eq. (33), here in Eq. (38) all the
correlations among the original parameters a

i

are hid-
den in the definition Eq. (34), which facilitates a very
simple error propagation [95]. Indeed, since the direc-
tions z

i

are uncorrelated, the upward/downward-symm-
etric uncertainty for any PDF-dependent quantity O
can be written as

�O =

vuutX

i

(�z
i

)2
✓
@O
@z

i

◆
2

, (39)
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2

0

compared with the average ��

2 = 52.

specify an average tolerance ��2 as

��2 ⌘ 1

N

X

i

�2

�
S�
i

[dyn]
�
+ �2

�
S+

i

[dyn]
�� 2�2

0

2
,

(51)

where �2

�
S±
i

[dyn]
�
are the values of �2 that corre-

spond to the error sets S±
i

[dyn] defined above. For
the present fit with all the data, we find ��2 ⇡ 52.
This averaging process is illustrated in Fig. 8 which
shows the individual di↵erences �2

�
S�
i

[dyn]
���2

0

and
�2

�
S+

i

[dyn]
���2

0

as bars together with the found aver-
age. In this case the PDF uncertainty sets S±

i

⇥
��2

⇤
are

defined by imposing a fixed global tolerance ��2 = 52,

z
�
S±
1

⇥
��2

⇤�
= �z±

1

(1, 0, . . . , 0)

... (52)

z
�
S±
N

⇥
��2

⇤�
= �z±

N

(0, 0, ..., 1)

where the numbers �z±
i

are the deviations in positive
and negative direction chosen such that the �2 grows
by 52. The obtained values for �z±

i

are listed in Table
2.

As expected, Fig. 8 shows rather significant varia-
tions in �2

�
S±
i

[dyn]
���2

0

depending on which eigendi-
rection one looks at. However, the corresponding varia-

tions in z
i,min/max

⇠
q
�2

�
S±
i

[dyn]
�� �2

0

which deter-

mine the error sets are much milder. Hence, it can be
expected that the two error-set options, S±

i

[dyn] and
S±
i

⇥
��2

⇤
, will eventually lead to rather similar uncer-

tainty estimates. In what follows (see Fig. 11 ahead),
we will verify that this indeed is the case. Hence, and
also to enable PDF reweighting [42], we choose the
S±
i

⇥
��2

⇤
with the single global tolerance ��2 as the

final EPPS16 error sets.

Table 2 The parameter deviations �z

±
i defining the EPPS16

error sets in Eq. (52).

�z

�
i Value �z

+

i Value

�z

�
1

-5.620 �z

+

1

5.121
�z

�
2

-5.489 �z

+

2

5.395
�z

�
3

-5.496 �z

+

3

5.344
�z

�
4

-6.705 �z

+

4

6.412
�z

�
5

-5.631 �z

+

5

6.194
�z

�
6

-7.013 �z

+

6

7.148
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As in EPS09, the propagation of PDF uncertainties
into an observable O will be here computed separately
for the upward and downward directions,

�
�O±�2 = (53)
X

i

⇥
max

min

�O �
S+

i

��O (S
0

) ,O �
S�
i

��O (S
0

) , 0
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,

where O (S
0

) denotes the prediction with the central
set and O �

S±
i

�
are the values computed with the error

sets [99].
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Fig. 6 Determination of the confidence limits for the eigendirections 1 to 12. The bars show the limits z

k
i,min

, zki,max

for each

individual (or grouped) data set k and the marker in between indicates where the minimum �

2

k,0 of that data set is reached.
The set ”all” refers to all data combined. An arrow signifies that the confidence limit has not yet been reached in the scanned
interval. The gray bands are the intersection intervals [zi,min

, zi,max

] explained in the text.

Compute for each z-direction (only 1-4 here)
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where �2

�
S±
i

[dyn]
�
are the values of �2 that corre-

spond to the error sets S±
i

[dyn] defined above. For
the present fit with all the data, we find ��2 ⇡ 52.
This averaging process is illustrated in Fig. 8 which
shows the individual di↵erences �2

�
S�
i

[dyn]
���2

0

and
�2

�
S+

i

[dyn]
���2

0

as bars together with the found aver-
age. In this case the PDF uncertainty sets S±

i

⇥
��2

⇤
are

defined by imposing a fixed global tolerance ��2 = 52,

z
�
S±
1

⇥
��2

⇤�
= �z±

1

(1, 0, . . . , 0)

... (52)

z
�
S±
N

⇥
��2

⇤�
= �z±

N

(0, 0, ..., 1)

where the numbers �z±
i

are the deviations in positive
and negative direction chosen such that the �2 grows
by 52. The obtained values for �z±

i

are listed in Table
2.

As expected, Fig. 8 shows rather significant varia-
tions in �2

�
S±
i

[dyn]
���2

0

depending on which eigendi-
rection one looks at. However, the corresponding varia-

tions in z
i,min/max

⇠
q
�2

�
S±
i

[dyn]
�� �2

0

which deter-

mine the error sets are much milder. Hence, it can be
expected that the two error-set options, S±

i

[dyn] and
S±
i

⇥
��2

⇤
, will eventually lead to rather similar uncer-

tainty estimates. In what follows (see Fig. 11 ahead),
we will verify that this indeed is the case. Hence, and
also to enable PDF reweighting [42], we choose the
S±
i

⇥
��2

⇤
with the single global tolerance ��2 as the

final EPPS16 error sets.

Table 2 The parameter deviations �z

±
i defining the EPPS16

error sets in Eq. (52).

