Probing saturation in 3-particle correlations in DIS

Jamal Jalilian-Marian
Baruch College, New York
and
Ecole Polytechnique, Palaiseau

GDR QCD 2017
1-2 June, IPN Orsay

Deeply Inelastic Scattering (DIS) probing hadron structure

Kinematic Invariants

Deep Inelastic Scattering
 QCD: scaling violations
 $$
F_{2} \equiv \sum_{f=q, \bar{q}} e_{f}^{2} x q\left(x, Q^{2}\right)
$$

early experiments (SLAC,...): scale invariance of hadron structure

large number of gluons at small x

Gribov-Levin-Ryskin

Hadron/nucleus at high energy

radiated gluons have the same size $\left(1 / Q^{2}\right)$ - the number of partons increase due to the increased longitudinal phase space

hadron/nucleus becomes a dense system of gluons:
gluon saturation
Physics of strong color fields in QCD, multi-particle productionpossibly discover novel universal properties of theory in this limit

Perturbative QCD breaks down at small x

 "attractive" bremsstrahlung vs. "repulsive" recombination
included in pQCD
not included in pQCD (collinear factorization)

energy $\sim 1 / \mathrm{x}$

$$
\begin{gathered}
\mathbf{Q}^{2} \pi \mathbf{r}^{2} \\
\mathbf{Q}_{\mathrm{s}}^{2}\left(\mathrm{x}, \mathrm{~b}_{\mathrm{t}}, \mathbf{A}\right) \sim \mathrm{A}^{1 / 3}\left(\frac{1}{\mathrm{x}}\right)^{0.3}
\end{gathered}
$$

QCD at high energy: saturation

Probing saturation via correlations

polar angle (long-range rapidity correlations)
azimuthal angle (back to back)

signatures in production spectra

multiple scattering via Wilson lines:
p_{t} broadening
x-evolution via JIMWLK:
suppression of spectra/away side peaks

long-range rapidity correlations: the ridge

AA at RHIC
(a) CMS MinBias, $p_{\top}>0.1 \mathrm{GeV} / \mathrm{c}$

(c) $\mathrm{CMS} \mathrm{N} \geq 110, \mathrm{p}_{\mathrm{T}}>0.1 \mathrm{GeV} / \mathrm{c}$

PP at LHC
(b) CMS MinBias, $1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{P}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

(d) $\mathrm{CMS} \mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{P}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

Ridge

Initial state vs final state? if final state, early or late times?

di-hadron correlations in pA

Recent STAR measurement (arXiv:1008.3989v1):

Marquet, NPA (2007), Albacete + Marquet, PRL (2010) Tuchin, NPA846 (2010)
A. Stasto + B-W. Xiao + F. Yuan, PLB716 (2012)
T. Lappi + H. Mantysaari, NPA9o8 (2013)

saturation effects de-correlate the hadrons

Probing saturation in high energy collisions

"nucleus-nucleus" (dense-dense) initial multiplicity
need quite a bit of modeling
"proton-nucleus" (dilute-dense) production spectra, correlations

DIS
structure functions (diffraction)
NLO di-hadron/jet correlations 3-hadron/jet angular correlations
much less modeling

Azimuthal angular correlations

in

DIS

3-parton production in DIS

$\gamma^{\star} \mathbf{T} \rightarrow \mathbf{q} \overline{\mathrm{q}} \mathrm{gX}$

+ radiation from anti-quark

scattering of a quark from the target

target (proton, nucleus) as a classical color field quark propagator in the background color field: Wilson line V

$$
\sim g A+(g A)^{2}+(g A)^{3}+\cdots
$$

$$
\mathrm{S}_{F}(q, p) \equiv(2 \pi)^{4} \underbrace{\delta^{4}(p-q) S_{F}^{0}(p)}_{\text {no interaction }}+S_{F}^{0}(q) \underbrace{\tau_{f}(q, p)}_{\text {interaction }} S_{F}^{0}(p) \quad \text { with } \quad S_{F}^{0}(p)=\frac{i}{p p+i \epsilon}
$$

$$
\begin{aligned}
\tau_{f}(q, p) \equiv & (2 \pi) \delta\left(p^{+}-q^{+}\right) \gamma^{+} \int d^{2} x_{t} e^{i\left(q_{t}-p_{t}\right) \cdot x_{t}} \\
& \left\{\theta\left(p^{+}\right)\left[V\left(x_{t}\right)-1\right]-\theta\left(-p^{+}\right)\left[V^{\dagger}\left(x_{t}\right)-1\right]\right\}
\end{aligned}
$$

