CMOS for HEP experiments : Focus on ILC vertex detector

- ILD VXD requirements
- Axis of CMOS Pixels Sensors R & D

Reminder: ILD Vertex Detector requirements (DBD @ 500 GeV)

Pair background in the VXD for 10 B)

esson

⇒ Strong motivations to get reduced occupancy / faster read-out

FJKPP

2

ILD: Vertex detector

- Layout (DBD geometry):
 - Long Barrel approach
 - Radius: ~15 mm 60mm
 - 3 x double sided ladders
 - > Optimize material budget / alignment.
 - > Stand alone tracking improvment
 - Background tagging capabilities
 - > Other option: 5 single sided layers
 - Layers 1 & 2:
 - Priority to read-out speed & spatial resolution
 - $\succ~$ Small pixels: 17 x 17 / 33 μm^2
 - Binary charge encoding
 - $\succ~$ Read-out time \sim 50 / 8 μs
 - \succ $\sigma_{sp} \sim 3$ / 5 μm

- layers 3 - 6

- > Optmized for power comsumption
- Large pixels (25/35 x 35 μm²)
- > 3-4 bits charge encoding
- \succ Read-out time ~ 60 μ s

σ_{sp} ~ 4 μm
 μm

	$R \ (mm)$	z (mm)	$ \cos \theta $	σ (μm)	Readout time (μ s)
Layer 1	16	62.5	0.97	2.8	50
Layer 2	18	62.5	0.96	6	10
Layer 3	37	125	0.96	4	100
Layer 4	39	125	0.95		100
Layer 5	58	125	0.91	4	100
Layer 6	60	125	0.9		100

The occupancy : squaring the circle

- How to decrease occupancy if needed ?
 - Increase read-out speed ?
 - > Enlarge pixel pitch \Rightarrow deteriorate spatial resolution (\Rightarrow 2-3 bits instead of 1 bit output ?)
 - ➤ Elongated pixels ⇒ improved read-out speed while keeping resolution not degraded too much
 - ➤ Increase power consumption
 - Smaller pitch ?
 - ➤ More pixel to read ⇒ decrease read-out speed ⇒ less bunch time stamping
 - > Effective if it compensates the number of superimposed BXs in one read-out
 - Decrease cluster multiplicity ? (BB tends to have large incident angles)
 - > Full depletion / sensitive thickness : helps a bit (marginal effect)
 - ➤ Multiplicity pitch depletion angle relation ⇒ multi-parameter space
 - Increase inner radius ?
 - ▶ Not really an option: Deteriorate $\sigma_{IP} \Rightarrow$

$$\sigma_{d_0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2}$$

– Increase B field ?

- > Not really a free parameter
- Technology progress : the way to go ?
 - \succ e.g. smaller feature size \Rightarrow less power consumption, more memories in pixels, etc.
 - ➢ Go lower than ~100 ns/row read-out time ? (more parallelism, asynchronous read-out, etc.)

$\sigma_b < 5 \oplus 10/p\beta \sin^{3/2}\theta \ \mu m.$

Bunch Train 0.2 s 337 ns Bunch Spacing

Read-out strategies vs resolution/occupancy

Typical occupancy rate (layer 1, with DBD rates)

Pixel pitch	σ _{sp}	Read- out Time / time resolut ion	Assumed average cluster multiplicity	Lumi Mode (bunch Per train)	BX time spacing	√s	Assumed Expected Background	Expected background with safety factor 5	Occupancy	remarks
(µmxµm)	μ m	(μs)	# pixels	B/train	ns	GeV	#hits/c	m²/BX	w.o./w safety	
17x17	~3	50	5	Baseline (1312)	554	500	6	30	8x10 ⁻³ / 4x10 ⁻²	DBD
17x17	~3	50	5	Upgrade (2625)	366	500	6	30	1x10 ⁻² / 6x10 ⁻²	Lumi upgrade
17x17	~3	50	5	1312	554	250	3	15	4x10 ⁻³ / 2x10 ⁻²	250 GeV
17x17	~3	50	5	2500	366	1000	10	50	2x10 ⁻² / 1x10 ⁻¹	1 TeV
17x17	~3	25	5	Baseline (1312)	554	500	6	30	4x10 ⁻³ / 2x10 ⁻²	DBD X 2 faster
22 x 22	~4	4	5	Baseline (1312)	554	500	6	30	1.5x10 ⁻³ / 8x10 ⁻³	Async. Read- out
25 x 25	~5	1 BX	3	Baseline (1312)	554	500	6	30	1x10 ⁻⁴ / 5x10 ⁻⁴	Bunch stamping
5 x 5	~1	1 train	6	Baseline (1312)	554	500	6	30	1x10 ⁻² / 6x10 ⁻²	Fine pixel BB tagging