�z
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i Value �z

+

i Value

�z

�
1
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1
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+

2
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�
3
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+

3
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�
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+

4
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�
5
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+

5
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�
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+
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�
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As in EPS09, the propagation of PDF uncertainties
into an observable O will be here computed separately
for the upward and downward directions,

�
�O±�2 = (53)
X

i

⇥
max

min

�O �
S+

i

��O (S
0

) ,O �
S�
i

��O (S
0

) , 0
 ⇤

2

,

where O (S
0

) denotes the prediction with the central
set and O �

S±
i

�
are the values computed with the error

sets [102].
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where �2

�
S±
i

[dyn]
�
are the values of �2 that corre-

spond to the error sets S±
i

[dyn] defined above. For
the present fit with all the data, we find ��2 ⇡ 52.
This averaging process is illustrated in Fig. 8 which
shows the individual di↵erences �2

�
S�
i

[dyn]
���2

0

and
�2

�
S+

i

[dyn]
���2

0

as bars together with the found aver-
age. In this case the PDF uncertainty sets S±

i

⇥
��2

⇤
are

defined by imposing a fixed global tolerance ��2 = 52,
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�
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(1, 0, . . . , 0)

... (52)
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⇤�
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where the numbers �z±
i

are the deviations in positive
and negative direction chosen such that the �2 grows
by 52. The obtained values for �z±

i

are listed in Table
2.

As expected, Fig. 8 shows rather significant varia-
tions in �2

�
S±
i

[dyn]
���2

0

depending on which eigendi-
rection one looks at. However, the corresponding varia-

tions in z
i,min/max

⇠
q
�2

�
S±
i

[dyn]
�� �2

0

which deter-

mine the error sets are much milder. Hence, it can be
expected that the two error-set options, S±

i

[dyn] and
S±
i

⇥
��2

⇤
, will eventually lead to rather similar uncer-

tainty estimates. In what follows (see Fig. 11 ahead),
we will verify that this indeed is the case. Hence, and
also to enable PDF reweighting [42], we choose the
S±
i

⇥
��2

⇤
with the single global tolerance ��2 as the

final EPPS16 error sets.

Table 2 The parameter deviations �z

±
i defining the EPPS16

error sets in Eq. (52).
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i Value
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1
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As in EPS09, the propagation of PDF uncertainties
into an observable O will be here computed separately
for the upward and downward directions,

�
�O±�2 = (53)
X

i

⇥
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min

�O �
S+

i

��O (S
0

) ,O �
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) , 0
 ⇤

2

,

where O (S
0

) denotes the prediction with the central
set and O �

S±
i

�
are the values computed with the error

sets [99].
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Best fit + 40 error sets. Large uncertainties, decrease with evolution
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EPPS16 - results
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Best fit + 40 error sets. Large uncertainties, decrease with evolution

Q2=10 GeV2
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where �2

�
S±
i

[dyn]
�
are the values of �2 that corre-

spond to the error sets S±
i

[dyn] defined above. For
the present fit with all the data, we find ��2 ⇡ 52.
This averaging process is illustrated in Fig. 8 which
shows the individual di↵erences �2

�
S�
i

[dyn]
���2

0

and
�2

�
S+

i

[dyn]
���2

0

as bars together with the found aver-
age. In this case the PDF uncertainty sets S±

i

⇥
��2

⇤
are

defined by imposing a fixed global tolerance ��2 = 52,

z
�
S±
1

⇥
��2
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= �z±
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(1, 0, . . . , 0)

... (52)

z
�
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N

⇥
��2
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N

(0, 0, ..., 1)

where the numbers �z±
i

are the deviations in positive
and negative direction chosen such that the �2 grows
by 52. The obtained values for �z±

i

are listed in Table
2.

As expected, Fig. 8 shows rather significant varia-
tions in �2

�
S±
i

[dyn]
���2

0

depending on which eigendi-
rection one looks at. However, the corresponding varia-

tions in z
i,min/max

⇠
q
�2
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�� �2

0

which deter-

mine the error sets are much milder. Hence, it can be
expected that the two error-set options, S±

i

[dyn] and
S±
i

⇥
��2

⇤
, will eventually lead to rather similar uncer-

tainty estimates. In what follows (see Fig. 11 ahead),
we will verify that this indeed is the case. Hence, and
also to enable PDF reweighting [42], we choose the
S±
i

⇥
��2

⇤
with the single global tolerance ��2 as the

final EPPS16 error sets.

Table 2 The parameter deviations �z
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error sets in Eq. (52).
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As in EPS09, the propagation of PDF uncertainties
into an observable O will be here computed separately
for the upward and downward directions,

�
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⇥
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where O (S
0

) denotes the prediction with the central
set and O �

S±
i

�
are the values computed with the error

sets [99].
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where �2

�
S±
i

[dyn]
�
are the values of �2 that corre-

spond to the error sets S±
i

[dyn] defined above. For
the present fit with all the data, we find ��2 ⇡ 52.
This averaging process is illustrated in Fig. 8 which
shows the individual di↵erences �2

�
S�
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[dyn]
���2

0

and
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�
S+

i

[dyn]
���2

0

as bars together with the found aver-
age. In this case the PDF uncertainty sets S±
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are

defined by imposing a fixed global tolerance ��2 = 52,
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where the numbers �z±
i

are the deviations in positive
and negative direction chosen such that the �2 grows
by 52. The obtained values for �z±

i

are listed in Table
2.