$$
\mathrm{V}\left(\mathrm{x}_{t}\right)=\hat{p} e^{i g \int d z^{+} A^{-}\left(z^{+}, x_{t}\right)}
$$

spinor helicity methods

massless quarks: helicity eigenstates

$$
\begin{array}{rlrl}
u_{ \pm}(k) & \equiv \frac{1}{2}\left(1 \pm \gamma_{5}\right) u(k) & \overline{u_{ \pm}(k)} & \equiv \overline{u(k)} \frac{1}{2}\left(1 \mp \gamma_{5}\right) \\
v_{\mp}(k) \equiv \frac{1}{2}\left(1 \pm \gamma_{5}\right) v(k) & \overline{v_{\mp}(k)} \equiv \overline{v(k)} \frac{1}{2}\left(1 \mp \gamma_{5}\right)
\end{array}
$$

helicity operator

$$
\begin{aligned}
& \mathrm{h} \equiv \vec{\Sigma} \cdot \hat{p}=\left(\begin{array}{cc}
\vec{\sigma} \cdot \hat{p} & 0 \\
0 & \vec{\sigma} \cdot \hat{p}
\end{array}\right) \\
& u_{+}(k)=v_{-}(k)=\frac{1}{2^{1 / 4}}\left[\begin{array}{c}
\vec{\Sigma} \cdot \hat{p} u_{ \pm}(p) \\
-\vec{\Sigma} \cdot \hat{p} v_{ \pm}(p)
\end{array} \begin{array}{c}
= \\
\hline \sqrt{k^{-}} e^{i \phi_{k}} \\
\sqrt{k^{+}} \\
\sqrt{k^{-}} e^{i \phi_{k}}
\end{array}\right]
\end{aligned}
$$

with $e^{ \pm i \phi_{k}} \equiv \frac{k_{x} \pm i k_{y}}{\sqrt{2 k^{+} k^{-}}}=\sqrt{2} \frac{k_{t} \cdot \epsilon_{ \pm}}{k_{t}}$

$$
n^{\mu}=\left(n^{+}=0, n^{-}=1, n_{\perp}=0\right)
$$

$$
\bar{n}^{\mu}=\left(\bar{n}^{+}=1, \bar{n}^{-}=0, \bar{n}_{\perp}=0\right)
$$

$$
\text { and } \begin{aligned}
k^{ \pm} & =\frac{E \pm k_{z}}{\sqrt{2}} \\
\epsilon_{ \pm} & =\frac{1}{\sqrt{2}}(1, \pm i)
\end{aligned}
$$

spinor helicity methods

notation:

$$
\left|i^{ \pm}>\equiv\right| k_{i}^{ \pm}>\equiv u_{ \pm}\left(k_{i}\right)=v_{\mp}\left(k_{i}\right) \quad<i^{ \pm}\left|\equiv<k_{i}^{ \pm}\right| \equiv \bar{u}_{ \pm}\left(k_{i}\right)=\bar{v}_{\mp}\left(k_{i}\right)
$$

basic spinor products:

$$
\begin{array}{rlr}
<i j> & \equiv<i^{-} \mid j^{+}>=\bar{u}_{-}\left(k_{i}\right) u_{+}\left(k_{j}\right)=\sqrt{\left|s_{i j}\right|} e^{i \phi_{i j}} & \cos \phi_{i j}=\frac{k_{i}^{x} k_{j}^{+}-k_{j}^{x} k_{i}^{+}}{\sqrt{\left|s_{i j}\right| k_{i}^{+} k_{j}^{+}}} \\
{[i j]} & \equiv<i^{+} \mid j^{-}>=\bar{u}_{+}\left(k_{i}\right) u_{-}\left(k_{j}\right)=-\sqrt{\left|s_{i j}\right|} e^{-i \phi_{i j}} & \sin \phi_{i j}=\frac{k_{i}^{y} k_{j}^{+}-k_{j}^{y} k_{i}^{+}}{\sqrt{\left|s_{i j}\right| k_{i}^{+} k_{j}^{+}}}
\end{array}
$$

with

$$
\begin{array}{rlrl}
s_{i j} & =\left(k_{i}+k_{j}\right)^{2}=2 k_{i} \cdot k_{j} & & <i i> \\
& =-<i j>[i j] & \text { and } & \\
& =[i i]=0 \\
& & <i j] & =[i j>=0
\end{array}
$$