Occupancy = $(\#hits/cm^2/BX) \times (mult) \times (pitch)^2 \times (r.o.time) / (BXtime) \times (pitch)^2 \times (r.o.time) / (BXtime) \times (pitch)^2 \times ($

FJKPPL May

5 part/cm²/BX \Rightarrow 17x17 μ m² pitch, cluster mult. ~5, 50 μ s read-out time @ 0.5TeV on Layer 1 \Rightarrow ~ 1 %

Read-out speed roadmap

- How to improve read-out speed ? while keeping
 - a spatial resolution in the 3-5 μm range
 - a material budget per layer in O(0.1-0.2)% X_0 range
 - a controlled power consumption and a controlled data flow.

CMOS R&D : CBM-MVD

- Asynchronous (fast) read-out architecture
 - MIMOSIS = based on ALPIDE pixel readout (ALICE-ITS upgrade)
- Specifications:
 - σ_{sp} ~ 5 μm
 - r.o. time ~ 5 μ s
 - Enhanced data flux: ~1.6 Gbits/cm²/s (peak) ⇒ x 60 ITS rate
 - > Revisited digital circuitry (data sparsification & transfer logic)
 - Enhanced radiation hardness: O(10 Mrad) & O(10¹⁴ $n_{eq(1MeV)})$

- Pixel array & digital periphery developed in //
- MIMOSIS_0
 - Timing study of the data driven readout circuitry
 - DC & AC coupling foreseen to compare performances
 - Chip submitted in May 2017

- Digital Periphery
 - Design underway
 - ✓ Physical implementation of the different block
 - ✓ Timing vs Chip length
 - ✓ Data rate
 - ✓ Power estimation
 - 1st full scale prototype ~ 2018

Final preproduction sensor in early 2020

Integration: PLUME collaboration

Aus

Next step: \neq chips on each side FJKPPL May 9th 2017

⇒ Ladders close to ILC mat.budget specifications

Towards smaller feature size: 180 nm ⇒110 nm

- Motivations
 - Small pixel dimensions
 - Faster read-out
 - Reduced power consumption
 - Other tech. options matters (# metal layers, deep P-well, etc.)
- Asynchronous read-out (à la ALPIDE from ALICE-ITS)
 - Extend ALPIDE architectures
 - > Larger areas, power saving, uniformity, robustness while keeping low mat.budget, sp. resolution
 - Potential Benefit: Power cycling may not be necessary
 - > Alignment issues ?
 - \Rightarrow Ultimate read-out speed potential of O(few μ s)
- New options
 - TowerJazz offers a mixed 110/180nm CIS process
 - > 2017: submit prototype
 - 2 other CMOS factories offer access to 110 nm
 - > Discussions with foundries going on (with CEPC)

⇒ Smaller feature size offers opportunities to get closer to ILC bunch tagging

ILD-VXD design options

• ILD-VXD Options DBD

	R (mm)	z (mm)	$ \cos \theta $	$\sigma~(\mu m)$	Readout time (μ s)
Layer 1	16	62.5	0.97	2.8	50
Layer 2	18	62.5	0.96	6	10
Layer 3	37	125	0.96	4	100
Layer 4	39	125	0.95	4	100
Layer 5	58	125	0.91	4	100
Layer 6	60	125	0.9	4	100

