Overview of Achieved & On-Going CPS Developments at IPHC

M.Winter / IPHC, 9 May 2017

Contents

- Team profile : Composition & Expertise
- Overview of achievements
- Main on-going projects
- Long-term objectives
- Conclusion

Motivation for Developing CMOS Sensors

- CPS development triggered by need of very high granularity & low material budget
- Applications exhibit much milder running conditions than pp/LHC
 - \Rightarrow Relaxed speed & radiation tolerance specifications
- Increasing panel of existing, foreseen or potential application domains :
 - Heavy Ion Collisions : STAR-PXL, ALICE-ITS, CBM-MVD, NA61, ...
 - ∘ e⁺e[−] collisions : ILC, BES-3, ...
 - Non-collider experiments : FIRST, NA63, Mu3e, PANDA, ...
 - **High precision beam telescopes** adapted to medium/low energy electron beams :
 - \hookrightarrow few μm resolution achievable on DUT with EUDET-BT (DESY), **BTF-BT (Frascati)**, ...

PICSEL Team Profile

- TEAM COMPOSITION:
 - Particle physicists: 2 CNRS, 2 Univ., 1 post-doc, 2 PhD students
 - Chip designers (6 PhD): 10 engineers (9 CNRS, 1 Univ.), 1 post-doc ?, 3 PhD students
 - Electronicians (1 PhD): 6 engineers
 - Support outside of PICSEL team: micro-technics & mechanics workshops
- SPECIFIC ASPECTS:
 - Activities are predominantly addressing instrumentation:
 - \hookrightarrow from R&D ab initio to demonstrators of detector concept
 - Based on CHAIN of complementary expertises:
 - \hookrightarrow from scientific motivations to the realisation of the customised detection device
 - Connected to network of partners using or testing our sensors

$PICSEL \equiv Chain of Complementary Knowledges$

CMOS Pixel Sensors: Main Features

- Prominent features of CMOS pixel sensors :
 - high granularity \Rightarrow excellent (micronic) spatial resolution
 - $_\circ\,$ signal generated in (very) thin (15-40 μm) epitaxial layer
 - $\hookrightarrow\,$ resistivity may be \gg 1 k $\Omega\cdot cm$
 - $_\circ\,$ signal processing $\mu\text{-circuits}$ integrated on sensor substrate
 - \Rightarrow impact on downstream electronics and syst. integration (\Rightarrow cost)
- CMOS pixel sensor technology has the highest potential :
- ⇒ R&D largely consists in trying to exploit potential at best with accessible industrial processes
 - → manufacturing param. not optimised for particle detection:
 wafer/EPI characteristics, feature size, N(ML), ...

Twin-Well passivation provide provid

Quadruple-Well

- Read-out architectures :
 - 1st generation : rolling shutter (synchronous) with analog pixel output (end-of-column discri.)
 - 2nd generation : rolling shutter (synchronous) with in-pixel discrimination
 - 3rd generation : data driven (asynchronous) with in-pixel discrimination

5

CMOS Pixel Sensors (CPS): A Long Term R&D

Ultimate objective: ILC, with staged performances

✤ CPS applied to other experiments with intermediate requirements

EUDET 2006/2010

ILC >2020 International Linear Collider

EUDET (R&D for ILC, EU project)
STAR (Heavy Ion physics)
CBM (Heavy Ion physics)
ILC (Particle physics)
HadronPhysics2 (generic R&D, EU project)
AIDA (generic R&D, EU project)
FIRST (Hadron therapy)
ALICE/LHC (Heavy Ion physics)
EIC (Hadron physics)
CIVC (Particle physics)
BESIII (Particle physics)

....

<u>CBM >2018</u> Compressed Baryonic Matter

STAR 2013 Solenoidal Tracker at RHIC

ALICE 2018 A Large Ion Collider Experiment

Achievement: MIMOSA-26 & Beam Telescopes (EUDET, ...)