As expected, Fig. 8 shows rather significant varia-
tions in �2
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depending on which eigendi-
rection one looks at. However, the corresponding varia-

tions in z
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mine the error sets are much milder. Hence, it can be
expected that the two error-set options, S±
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[dyn] and
S±
i

⇥
��2

⇤
, will eventually lead to rather similar uncer-

tainty estimates. In what follows (see Fig. 11 ahead),
we will verify that this indeed is the case. Hence, and
also to enable PDF reweighting [42], we choose the
S±
i

⇥
��2

⇤
with the single global tolerance ��2 as the

final EPPS16 error sets.
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As in EPS09, the propagation of PDF uncertainties
into an observable O will be here computed separately
for the upward and downward directions,

�
�O±�2 = (53)
X

i

⇥
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S+

i

��O (S
0

) ,O �
S�
i

��O (S
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) , 0
 ⇤

2

,

where O (S
0

) denotes the prediction with the central
set and O �

S±
i

�
are the values computed with the error

sets [99].
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the strongest. The inclusion of the dijet data into the
nCTEQ15 analysis would clearly have a dramatic im-
pact. This can be understood from Fig. 26 where we
compare the CMS dijet data also with the nCTEQ15
prediction (here, we have formed the nCTEQ15 nuclear
modifications from their absolute distributions and used
the same dijet grid as in the EPPS16 analysis).

A comparison of EPPS16 with EPS09 [30] and DSSZ
[31] is presented in Fig. 27. In the EPS09 and DSSZ
analyses the nuclear modifications of valence and sea
quarks were flavour independent at the parametrization
scale and, to make a fair comparison we plot, in addi-
tion to the gluons, the average nuclear modifications for
the valence quarks and light sea quarks,

RPb

V

⌘ u
p/Pb

V

+ d
p/Pb

V

up

V

+ dp
V

, (54)

RPb

S

⌘ up/Pb + d
p/Pb

+ sp/Pb

up + d
p

+ sp
, (55)

instead of individual flavours. For the valence sector, all
parametrizations give very similar results except DSSZ
in the EMC-e↵ect region. As noted earlier in Sec. 3.1
and in Ref. [6] this is likely to originate from ignor-
ing the isospin corrections in the DSSZ fit. The sea-
quark modifications look also mutually rather alike, the
EPPS16 uncertainties being somewhat larger than the
others as, being flavour-dependent, the sea quarks in
EPPS16 have more degrees of freedom. As has been
understood already some while ago [5,6], the DSSZ
parametrization has almost no nuclear e↵ects in gluons
as nuclear e↵ects were included in the FFs [33] when
computing inclusive pion production at RHIC. As a re-
sult, DSSZ does not reproduce the new CMS dijet mea-
surements as shown here in Fig. 26. Between EPS09 and
EPPS16, the gluon uncertainties are larger in EPPS16.
While EPPS16 includes more constraints for the gluons
(especially the CMS dijet data), in EPS09 the PHENIX
data was assigned an additional weight factor of 20.
This in e↵ect increased the importance of these data,
making the uncertainties smaller than what they would
have been without such a weight (the Baseline-fit glu-
ons in Fig. 22 serve as a representative of an unweighted
case). In addition, in EPPS16 one more gluon parame-
ter is left free (x

a

) which also increases the uncertainties
in comparison to EPS09.

6 Application: W charge asymmetry

TheW charge-asymmetry measurement by CMS in pPb
collisions [43] revealed some deviations from the NLO
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Fig. 28 The CMS W charge asymmetry measurement [43]
compared with the predictions using EPPS16 nuclear mod-
ifications and CT14NLO proton PDFs. In both panels the
blue bands correspond to the combined EPPS16+CT14 un-
certainty and in the lower panel the green band to the com-
bined EPS09+CT14 uncertainty.

calculations in the backward direction and it was sug-
gested that this di↵erence could be due to flavour-dep-
endent PDF nuclear modifications. While it was shown
in Ref. [100] that such a di↵erence does not appear
in the ATLAS PbPb data [101] at the same probed
values of x, the situation still remains unclear. To see
how large variations the new EPPS16 can accommo-
date, we compare in Fig. 28 the CMS data with the
EPPS16 and EPS09 predictions using the CT14NLO
proton PDFs. As discussed in the original EPS09 pa-
per [30], the total uncertainty should be computed by
adding in quadrature the uncertainties stemming sepa-
rately from EPPS16 and from the free-proton baseline
PDFs,

(�O
total

)2 = (�O
EPPS16

)2 + (�O
baseline

)2, (56)

where �O
EPPS16

is evaluated by Eq. (53) using the un-
certainty sets of EPPS16 with the central set of free-
proton PDFs, and �O

baseline

by the same equation but
using the free-proton error sets with the central set of
EPPS16. The same has been done in the case of EPS09
results. While the di↵erences between the central pre-
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Fig. 17 Ratios of Drell-Yan cross sections measured by E772 as a function of x

2

at fixed values of M , compared with the
EPPS16 fit.

rapidity of the dilepton. The scale choice in the PDFs is
Q = M . While these data are well reproduced, the scat-
ter of the data from one nucleus to another is the main
reason we are unable to pin down any systematic A de-
pendence for the sea quarks at x

a

(some A dependece
develops via DGLAP evolution, however). For example,
as is well visible in Fig. 17, it is not clear from the data
whether there is a suppression or an enhancement for
x & 0.1.

The pion-A DY data are presented in Fig. 18. As is
evident from the figure, these data set into the EPPS16
fit without causing a significant tension. Overall, how-
ever, the statistical weight of these data is not enough
to set stringent additional constraints to nuclear PDFs.
Similarly to the findings of Ref. [67], the optimal data
normalization of the lower-energy NA10 data (the lower

right panel) is rather large (f
N

= 1.121), but the x
2

de-
pendence of the data is well in line with the fit.