• CPS option achievable with our present knowledge

A la PLUME double sided ladders

➢ Mat. Budget ~ 0.3-0.4 % X0 / ladder

- A la ALPIDE/MIMOSIS option

 \succ 6 Layers with 22x22 μm² \Rightarrow σ~<4 μm & 4 μs

LC Vertex Detector Workshop 2017 Software studies https://agenda.linearcollider.org/event/7450/

Alignement studies on th VXD

- Loic Cousin PhD (http://www.iphc.cnrs.fr/Loic-COUSIN.html)
- Double sided ladders will help
- Alignement with beam background tracks seems doable

Beam background MC production (Preliminary)

- > A. Perez Perez
- Goal:
 - New ILD software
 - Complete new MC production
 - Study background in the different detectors
 - Study different geomerties (anit-DID) \geq
- Results
 - Aniti-DID effect is moderate
 - Background mostly coming from central region (~75%). Backscatterd ~25%, VXD+beam pipe ~5%

Analytical Tool to study design options: <u>Guariguanchi</u>

a (µm)

A. Perez, J. Baudot, Qian-Yuan LIU, A.B., M.W.

Inputs

- Geometry + material budget (multiple scattering)
- Detector performances ($\sigma_{sp} + t_{r.o.} + \varepsilon_{det}$) \geq
- Salt and Pepper beam background

Output

- Impact parameter resolution
- Tracking pseudo-efficiency

$_{\rm F}a \oplus b / p\beta \sin^{3/2}\theta$

0.21 ± 0.09 0.134 ± 0.001 0.113 ± 0.001 0.04 ± 0.03 0.038 ± 0.001 0.031 ± 0.001 0.04 ± 0.03 0.033 ± 0.001 0.027 ± 0.001 L1: 2.8 μm/ 50 μs, L2: 6 μm/10 μs, L3-6: 4 μm/ 100 μs (DBD) • L1: 1.0 μm/800 μs, L2: 6 μm/0.5 μs, L3-6: 4 μm/ 4 μs

• L1-6: 4 μm/ 4 μs

Layer

1

2

3

4

5

6

Units

Hits/BX/cm²

DBD Prev

 6.32 ± 1.76

 4.00 ± 1.18

 0.25 ± 0.11

This Prod w/o

antiDID

 5.75 ± 0.02

 4.05 ± 0.01

 0.177 ± 0.001

This Prod w/

anti-DID

 4.35 ± 0.02

 2.60 ± 0.01

 0.137 ± 0.001

Pixelated SIT ?

ILD Software and Technical Meeting

https://agenda.linearcollider.org/event/7520/overview

• Idea (beeing discussed in ILD)

- Current design (Strips)

Γ	Barrel	system	
	System	R(in) R(out) z	comments
		$/\mathrm{mm}$	
	- SIT	153 300 644	2 silicon strip $\sigma = 7\mu m$ layers

SIT characteristics (current baseline $=$ false double-sided Si microstrips)								
(Geometry		Characteri	Material				
R[mm]	Z[mm]	$\cos \theta$	Resolution R- $\phi[\mu m]$	Time [ns]	RL[%]			
153	368	0.910	R: $\sigma = 7.0$,	307.7(153.8)	0.65			
300	644	0.902	z: $\sigma = 50.0$	$\sigma = 80.0$	0.65			

- Replace it by pixels: no technology showstopper a priori.
 - Possibly double sided pixels to get 4 hits
 - $\succ~$ ~ same material budget and σ_{sp} ~ 5-7 μm
 - > Occupancy expected to be small: local peak occupancy (inside jets) needs to be checked

 \Rightarrow Seems doable with MIMOSIS approach (~5 μ m + few bunches (1-4) time stamping)

- Pros
 - Time stamping of tracks and better resolution
 - > Either fast detector (O(BX)) or memory buffer with read-out between train
 - > Moderate expected occupany could allow read-out between train
 - Track seeding for pT >~150 MeV

Image: Starting starting starting starting should help to disentangle physics tracks from beam backgroundFJKPPL May 9th 2017Auguste Besson

Summary

ILD VXD requirements

- The VXD challenges in the coming years:
 - Parameters space optimization = refining the requirements
 - > Integration issues (EMI, Power & cooling, mechanics, data flux, etc.)
- CPS offers a very good compromise in terms of:
 - Spatial resolution
 - ➢ Read-out speed
 - Material budget
 - Power consumption
 - Radiation hardness
- Still room for new ideas and improved performances
 - CPS Technology still evolving
 - Combining technologies ?
 - New geometries ?
 - Disks and SIT ?