charge conjugation $<i^{+}\left|\gamma^{\mu}\right| j^{+}>=<j^{-}\left|\gamma^{\mu}\right| i^{-}>$
Fierz identity $\quad<i^{+}\left|\gamma^{\mu}\right| j^{+}><k^{+}\left|\gamma^{\mu}\right| l^{+}>=2[i k]<l j>$
any off-shell momentum $\quad k^{\mu} \equiv \bar{k}^{\mu}+\frac{k^{2}}{2 k^{+}} n^{\mu} \quad$ where \bar{k}^{μ} is on-shell $\quad \bar{k}^{2}=0$
any on-shell momentum $\quad \not p=\left|p^{+}><p^{+}\right|+\left|p^{-}><p^{-}\right|$

Diagram A1

Numerator: Dirac Algebra

$$
a_{1} \equiv \bar{u}(p)(k)(\not p+\not k) \not k_{1}(l)\left(\not k_{1}-l\right) v(q)
$$

quark anti-quark gluon helicity: + - +

$$
l=l^{+} \hbar-\frac{Q^{2}}{2 l^{+}} \hbar
$$

$$
a_{1}^{L ;+-+}=-\frac{\sqrt{2}}{[n k]} \frac{Q}{l^{+}}[n p]<k p>[n p]<n \bar{k}_{1}>\left[n \bar{k}_{1}\right]<n q>
$$

$$
\left(<n \bar{k}_{1}>\left[n \bar{k}_{1}\right]-l^{+}<n \bar{n}>[n \bar{n}]\right)
$$

with

$$
<n p>=-[n p]=\sqrt{2 p^{+}}
$$

transverse photons: +

$$
a_{1}^{\perp=+;+-+}=-\frac{\sqrt{2}}{[n k]}[p n]<k p>[p n]<n k_{1}>\left[k_{1} n\right]<\bar{n} k_{1}>\left[k_{1} n\right]<n q>
$$

Diagram A3

Numerator: Dirac Algebra
longitudinal photons
quark anti-quark gluon helicity: + - +

$$
\begin{aligned}
a_{3}^{L ;+-+}= & \frac{\sqrt{2} Q}{l+\left[n \bar{k}_{2}\right]}[p n]\left(<n \bar{k}_{1}>\left[\bar{k}_{1} n\right]-<n \bar{k}_{2}>\left[\bar{k}_{2} n\right]\right)<\bar{k}_{2} \bar{k}_{1}>\left[\bar{k}_{1} n\right] \\
& \left(<n \bar{k}_{1}>\left[\bar{k}_{1} n\right]-l^{+}<n \bar{n}>[\bar{n} n]\right)<n q> \\
= & -2^{4} Q\left(l^{+}\right)^{2} \frac{\left(z_{1} z_{2}\right)^{3 / 2}}{z_{3}}\left[z_{3} k_{1 t} \cdot \epsilon-\left(z_{1}+z_{3}\right) k_{2 t} \cdot \epsilon\right]
\end{aligned}
$$

the rest is some standard integrals, we know how to compute the numerators efficiently
add up the amplitudes, add, square.. : get (trace of) products of Wilson lines
structure of Wilson lines: amplitude

Dipoles at large $\mathrm{N}_{\mathrm{c}}: \mathrm{BK}$ eq

$$
\begin{aligned}
& \tilde{\mathrm{T}}\left(\mathbf{p}_{\mathbf{t}}\right) \rightarrow \log \left[\frac{\mathbf{Q}_{\mathbf{s}}^{2}}{\mathbf{p}_{\mathbf{t}}^{2}}\right] \text { saturation region } \\
& \tilde{\mathrm{T}}\left(\mathbf{p}_{\mathbf{t}}\right) \rightarrow \frac{1}{\mathbf{p}_{\mathbf{t}}^{2}}\left[\frac{\mathbf{Q}_{\mathbf{s}}^{2}}{\mathbf{p}_{\mathbf{t}}^{2}}\right]^{\gamma}<R_{p A} \sim \frac{1}{A^{\frac{\gamma}{3}}} \\
& \left.1<\mathrm{Q}^{2}\right\rceil
\end{aligned}
$$