The collider data, i.e. new LHC pPb data as well
as the PHENIX DAu data, are shown in Fig. 19. To
ease the interpretation of the LHC data (forward-to-
backward ratios), the baseline with no nuclear e↵ects
in PDFs is always indicated as well. The baseline de-
viates from unity for isospin e↵ects (unequal amount
of protons and neutrons in Pb) as well as for exper-
imental acceptances. For the electroweak observables,
the nuclear e↵ects cause suppression in the computed
forward-to-backward ratios (with respect to the base-
line with no nuclear e↵ects) as one is predominantly
probing the region below x ⇠ 0.1 where the net nuclear
e↵ect of sea quarks has a downward slope towards small
x. Very roughly, the probed nuclear x-regions can be es-

(Just a sample of plots) 
Good description, these 
data were already included 
in the previous analyses.
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Fig. 20 The neutrino-nucleus DIS data based on CHORUS [50] measurements, compared with the EPPS16 fit. The data as
well as the theory curves have been obtained as described in Section 3.2.
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Fig. 21 As Fig. 20 but for antineutrino beam.

fits and from the di↵erences of the �2 behaviour around
the minima. In any case, the uncertainty bands always
overlap and both of these enclose the central values
both from the Baseline fit and the full analysis. Thus,
the two are consistent. Qualitatively, the most notable
changes are that, in comparison to the Baseline, the
EPPS16 central values of both valence-quark flavours
as well as that of gluons exhibit a very similar antishad-

owing e↵ect followed by an EMC pit. We have observed
that this di↵erence is mostly caused by the addition of
neutrino DIS data (valence quarks) and the CMS dijet
data (gluons). This is also illustrated in Fig. 23 where
the left-hand panel shows the �2 contribution of the
CHORUS data as a function of yuV

a

� ydV

a

(the anti-
shadowing peak heights for A

ref

as in Table 3) and the
right-hand panel the �2 contribution of the CMS dijet
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fits and from the di↵erences of the �2 behaviour around
the minima. In any case, the uncertainty bands always
overlap and both of these enclose the central values
both from the Baseline fit and the full analysis. Thus,
the two are consistent. Qualitatively, the most notable
changes are that, in comparison to the Baseline, the
EPPS16 central values of both valence-quark flavours
as well as that of gluons exhibit a very similar antishad-

owing e↵ect followed by an EMC pit. We have observed
that this di↵erence is mostly caused by the addition of
neutrino DIS data (valence quarks) and the CMS dijet
data (gluons). This is also illustrated in Fig. 23 where
the left-hand panel shows the �2 contribution of the
CHORUS data as a function of yuV

a

� ydV

a

(the anti-
shadowing peak heights for A

ref

as in Table 3) and the
right-hand panel the �2 contribution of the CMS dijet

Neutrino data essential 
for flavor decomposition 
in EPPS16
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Fig. 26 The CMS dijet data [34] compared with the results
obtained with the EPPS16 (blue bands), nCTEQ15 [32] (red
bands) and DSSZ [31] (hatched bands) nuclear PDFs.

allowed to be partly flavour dependent in the nCTEQ15
analysis (although to a much lesser extent than in EPPS16),
hence we show the comparison for all parametrized par-
ton species. The two fits (as well as nCTEQ15 and our
Baseline fit in Fig. 22) can be considered compatible
since the uncertainty bands always overlap. For all the
sea quarks the nCTEQ15 uncertainties appear clearly
smaller than those of EPPS16 though less data was used
in nCTEQ15. This follows from the more restrictive as-
sumptions made in the nCTEQ15 analysis regarding
the sea-quark fit functions: nCTEQ15 has only 2 free
parameters for all sea quarks together, while EPSS16
has 9. Specifically, the nCTEQ15 analysis constrains
only the sum of nuclear ū+ d̄ with an assumption that
the nuclear s quarks are obtained from ū+ d̄ in a fixed
way. In contrast, EPPS16 has freedom for all sea quark
flavours separately, and hence also larger, but less bi-
ased, error bars. For the valence quarks, the nCTEQ15
uncertainties are somewhat larger than the EPPS16 er-
rors around the x-region of the EMC e↵ect which is
most likely related to the extra constraints the EPPS16
analysis has obtained from the neutrino DIS data. Es-
pecially the central value for d

V

is rather di↵erent than
that of of EPPS16. The very small nCTEQ15 uncer-
tainty at x ⇠ 0.1 is presumably a similar fit-function
artefact as what we have for EPPS16 at slightly smaller
x. Such a small uncertainty is supposedly also the rea-
son why nCTEQ15 arrives at smaller uncertainties in
the shadowing region than EPPS16. For the gluons the
nCTEQ15 uncertainties are clearly larger than those of
EPPS16, except in the small-x region. While, in part,
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Fig. 27 Comparison of the EPPS16 nuclear modifications
(black central curve with light-blue uncertainty bands) to
those from the EPS09 analysis (purple curves with hatch-
ing) and DSSZ [31] (gray bands) at Q

2 = 10GeV2. The up-
per panels correspond to the average valence and sea-quark
modifications of Eqs. (54) and (55), the bottom panel is for
gluons.