Back up

Resolution and pitch: what CPS can offers

Short term: CBM-MVD

• CBM-MVD @ FAIR (~2019-2020)

0.18 μm deep P-well, based on ALPIDE design.

- Requirements & Design
 - \succ Pitch \sim 22x33 μm^2 \Rightarrow σ_{sp} < 5 μm ;
 - > Time resolution = 4 μ s
 - ➤ 4 stations of CPS
 - \succ x2 Data transmission rate (up to x10 for local hit density)
 - > peak hit rate @ 7 x 10⁵ /mm²/s \Rightarrow >2 Gbits/s
 - ⇒ more buffer & serializer
 - ➤ Rad.tol. x 10 w.r.t. ALICE-ITS : 3x10¹³ n_{eq}/cm²/yr & 3 MRad/yr (with replacement every year)
 - Vacuum compatible & Negative temp. operation
- Status
 - > ongoing design
 - Pixel + priority encoder designed
 - digital part ongoing
 - Amplifier modified w.r.t ALPIDE
- 1st testing chip MIMOSIS
 - > 64 col x 512 rows chip to tests architecture / front end
 - Submission: Feb. 2017

⇒ architecture adaptable to a fast sensor for an ILC vertex detector

Auguste Besson

17

Other development: PLUME for BEAST 2@ SuperKEK-B

- Goal: beam background measurement For Belle II
 - Different detectors in inner volume
- Spin-off for ILC:
 - operation of PLUME ladders in real conditions
 - Exploiting the minivectors produced to help reconstructing soft electron trajectories
- Plume 02 prototype ⇒ Reduced mat. Budget
 - Cu flex cable (0.42 % X₀)
 - 2 ladders functional, 2 more for spares by June
- Timeline:
 - Q4 2017: Installation & comissioning
 - Q1 2018: Start of data taking
- Next steps:
 - finalize Al flex cable (0.35 % X₀)
 - Beam test @ DESY in 2017-18

Geometries ?

- Long barrel vs endcap disks
 - Double sided ladders : added value in standalone tracking
 - > -> helicoidal geometry ?
 - > Mat. budget vs acceptance issues ?
 - > Read-out periphery (techno. dependant)
- Spacing in double sided layers (2mm ⇒ 1.5mm ?)
 - > Large spacing: more rigidity, more angular resolution
 - > Small spacing: Mini-vector building, Mat.Budget
- Number of ladders
 - Probably 10 in Layer 1-2 ?
 - 1 or 2 radius ?
 - > Mat. budget vs acceptance (low pT) trade off
- Beam pipe
 - 500 μ m Be @ R = 1.5 cm
 - Mechanical constraints: Reducing the Radius allows to reduce the beam pipe thickness
- Faraday cage ?
- Revisiting numbers ?
 - All accepted numbers tends to become a tradition (i.e. one forgets their origin)
 - \succ e.g. power, a \oplus b parameters, geometry, read-out speed, etc.

⇒ cf. A. Perez Analytical tool to study vertex detector configurations

Ramping scenarios: $\sqrt{s} = 250 \text{ GeV}/500 \text{ GeV}$?

- Standard scenario
- LCWS 2017 (Morioka):
 - Ramping scenario starting @ $\sqrt{s} = 250$ GeV is considered very seriously
- What are the consequences for the VXD ?
 - Significant Beam background reduction expected
- Typical values:
 - 500 GeV ⇒250 GeV will divide #hits/cm²/BX by ~ 2
 - BUT:
 - Luminosity scenarios are different

> Enhanced luminosity @ $\sqrt{s} = 250$ GeV would counter balance the Decrease of background due to lower energy.