MIMOSA-26: 1st CPS combining all signal processing functionalities

 $\sigma_{R\Phi,Z} \simeq$ 3.2 μm ; thickness \simeq 50 μm ; 670,000 pixels over 1x2 cm²; > 10⁶ part./cm²/s

- EUDET beam telescope (\sim 10 copies worldwide), suited to electron beams < 1 GeV (e.g. LNF)
- MIMOSA-26 equips numerous devices: FIRST (GSI), NA-61 & NA-63 (SPS), beam telescopes (FE-I4), vertex detector demonstrators (CBM, ...), etc.
- 2x6 MIMOSA-26 equip PLUME double-sided ladder → BEAST-II

Achievement: MIMOSA-28 & STAR-PXL Detector (+ spin-offs)

MIMOSA-28: 1st CPS equipping a subatomic phys. experiment (STAR at RHIC/BNL) $\sigma_{R\Phi,Z} \simeq$ 3.7 μm ; thickness \simeq 50 μm ; 970,000 pixels over 2x2 cm²; > 10⁶ part./cm²/s 3 date taking campaigns (2014–16) \Rightarrow state-of-the-art of the technology

- MIMOSA-28 equips numerous devices, e.g.:
 - AIDA BT: 4 millions of pixels per plane (4x4 cm 2 , < 0.1% X $_0$)
 - BT part of LNF permanent infrastructure (450 MeV e⁻) •
 - telescope for hadrontherapy (GSI), etc. •
 - demonstrator for inner tracker upgrade of BES-3 expt. at BEPC/IHEP

Achievement: 2 sensors for ALICE-ITS (LHC)

- Objective: 1st pixellated inner tracker (> 10 m^2 sensitive area, 25,000 CPS)
- More demanding requirements than for STAR-PXL (MIMOSA-28)
 - \Rightarrow evolution toward more advanced technology: TowerJazz 0.18 μm
- 2 approaches: MISTRAL: extension of MIMOSA-28 (STAR-PXL) validated & robust
 - ALPIDE: extrapolation from hybrid pixels higher perfo. but less robust & understood

	σ_{sp}	t _{r.o.}	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3{\cdot}10^{12}~{ m n}_{eq}/{ m cm}^2$	30-35°C	160 mW/cm 2	0.15 m 2
ITS-in	\lesssim 5 μm	\lesssim 30 μs	2.7 MRad	1.7 \cdot 10 13 n $_{eq}$ /cm 2	30°C	$<$ 300 mW/cm 2	$0.17~\mathrm{m}^2$
ITS-out	\lesssim 10 μm	\lesssim 30 μs	15 kRad	4·10 11 n $_{eq}$ /cm 2	$30^{\circ}C$	$<$ 100 mW/cm 2	\sim 10 ${ m m}^2$

Towards the ILC via Spin-Off Appications

Achievement: Spin-Off Activities

- Several sensors provided for hadrontherapy: imaging, dosimetry, etc.
- Reconstruction of Bragg peak
 - National Cancer related research program: INCA
 - Telescope composed of MIMOSA-26 sensors (50 μm thin)
 - Precise reconstruction of interaction point of ¹²C ions in PMMA and indication of Bragg peak position
- Identification of fragments from 12 C interaction
 - Experience FIRST (GSI)
 - 12 C (80 MeV/N) beam on C $_2$ H $_4$ target
 - Vertex detector using MIMOSA-26 sensors (50 μm thin)
 - Evidence for ability to derive electric charge of fragments from impact cluster size

Present Main Project: CBM-MVD

- Objective: Sensor equipping Micro-Vertex Detector (MVD) of heavy-ion CBM expt at FAIR/GSI
 - 4 double-sided stations equipped with 50 μm thin CPS, operated in vacuum at T $_{op} \sim$ -40 $^{\circ}$ C
 - MIMOSIS sensor: asynchronous read-out architecture derived from ALPIDE sensor (ALICE-ITS)
- Sensor target performances:
 - Spatial & Time resolutions \lesssim 5 μm & 5 μs
 - Radiation tolerance $\gtrsim \,$ 3 MRad \oplus 3 $\cdot 10^{13}$ n $_{eq}$ /cm 2
 - Power: 200-350 mW/cm² (depending on distance to target)
 - Hit/Data rate capability: 1.5-7.10⁵/mm²/s \Rightarrow 1.6 Gbits/cm²/s
- Development plan:
 - MPW run in May 2017
 - Engineering Runs in 2018, 2019 and 2020

DC coupling

AC coupling

Improving Speed and Radiation Tolerance

O(10 2) μs

How to improve speed & radiation tolerance while preserving 3-5 μm precision & < 0.1% X_0 ?