the larger uncertainties are related to the LHC dijet
data that are included in EPPS16 but not in nCTEQ15,
this is not the complete explanation as around x ⇠ 0.1
the nCTEQ15 uncertainties also largely exceed the un-
certainties from our Baseline fit (see Fig. 22). Since the
data constraints for gluons in both analyses are essen-
tially the same, the reason must lie in the more stringent
Q2 cut (Q2 > 4GeV2) used in the nCTEQ15 analysis,
which cuts out low-Q2 data points where the indirect
e↵ects of gluon distributions via parton evolution are
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production (lower left panel) compared with the EPPS16 fit. The dashed lines indicate the results with no nuclear modifications
in the PDFs. The PHENIX DAu data [28] for inclusive pion production (lower right panel) are shown as well and have been
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Dijet data constrains gluon 
distributions

Good description of heavy 
boson production but limited 
constraining power on the fit
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Flavor-averaged EPPS16 
compared with previous sets

Larger uncertainties reflect 
more realistic analysis
more freedom in parametrization
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Fig. 24 The values of �2
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data

from the Baseline fit (red bars) and EPPS16 (green bars) for data in Table 3.
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Fig. 25 Comparison of the EPPS16 nuclear modifications (black central curve with shaded uncertainty bands) with those
from the nCTEC15 analysis [32] (red curves with hatching) at Q

2 = 10GeV2.

line fit gives a very large value but this disagreement
disappears when these data are included in the fit. How-
ever, upon including the new data no obvious conflicts
with the other data sets show up and thus the new
data appear consistent with the old. While it is true
that on average �2/N

data

for the old data grows when
including the new data (and this is mathematically in-
evitable) no disagreements (�2/N

data

� 1) occur. For
the NMC Ca/D data �2/N

data

is somewhat large but,
as can be clearly seen from Fig. 13, there appears to be
large fluctuations in the data (see the two data points
below the EPPS16 error band). While the improvement
in �2/N

data

for the CHORUS data looks smallish in

Fig. 24, for the large amount of data points (824) the
absolute decrease in �2 amounts to 106 units and is
therefore significant.

5.4 Comparison with other nuclear PDFs

In Fig. 25 we compare our EPPS16 results at the scale
Q2 = 10GeV2 with those of the nCTEQ15 analysis [32].
The nCTEQ15 uncertainties are defined by a fixed tol-
erance ��2 = 35, which is similar to our average value
��2 = 52 and in this sense one would expect uncer-
tainty bands of comparable size. The quark PDFs were

Neutrino DIS and LHC data provide more constraints in EPPS16 
More realistic uncertainties and flavor decomposition
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Table 1 The data sets used in the EPPS16 analysis, listed in the order of growing nuclear mass number. The number of data
points and their contribution to �

2 counts only those data points that fall within the kinematic cuts explained in the text.
The new data with respect to the EPS09 analysis are marked with a star.

Experiment Observable Collisions Data points �

2 Ref.

SLAC E139 DIS e

�He(4), e�D 21 12.2 [72]
CERN NMC 95, re. DIS µ

�He(4), µ�D 16 18.0 [73]

CERN NMC 95 DIS µ

�Li(6), µ�D 15 18.4 [74]
CERN NMC 95, Q2 dep. DIS µ

�Li(6), µ�D 153 161.2 [74]

SLAC E139 DIS e

�Be(9), e�D 20 12.9 [72]
CERN NMC 96 DIS µ

�Be(9), µ�C 15 4.4 [75]

SLAC E139 DIS e

�C(12), e�D 7 6.4 [72]
CERN NMC 95 DIS µ

�C(12), µ�D 15 9.0 [74]
CERN NMC 95, Q2 dep. DIS µ

�C(12), µ�D 165 133.6 [74]
CERN NMC 95, re. DIS µ

�C(12), µ�D 16 16.7 [73]
CERN NMC 95, re. DIS µ

�C(12), µ�Li(6) 20 27.9 [73]
FNAL E772 DY pC(12), pD 9 11.3 [76]

SLAC E139 DIS e

�Al(27), e�D 20 13.7 [72]
CERN NMC 96 DIS µ

�Al(27), µ�C(12) 15 5.6 [75]

SLAC E139 DIS e

�Ca(40), e�D 7 4.8 [72]
FNAL E772 DY pCa(40), pD 9 3.33 [76]
CERN NMC 95, re. DIS µ

�Ca(40), µ�D 15 27.6 [73]
CERN NMC 95, re. DIS µ

�Ca(40), µ�Li(6) 20 19.5 [73]
CERN NMC 96 DIS µ

�Ca(40), µ�C(12) 15 6.4 [75]

SLAC E139 DIS e

�Fe(56), e�D 26 22.6 [72]
FNAL E772 DY e

�Fe(56), e�D 9 3.0 [76]
CERN NMC 96 DIS µ

�Fe(56), µ�C(12) 15 10.8 [75]
FNAL E866 DY pFe(56), pBe(9) 28 20.1 [77]

CERN EMC DIS µ

�Cu(64), µ�D 19 15.4 [78]

SLAC E139 DIS e

�Ag(108), e�D 7 8.0 [72]

CERN NMC 96 DIS µ

�Sn(117), µ�C(12) 15 12.5 [75]
CERN NMC 96, Q2 dep. DIS µ

�Sn(117), µ�C(12) 144 87.6 [79]

FNAL E772 DY pW(184), pD 9 7.2 [76]
FNAL E866 DY pW(184), pBe(9) 28 26.1 [77]
CERN NA10F DY ⇡

�W(184), ⇡�D 10 11.6 [52]
FNAL E615F DY ⇡

+W(184), ⇡�W(184) 11 10.2 [53]