LEP/SLD history: L was finally much higher than the baseline

ILC Operating scenarios

 \Rightarrow A running scenario starting with $\sqrt{s} = 250$ GeV does not change that much the picture

Anti-DID and IR configurations

LC-DET-2012-081

Conceptual Design of the ILD Detector Magnet System

- Idea: Additional Dipole located in the outer radius of the main solenoid
- Expected effect
 - Dipole field ~0.035 T @ z = 3 m)
 - > guides particles in the forward region
 - Forward detectors: reduces background significantly
 - VXD: Reduces backscattered particles

- Effect on the luminosity due to the spreading of the beam ?
- Task force in ILD (ongoing)
 - Explore the different design options
 - Cost & design studies
 - A priori: VXD not expected to drive the final decision
 - > Order of magnitude: < Factor 2 effect.
 - Needs to be confirmed
 - New MC samples beeing produced and analyzed (cf. A.Perez talk)

ILC parameters (DBD)

			Baseline	500 GeV	Machine	1st Stage	L Upgrade	$E_{\rm CM}$ U	lpgrade
								Α	В
Centre-of-mass energy	E_{CM}	GeV	250	350	500	250	500	1000	1000
Collision rate	f_{rep}	Hz	5	5	5	5	5	4	4
Electron linac rate	f_{linac}	Hz	10	5	5	10	5	4	4
Number of bunches	nb		1312	1312	1312	1312	2625	2450	2450
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	2.0	2.0	1.74	1.74
Bunch separation	$\Delta t_{\rm b}$	ns	554	554	554	554	366	366	366
Pulse current	I_{beam}	mA	5.8	5.8	5.8	5.8	8.8	7.6	7.6
Main linac average gradient	G_{a}	$MV m^{-1}$	14.7	21.4	31.5	31.5	31.5	38.2	39.2
Average total beam power	P_{beam}	MW	5.9	7.3	10.5	5.9	21.0	27.2	27.2
Estimated AC power	P_{AC}	MW	122	121	163	129	204	300	300
RMS bunch length	σ_{z}	mm	0.3	0.3	0.3	0.3	0.3	0.250	0.225
Electron RMS energy spread	$\Delta p/p$	%	0.190	0.158	0.124	0.190	0.124	0.083	0.085
Positron RMS energy spread	$\Delta p/p$	%	0.152	0.100	0.070	0.152	0.070	0.043	0.047
Electron polarisation	P_{-}	%	80	80	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30	20	20
Horizontal emittance	$\gamma \epsilon_x$	μm	10	10	10	10	10	10	10
Vertical emittance	$\gamma \epsilon_y$	nm	35	35	35	35	35	30	30
IP horizontal beta function	$\beta_{\mathbf{x}}^*$	mm	13.0	16.0	11.0	13.0	11.0	22.6	11.0
IP vertical beta function	$\beta_{\mathbf{y}}^{*}$	mm	0.41	0.34	0.48	0.41	0.48	0.25	0.23
IP RMS horizontal beam size	$\sigma_{\mathbf{x}}^{*}$	nm	729.0	683.5	474	729	474	481	335
IP RMS veritcal beam size	σ_y^*	nm	7.7	5.9	5.9	7.7	5.9	2.8	2.7
Luminosity	L	$ imes 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	0.75	1.0	1.8	0.75	3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		87.1%	77.4%	58.3%	87.1%	58.3%	59.2%	44.5%
Average energy loss	δ_{BS}		0.97%	1.9%	4.5%	0.97%	4.5%	5.6%	10.5%
Number of pairs per bunch crossing	Npairs	×10 ³	62.4	93.6	139.0	62.4	139.0	200.5	382.6
Total pair energy per bunch crossing	E_{pairs}	TeV	46.5	115.0	344.1	46.5	344.1	1338.0	3441.0
		½ gradi Initial H	ent iggs fact	ory E	Baseline	½ length (Option 1 ^e ph	Lumi Lumi Jase) upgrade	1TeV	upgrade

Beam background features.