$$
\tilde{T}\left(p_{t}\right) \rightarrow \frac{1}{p_{t}^{2}}\left[\frac{Q_{s}^{2}}{p_{t}^{2}}\right]
$$

pQCD region

$$
\begin{aligned}
& \frac{d}{d y} \mathbf{T}\left(x_{t}-y_{t}\right)=\frac{\bar{\alpha}_{s}}{2 \pi} \int d^{2} z_{t} \frac{\left(x_{t}-y_{t}\right)^{2}}{\left(x_{t}-z_{t}\right)^{2}\left(y_{t}-z_{t}\right)^{2}} \times \\
& {\left[\mathbf{T}\left(\mathbf{x}_{\mathbf{t}}-\mathbf{z}_{\mathbf{t}}\right)+\mathbf{T}\left(\mathbf{z}_{\mathbf{t}}-\mathbf{y}_{\mathbf{t}}\right)-\mathbf{T}\left(\mathbf{x}_{\mathbf{t}}-\mathbf{y}_{\mathbf{t}}\right)-\mathbf{T}\left(\mathbf{x}_{\mathrm{t}}-\mathbf{z}_{\mathrm{t}}\right) \mathbf{T}\left(\mathbf{z}_{\mathrm{t}}-\mathbf{y}_{\mathrm{t}}\right)\right]}
\end{aligned}
$$

The quadrupole

$$
Q(r, \bar{r}, \bar{s}, s) \equiv \frac{1}{N_{c}}<\operatorname{Tr} V(r) V^{\dagger}(\bar{r}) V(\bar{s}) V^{\dagger}(s)>
$$

line config.:

$$
r=\bar{s}, \bar{r}=s, z \equiv r-\bar{r}
$$

square config.:

$$
r-\bar{s}=\bar{r}-s=r-\bar{r}=\cdots \equiv z
$$

"naive" Gaussian: $Q=S^{2} \quad S(r, \bar{r}) \equiv \frac{1}{N_{c}}\left\langle\operatorname{Tr} V(r) V^{\dagger}(\bar{r})\right\rangle$
Gaussian

$$
Q_{\mid}(z) \approx \frac{N_{c}+1}{2}[S(z)]^{2 \frac{N_{c}+2}{N_{c}+1}}-\frac{N_{c}-1}{2}[S(z)]^{2 \frac{N_{c}-2}{N_{c}-1}}
$$

$Q_{s q}(z)=[S(z)]^{2}\left[\frac{N_{c}+1}{2}\left(\frac{S(z)}{S(\sqrt{2} z)}\right)^{\frac{2}{N_{c}+1}}-\frac{N_{c}-1}{2}\left(\frac{S(\sqrt{2} z)}{S(z)}\right)^{\frac{2}{N_{c}-1}}\right]$
Gaussian + large N_{c}

$$
\begin{aligned}
Q_{\mid}(z) & \rightarrow S^{2}(z)[1+2 \log [S(z)]] \\
Q_{s q}(z) & =S^{2}(z)\left[1+2 \ln \left(\frac{S(z)}{S(\sqrt{2} z)}\right)\right]
\end{aligned}
$$

Quadrupole: $Q(r, \bar{r}, \bar{s}, s) \equiv \frac{1}{N_{c}}<\operatorname{Tr} V(r) V^{\dagger}(\bar{r}) V(\bar{s}) V^{\dagger}(s)>$

Dumitru-Jalilian-Marian-Lappi-Schenke-Venugopalan:PLB706 (2011) 219

3-parton azimuthal angular correlations

0.5

1.0

1.5

multiple scattering:
broadening of the peak
x-evolution:
reduction of magnitude

some thoughts/ideas/dreams/..

cold matter energy loss

how important is cold matter Eloss in single inclusive production in the forward rapidity region?

> cold matter energy loss?

Kopeliovich, Frankfurt and Strikman
Neufeld,Vitev,Zhang, PLB704 (2011) 590

Munier, Peigne, Petreska, arXiv:1603.01028

$$
z \frac{d I}{d z} \equiv \frac{\frac{d \sigma a+A \rightarrow a+g+X}{d y d y^{\prime} d^{2} p_{t}}}{\frac{d \sigma a+A \rightarrow a+X}{d y d^{2} p_{t}}}
$$

the difference between a nuclear target and a proton target is the medium induced energy loss
used to estimate the energy loss in single inclusive processes in the forward kinematics at RHIC and the LHC
can also do this for di-jets in DIS (3-parton production/2-parton production)