CERN NA3F DY ⇡

�Pt(195), ⇡�H 7 4.6 [51]

SLAC E139 DIS e

�Au(197), e�D 21 8.4 [72]
RHIC PHENIX ⇡

0 dAu(197), pp 20 6.9 [28]

CERN NMC 96 DIS µ

�Pb(207), µ�C(12) 15 4.1 [75]
CERN CMSF W± pPb(208) 10 8.8 [43]
CERN CMSF Z pPb(208) 6 5.8 [45]
CERN ATLASF Z pPb(208) 7 9.6 [46]
CERN CMSF dijet pPb(208) 7 5.5 [34]
CERN CHORUSF DIS ⌫Pb(208), ⌫Pb(208) 824 998.6 [50]

Total 1811 1789
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Fig. 24 The values of �2

/N

data

from the Baseline fit (red bars) and EPPS16 (green bars) for data in Table 3.
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Fig. 25 Comparison of the EPPS16 nuclear modifications (black central curve with shaded uncertainty bands) with those
from the nCTEC15 analysis [32] (red curves with hatching) at Q

2 = 10GeV2.

line fit gives a very large value but this disagreement
disappears when these data are included in the fit. How-
ever, upon including the new data no obvious conflicts
with the other data sets show up and thus the new
data appear consistent with the old. While it is true
that on average �2/N

data

for the old data grows when
including the new data (and this is mathematically in-
evitable) no disagreements (�2/N

data

� 1) occur. For
the NMC Ca/D data �2/N

data

is somewhat large but,
as can be clearly seen from Fig. 13, there appears to be
large fluctuations in the data (see the two data points
below the EPPS16 error band). While the improvement
in �2/N

data

for the CHORUS data looks smallish in

Fig. 24, for the large amount of data points (824) the
absolute decrease in �2 amounts to 106 units and is
therefore significant.

5.4 Comparison with other nuclear PDFs

In Fig. 25 we compare our EPPS16 results at the scale
Q2 = 10GeV2 with those of the nCTEQ15 analysis [32].
The nCTEQ15 uncertainties are defined by a fixed tol-
erance ��2 = 35, which is similar to our average value
��2 = 52 and in this sense one would expect uncer-
tainty bands of comparable size. The quark PDFs were
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Fig. 6 Determination of the confidence limits for the eigendirections 1 to 12. The bars show the limits z

k
i,min

, zki,max

for each

individual (or grouped) data set k and the marker in between indicates where the minimum �

2

k,0 of that data set is reached.
The set ”all” refers to all data combined. An arrow signifies that the confidence limit has not yet been reached in the scanned
interval. The gray bands are the intersection intervals [zi,min

, zi,max

] explained in the text.
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k )� �

2

0

compared with the average ��

2 = 52.

specify an average tolerance ��2 as

��2 ⌘ 1

N

X

i

�2

�
S�
i

[dyn]
�
+ �2

�
S+

i

[dyn]
�� 2�2

0

2
,

(51)

where �2

�
S±
i

[dyn]
�
are the values of �2 that corre-

spond to the error sets S±
i

[dyn] defined above. For
the present fit with all the data, we find ��2 ⇡ 52.
This averaging process is illustrated in Fig. 8 which
shows the individual di↵erences �2

�
S�
i

[dyn]
���2

0

and
�2

�
S+

i

[dyn]
���2

0

as bars together with the found aver-
age. In this case the PDF uncertainty sets S±

i

⇥
��2

⇤
are

defined by imposing a fixed global tolerance ��2 = 52,

z
�
S±
1

⇥
��2

⇤�
= �z±

1

(1, 0, . . . , 0)

... (52)

z
�
S±
N

⇥
��2

⇤�
= �z±

N

(0, 0, ..., 1)

where the numbers �z±
i

are the deviations in positive
and negative direction chosen such that the �2 grows
by 52. The obtained values for �z±

i

are listed in Table
2.

As expected, Fig. 8 shows rather significant varia-
tions in �2

�
S±
i

[dyn]
���2

0

depending on which eigendi-
rection one looks at. However, the corresponding varia-

tions in z
i,min/max

⇠
q
�2

�
S±
i

[dyn]
�� �2

0

which deter-

mine the error sets are much milder. Hence, it can be
expected that the two error-set options, S±

i

[dyn] and
S±
i

⇥
��2

⇤
, will eventually lead to rather similar uncer-

tainty estimates. In what follows (see Fig. 11 ahead),
we will verify that this indeed is the case. Hence, and
also to enable PDF reweighting [42], we choose the
S±
i

⇥
��2

⇤
with the single global tolerance ��2 as the

final EPPS16 error sets.

Table 2 The parameter deviations �z

±
i defining the EPPS16

error sets in Eq. (52).