O(10) μs

O(1) μs

EUDET/STAR

2010/14

 $\xrightarrow{\hspace{1cm}}$

ALICE/CBM 2015/2019

 \rightarrow

?X?/ILC ≳ 2020

Main Long Term Project: ILC Vertex Detector

- VERTEX DETECTOR CONCEPT :
 - * Cylindrical geometry based on 3 concentric 2-sided layers
 - * Layers equipped with 3 different CMOS Pixel Sensors (CPS)
- PIXEL SENSOR DEVELOPMENT:
 - * Exploit CPS potential & IPHC expertise
 - * R&D performed in synergy with other applications
 - \rightarrow EUDET-BT, STAR, ALICE, CBM, ...
 - * CPS \equiv unique technology being simultaneously granular, thin, integrating full FEE, industrial & cheap
 - * Address trade-off btw spatial resolution & read-out speed
- DOUBLE-SIDED LADDER DEVELOPMENT:
 - $_{*}$ Develop concept of 2-sided ladder using 50 μm thin CPS
 - Develop concept of mini-vectors providing high spatial resolution & time stamping
 - * Address the issue of high precision alignment& power cycling in high magnetic field (ILC)

BEAST-II: Application of Ultra-Light Double-Sided Ladders

- Double-sided ladders used for beam related background studies
 - 2 PLUME ladders (2x6 MIMOSA-26 sensors) to be installed near the IP
 - Exploit pairs of impacts to reconstruct mini-vectors indicating directions (and origin) of traversing particles
 - Data taking in 2018

BEAST >

- Feedback for ILC:
 - Important opportunity to assess added-value of 2-sided ladders
 - Perspectives: fast sensors mounted on one (or two) ladder side(s) featuring reduced material budget

CONCLUSION

• **PICSEL** team profile:

- experience in CPS development with physics results coroborating their added value
- main activity oriented toward subatomic physics devices
 - with constant interest for spin-offs (X-Ray & β detection)
- CPS potential still not fully exploited \Rightarrow R&D carries on
- CPS (& double-sided ladders) for an ILC vertex detector is the prominent long term goal (what if ILC does not converge ?)
- CBM-MVD = important step in direction of ILC (CEPC may be one too): \lesssim 5 μm / 5 μs

• Framework of Sol-CMOS partnership:

- Applications: ILC vertexing & tracking devices, X-Ray detectors, others ?
- Complementarity: sensor (read-out) design (translation ?), performance assessment/comparison, access to application domains ?
- R&D main objective: (low power) fast read-out for small/precise pixels ?
- Developments accompanied by simulations ?
- Open to other partners ?
- Connection to BELLE-II ?

Measured Spatial Resolution

- Several parametres govern the spatial resolution :
 - pixel pitch
 - epitaxial layer thickness and resistivity
 - sensing node geometry & electrical properties
 - signal encoding resolution
 - $\Rightarrow \sigma_{sp}$ fct of pitch \oplus SNR \oplus charge sharing \oplus ADCu, ...
- Impact of pixel pitch (analog output) :

 $\sigma_{f sp} \sim {f 1} \; \mu{f m}$ (10 μm pitch) $ightarrow \, \lesssim {f 3} \; \mu{f m}$ (40 μm pitch)

Impact of charge encoding resolution :

Nb of bits	12	3-4	1
Data	measured	reprocessed	measured
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm

pitch (microns)

Radiation Tolerance

Speed vs Pixel Dimensions

- Pixel dimensions govern the spatial resolution at the expense of read-out speed
 - \Rightarrow Trade-off to be found specific to each application

Pixel pitch	$<$ 10 μm	\gtrsim 15 μm	$>$ 20 μm	\gtrsim 25 μm	\lesssim 50 μm
Nb(T)	2–3	15	\gtrsim 50	\gtrsim 200	HV: few 10 2
σ_{sp} [μm]	\lesssim 1x1	< 3x3	< 5x5	\lesssim 5x5	\gtrsim 10x10
Δt [μs] 10 ³		\lesssim 30/200	\gtrsim 10-15	< 10	10^{-2}
Pre-Amp+Filter	Out	In-Pix	In-Pix	In-Pix	In-Pix
Discrimination	Out	Out	In-Pix	In-Pix	In-Pix
Sparsification	Out	Out	Out	In-Pix	In-Pix
Ex.(chip)	Mimosa-18	ULTIMATE/MISTRAL	ASTRAL	ALPIDE	HV-CMOS
Depleted	No	No	No	Yes	YES
CMOS Process	AMS-0.35	AMS-0.35/Tower-0.18	Tower-0.18	Tower-0.18	AMS-0.35/0.18
Ex.(appli.)	Beam Tele.	STAR-PXL/ALICE-ITS	ALICE-ITS	ALICE-ITS	LHC ?