Possible extensions to other processes?

real photons: $\quad Q^{2} \rightarrow 0$
ultra-peripheral nucleus-nucleus collisions
inclusive 3-jet production
NLO inclusive di-jet production
crossing symmetry:

$$
\gamma^{(*)} T \longrightarrow q \bar{q} g X \longrightarrow\left\{\begin{array}{l}
q T \longrightarrow q g \gamma^{(\star)} X \\
\bar{q} T \longrightarrow \bar{q} g \gamma^{(\star)} X \\
g T \longrightarrow q \bar{q} \gamma^{(\star)} X
\end{array}\right\}
$$

proton-nucleus collisions (collinear factorization in proton?)

$$
\text { di-jet }+ \text { photon production in pA } \quad p A \longrightarrow h_{1} h_{2} \gamma^{(\star)} X
$$

Possible extensions to other processes?

MPI (double/triple parton scattering)
$\gamma^{(\star)} T \longrightarrow q \bar{q} g X \longrightarrow\left\{\begin{array}{l}q \bar{q} T \longrightarrow g \gamma^{(\star)} X \\ g \bar{q} T \longrightarrow \bar{q} \gamma^{(\star)} X \\ g q T \longrightarrow q \gamma^{(\star)} X\end{array}\right\}$

$$
p A \longrightarrow h \gamma^{(*)} X
$$

if one assumes target is accurately described by CGC at small x this will tell us about DPS (proton "GPD" at large x)

The Saturation Scale $\mathbf{Q}_{\mathbf{s}}$

SUMMARY

CGC is a systematic approach to high energy collisions
high gluon density: re-sum multiple soft scatterings
high energy: re-sum large logs of energy (rapidity or $\log \mathbf{1 / x}$)

Leading Log CGC works (too) well

it has been used to fit a wealth of data; ep, eA, pp, pA, AA

Precision (NLO) studies are needed
available for DIS, single inclusive forward production in $p p, p A$

Azimuthal angular correlations offer a unique probe of CGC 3-hadron/jet correlations should be even more discriminatory

di-hadron (azimuthal) angular correlations in DIS

DIS total cross section $\left(F_{L}, F_{2}\right)$ dipoles

$$
<\operatorname{Tr} \mathbf{V} \mathbf{V}^{\dagger}>
$$

di-jet production in DIS: quadrupoles

$$
\text { LO: } \quad \gamma^{*} \mathrm{~T} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{X}
$$

di-hadron production in DIS

$\gamma^{\star}(\mathbf{k}) \mathbf{p} \rightarrow \mathbf{q}(\mathbf{p}) \overline{\mathbf{q}}(\mathbf{q}) \mathbf{X}$
$\mathcal{A}^{\mu}(k, q, p)=\frac{i}{2} \int \frac{d^{2} l_{\perp}}{(2 \pi)^{2}} d^{2} x_{\perp} d^{2} y_{\perp} e^{i\left(p_{\perp}+q_{\perp}-k_{\perp}-l_{\perp}\right) \cdot y_{\perp}}$

$$
e^{i l_{\perp} \cdot x_{\perp}} \bar{u}(q) \Gamma^{\mu}\left(k^{ \pm}, k_{\perp}, q^{-}, p^{-}, q_{\perp}-l_{\perp}\right) v(p)
$$

$$
\left[V\left(x_{\perp}\right) V^{\dagger}\left(y_{\perp}\right)-1\right]
$$

with
$\Gamma^{\mu} \equiv$

$$
\gamma^{-}(d-\not l+m) \gamma^{\mu}(d-\not k-l l+m) \gamma^{-}
$$

$$
\overline{p^{-}\left[\left(q_{\perp}-l_{\perp}\right)^{2}+m^{2}-2 q^{-} k^{+}\right]+q^{-}\left[\left(q_{\perp}-k_{\perp}-l_{\perp}\right)^{2}+m^{2}\right]}
$$

F. Gelis and J. Jalilian-Marian, PRD67 (2003) 074019 Zheng + Aschenauer + Lee + Xiao, PRD89 (2014)7, o74037

Di-hadron azimuthal correlations in DIS

Electron Ion Collider...., A. Accardi et al., arXiv:1212.1701
Zheng-Aschenauer-Lee-Xiao, PRD89 (2014)7, 074037

Azimuthal correlations in DIS

Zheng + Aschenauer + Lee + Xiao, PRD89 (2014)7, 074037