�z

�
i Value �z

+

i Value

�z

�
1

-5.620 �z

+

1

5.121
�z

�
2

-5.489 �z

+

2

5.395
�z

�
3

-5.496 �z

+

3

5.344
�z

�
4

-6.705 �z

+

4

6.412
�z

�
5

-5.631 �z

+

5

6.194
�z

�
6

-7.013 �z

+

6

7.148
�z

�
7

-7.021 �z

+

7

7.219
�z

�
8

-7.092 �z

+

8

7.268
�z

�
9

-6.532 �z

+

9

7.935
�z

�
10

-7.231 �z

+

10

7.133
�z

�
11

-7.396 �z

+

11

6.968
�z

�
12

-7.674 �z

+

12

6.814
�z

�
13

-7.343 �z

+

13

7.065
�z

�
14

-6.863 �z

+

14

7.749
�z

�
15

-6.810 �z

+

15

7.080
�z

�
16

-5.847 �z

+

16

6.327
�z

�
17

-5.669 �z

+

17

7.238
�z

�
18

-7.531 �z

+

18

6.510
�z

�
19

-6.240 �z

+

19

7.576
�z

�
20

-4.485 �z

+

20

10.53

As in EPS09, the propagation of PDF uncertainties
into an observable O will be here computed separately
for the upward and downward directions,

�
�O±�2 = (53)
X

i

⇥
max

min

�O �
S+

i

��O (S
0

) ,O �
S�
i

��O (S
0

) , 0
 ⇤

2

,

where O (S
0

) denotes the prediction with the central
set and O �

S±
i

�
are the values computed with the error

sets [102].
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Fig. 11 The error bands of nuclear modifications at Q

2 = 10GeV2 from the global tolerance ��

2 = 52 used in the final
EPPS16 fit (black central line and light-blue bands) compared to the error bands from the dynamical tolerance determination
(hatching) explained in Section 4.1.

x is not justified either. Nevertheless, the found central
values of the strange-quark nuclear modifications are
clearly in a sensible ballpark.

Fourth, for gluon distributions the uncertainties are
large at small x at Q2

0

but quickly diminish as the scale
is increased. The gluon distributions in some error sets
also go negative at small x at low Q2 but since F

L

remains positive, this is allowed.

Fifth, on average, the nuclear e↵ects of Lead tend
to be stronger than those of Carbon and also the un-
certainties on Lead are larger than those on Carbon.
Given that most of the data are for heavier nuclei than
Carbon, especially the smaller errors for Carbon may
appear a bit puzzling. The reason is in the new way of
parametrizing the A dependence of the nuclear e↵ects,
see Eq. (3), that favours larger nuclei to exhibit larger
nuclear e↵ects.

Sixth, the parametrization bias that our fit function
entails is particularly well visible in the valence-quark
panels where a narrow “throat” at x ⇡ 0.02 can be seen.
This is an artefact of not allowing for more freedom at
small x while requiring the sum rules in Eq. (4) and
Eq. (5): to satisfy the sum rule, an enhancement around
x = 0.1 must be accompanied by a depletion at small
x (or vice versa), and since x

a

for valence is fairly well
determined the fit function always crosses unity near
x ⇡ 0.02.

In Section 4.1 we mentioned that the two error-
determination options, the dynamical tolerance and fix-
ed global tolerance, lead to similar uncertainty esti-
mates. To demonstrate this, we plot in Fig. 11 the error

bands of the nuclear e↵ects RPb

i

at Q2 = 10 GeV2 ob-
tained correspondingly from the error sets S±

i

[dyn] and
S±
i

⇥
��2

⇤
. Indeed, we find no significant di↵erences be-

tween the two options.

5.2 Comparison with data

The following Figs. 12–21 present a comparison of the
EPPS16 fit with the experimental data of Table 3, com-
puting the PDF error propagation according to Eq. (53).
The error bars shown on the experimental data corre-
spond to the statistical and systematic errors added
in quadrature. The charged-lepton DIS data are shown
in Figs. 12, 13, 14 and 15. We note that for undoing
the isoscalar corrections as explained in Section 3.1, the
data appear somewhat di↵erent than e.g. in the EPS09
paper. On average, the data are well reproduced by
the fit. In some cases the uncertainty bands are rather
asymmetric (see e.g. the NMC data panel in Fig. 15)
which was the case in the EPS09 fit as well. This is
likely to come from the fact that the A dependence is
parametrized only at few values of x (small-x limit, x

a

,
x
e

) and in between these points the A dependence ap-
pears to be somewhat lopsided in some cases. The Q2

dependence of the data visible in Figs. 12 and 14 is also
nicely consistent with EPPS16.

The pA vs. pD Drell-Yan data are shown in Figs. 16
and 17. In the calculation of the corresponding di↵eren-
tial NLO cross sections d�DY/dxdM we define x

1,2

⌘
(M/

p
s)e±y where M is the invariant mass and y the
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Figure 2 – The nuclear modification factor RpPb as a function of pT integrated over rapidity range 2.5 < |y⇤| < 4
for (left) the backward sample and (right) the forward sample.
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The forward-backward ratio, RFB, is defined as RFB(|y⇤|, pT) =
�pPb(+|y⇤|,pT)
�pPb(�|y⇤|,pT) , and system-

atic uncertainties largely cancel in the ratio. The RFB as a function of pT and y

⇤ is given in
Fig. 3, and the results suggest significant production asymmetry between the forward and back-
ward acceptance, indicating strong nuclear matter e↵ects. The measurements are in reasonable
agreement with MNR calculations.