L.Cousin PhD

FJKPPL May 9th 2017

ILC Running scenarios

Physics Case for the International Linear Collider K. Fuji et al. ILC-NOTE-2015-067

ILC Operating scenarios T. Barklow et al. ILC-NOTE-2015-068

Topic	Parameter	Initial Phase	Full Data Set	units
Higgs	m_h	25	15	MeV
	g(hZZ)	0.58	0.31	%
	g(hWW)	0.81	0.42	%
	$g(hb\bar{b})$	1.5	0.7	%
	g(hgg)	2.3	1.0	%
	$g(h\gamma\gamma)$	7.8	3.4	%
	- , ,	1.2	1.0	%, w. LHC results
	g(h au au)	1.9	0.9	%
	$g(hc\bar{c})$	2.7	1.2	%
	$g(ht\bar{t})$	18	6.3	%, direct
		20	20	%, <i>tī</i> threshold
	$g(h\mu\mu)$	20	9.2	%
	g(hhh)	77	27	%
	Γ_{tot}	3.8	1.8	%
	Γ_{invis}	0.54	0.29	%, 95% conf. limit
Тор	m_t	50	50	MeV $(m_t(1S))$
	Γ_t	60	60	MeV
	g_L^{γ}	0.8	0.6	%
	g_R^{γ}	0.8	0.6	%
	g_L^Z	1.0	0.6	%
	g_R^Z	2.5	1.0	%
	$F_2^{\tilde{\gamma}}$	0.001	0.001	absolute
	$F_2^{\mathbb{Z}}$	0.002	0.002	absolute
W	m_W	2.8	2.4	MeV
	g_1^Z	$8.5 imes 10^{-4}$	$6 imes 10^{-4}$	absolute
	κγ	$9.2 imes 10^{-4}$	7×10^{-4}	absolute
	λ_{γ}	7×10^{-4}	$2.5 imes 10^{-4}$	absolute
Dark Matter	EFT A: D5	2.3	3.0	TeV, 90% conf. limit
	EFT A: D8	2.2	2.8	TeV, 90% conf. limit

FJKPPL May 9th 2017

Sustainable occupancy rate ?

FJKPPL May 9th 2017

Expected Vertex performances (2) : Flavor tagging

- ILD example
- Full simulation
- Multi-variable tagging algorithm (BDT)
 - LCFIplus
- Continuous improvements

Expected Tracking performances

Single muons events : Normalised pT resolution for different polar angles

- SiD:
 - better @ high pT
 - robustness in high density tracks environment

• ILD:

- better @ low pT
- dE/dx capabilities (TPC)

Multiplicity discussion

Crucial parameter: pitch / epitaxial layer thickness 1 hit \neq 1 pixel fired 20 Number of crossed pixels (pixel units) Typically 1-4 for perpendicular particles 18 Epitaxial thickness (e.g. 20 & 20 um x Epitaxial thickness (e.g. 40 & 20 um \Rightarrow Depends on: Pitch = 3 x Epitaxial thickness (e.g. 60 & 20 u Threshold applied on discriminators Charge sharing Smaller for fully depleted technologies Increases with sensitive thickness Incident angle effect 80 10 20 30 40 50 60 70 Incident angle (degrees) pitch N crossed pixels = (epi / pitch) x tan(θ) Pitch = 0.25 x Epitaxial thickness (e.g. 5 & 20 µm) Pitch = 0.5 x Epitaxial thickness (e.g. 10 & 20 µm) Pitch = 1 x Epitaxial thickness (e.g. 20 & 20 µm) Pitch = 2 x Epitaxial thickness (e.g. 40 & 20 µm) Pitch = 3 x Epitaxial thickness (e.g. 60 & 20 µm) epi e.g. : 20 μ m pitch, 20 μ m thickness, θ = 70° \Rightarrow 3 crossed pixels \Rightarrow ~ x3 occupancy θ

Auguste Besson

90

Beam background properties in the local frame of the sensors

Beam background properties in the local frame of the sensors