4 Quarkonium productions

LHCb also studied the CNM e↵ects in pPb data using the productions of quarkonia, including
J/ ,  (2S) and ⌥ mesons 7,8,9. The prompt J/ and  (2S) mesons are separated from those
from b-hadron decays, allowing to study the CNM e↵ects for both components. The results
of RpPb for the quarkonium states are given in Fig. 4. It can be seen that in the forward
sample, J/ production in pPb is strongly suppressed compared to that in pp, the suppression
for  (2S) is even stronger, while that for ⌥(1S) is modest. In the backward data sample, RpPb

is compatible with unity for J/ and ⌥ mesons, but intriguing strong suppression is seen for
 (2S), suggesting that the mechanism for  (2S) production in pPb collisions is not the same as
that for J/ , which is to be understood. In the forward sample, RpPb for  -from-b is closer to
unity than for prompt  mesons, which indicates that the open bottom hadrons in pPb are less
suppressed compared to prompt charmonium. The measurements of RpPb for J/ and ⌥ are in
good agreements with various theoretical calculations referred to in the corresponding paper.
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LHCb also studied the CNM e↵ects in pPb data using the productions of quarkonia, including
J/ ,  (2S) and ⌥ mesons 7,8,9. The prompt J/ and  (2S) mesons are separated from those
from b-hadron decays, allowing to study the CNM e↵ects for both components. The results
of RpPb for the quarkonium states are given in Fig. 4. It can be seen that in the forward
sample, J/ production in pPb is strongly suppressed compared to that in pp, the suppression
for  (2S) is even stronger, while that for ⌥(1S) is modest. In the backward data sample, RpPb

is compatible with unity for J/ and ⌥ mesons, but intriguing strong suppression is seen for
 (2S), suggesting that the mechanism for  (2S) production in pPb collisions is not the same as
that for J/ , which is to be understood. In the forward sample, RpPb for  -from-b is closer to
unity than for prompt  mesons, which indicates that the open bottom hadrons in pPb are less
suppressed compared to prompt charmonium. The measurements of RpPb for J/ and ⌥ are in
good agreements with various theoretical calculations referred to in the corresponding paper.
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5 Results

5.1 Parametrization and its uncertainties

The parameter values that define the fit functions, the
nuclear modifications RA

i

in Eq. (2) at the initial scale
Q2

0

are listed in Table 3 where we also indicate the
parameters that were fixed to those of other parton
species or assumed to have some particular value. The
fixed value of � = 1.3 for all flavours as well as setting
�
ya = 0 for sea quarks are motivated by the EPS09

analysis. Freeing the latter easily leads to an unphysi-
cal case (�

ya < 0) and thus we have decided to keep it
fixed at this stage.

Table 3 List of parameters defining the central set of
EPPS16 at the initial scale Q

2

0

= 1.69GeV2. The numbers
in bold indicate the 20 parameters that were free in the fit.

Parameter u

V

d

V

u

y

0

(A
ref

) sum rule sum rule 0.844
�y

0

sum rule sum rule 0.731
xa 0.0717 as u

V

0.104
xe 0.693 as u

V

as u

V

ya(A
ref

) 1.06 1.05 1.03
�ya 0.278 as u

V

0, fixed
ye(A

ref

) 0.908 0.943 0.725
�ye 0.288 as u

V

as u

V

� 1.3, fixed 1.3, fixed 1.3, fixed

Parameter d s g

y

0

(A
ref

) 0.889 0.723 sum rule
�y

0

as u as u sum rule
xa as u as u 0.0820
xe as u

V

as u

V

as u

V

ya(A
ref

) 0.919 1.24 1.12
�ya 0, fixed 0, fixed as u

V

ye(A
ref

) as u as u 0.874
�ye as u

V

as u

V

as u

V

� 1.3, fixed 1.3, fixed 1.3, fixed

The RA

i

functions themselves with error sets of Eq.
(52) and uncertainty bands of Eq. (53) are plotted in
Fig. 9 for Carbon and Lead nuclei at Q2 = Q2

0

and
Q2 = 10GeV2. Regarding these results, we make the
following observations:

First, the obtained valence modifications RA

u

V

and
RA

d

V

are very similar in the central set S
0

, and strongly
anticorrelated: as the average valence modification is
fairly well constrained (see Fig. 27 ahead) an error set
whose, say, RA

u

V

is clearly below the central value has to
have an R

d

A
V

which is correspondingly above the central
value, and vice versa. This is further demonstrated in
Fig. 10 where only the errors sets S±

1

are shown for
valence. The large error bands for RA

u

V

and RA

d

V

at small
x in Fig. 9 reflect the fact that the flavour separation is
not stringently constrained in the antishadowing region:

the finite uncertainties there induce (via the sum rules)
larger uncertainties in the shadowing region, see Fig. 10.
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Fig. 10 The EPPS16 nuclear modifications for valence and
sea u & d quarks for Lead at the parametrization scale Q

2 =
1.69GeV2. The solid black curves correspond to the central
result and the dotted/dashed curves to the specific error sets
as indicated. The total uncertainties are shown as blue bands.

Second, interestingly also the u and d sea quark
modifications are very similar in the central set S

0

, and
anticorrelated (except in the large-x region where they
were assumed to be the same at Q2

0

), though not as
strongly as the valence quarks because also the strange-
quark distribution plays some role. An example is shown
in Fig. 10 where the errors sets S±

10

and S±
16

have been
plotted. In contrast to the valence quarks, individual
sets are not always anticorrelated throughout all the x
values, but sets that are anticorrelated e.g. near x

a

can
be very similar towards x ! 0.

Third, the central value of the strange-quark nuclear
modification indicates stronger nuclear e↵ects than for
the other light sea quarks. On the other hand, the un-
certainty is also significant and even a large enhance-
ment at small x appears possible. While such an e↵ect
is theoretically unlikely (we would expect shadowing),
it is consistent with the utilized data whose uncertain-
ties our uncertainty bands represent. It should also be
borne in mind that the determination of the strange
quark in CT14 (our baseline PDF) may su↵er from un-
certainties (e.g. related to treatment of dimuon process
in neutrino-nucleus DIS) and can, to some extent, a↵ect
the nuclear modifications we obtain. Thus, building a
“hard wall” e.g. prohibiting an enhancement at small


