

Integration-type SOI pixel sensor

Toshinobu Miyoshi (High Energy Accelerator Research Organization, KEK)

> May 9, 2017 IPHC, Strasbourg, France

Outline

Development history

Developed SOI sensors

- -DIPIX (column ADC study)
- FPIX(1,1b, 2,3)
- INTPIXh2 (radiation tolerance study)
- INTPIX4-8

DAQ system (current and future plan)

Summary & Future prospects

Features of integration-type SOI pixel sensors

Simple pixel circuit Small pixel size

- w./o. storage capacitor > 8um
- w. storage capacitor > 12um

Good for basic evaluation tests

Development history (1)

KEK pixel sensors (red:integration) Integration-type, counting-type, binary, etc.

Buried-P Well process (2009-)

Shield the back gate effect (~2V: visible light detection \rightarrow ~100 V: X-ray detection)

20.4mm x 20.4mm

OKI	ΟΚΙ	OKI	Riken50 (R-1)	
	INTPIX3B (K-3)			
		KEKTEG	Piotr (k-4)	Column ADC (K-5)
	INTPIX4 (KEK-2)	4TEG	APD (K-6)	Fujita (K-7)
			FNAL (F-1)	Kyodai (Y-1)
			Hawaii (H-1)	Riken (R-2)

¹³ analog out

INTPIX4

Pixel Layout

- <u>Pixel size 17 x 17 μm</u>
 Circuit is based on PMOS
- Single BPW inside

Development history (1)

KEK pixel sensors (red:integration) Integration-type, counting-type, binary, etc.

Input signal 720-1780mV(~1V) : ADC 94-1008(10bit).

Various Implantation Options in Sensor part and Double SOI

p/n various doping density

Shield the back-gate effect / optimize charge collection efficiency Nested-well process

N-type Double SOI pixel sensor (INTPIXh2)

Response to infrared laser of 1064 nm wavelength and 10 ns pulse duration.

The average ADC count as function of the square root of the bias voltage for sensor. →Obtained similar linearity and sensitivity to pre-irradiation with VSOI2=-10 V.

S. Honda et al., TIPP2014, 2-6 June 2014, Amsterdam

Pre-irrad 204 600 Row Adl V_{SOI2}=0.0V 202 500 200 198 400 196 194 300 192 190 200 188 100 186 184 166 168 170 172 174 176 178 180 182 184 186 Column Adr The pixel images after 100 kGy (10Mrad) could not obtain but recovered with VSOI2=-10V. 6000 preirrad 5000 100kGy VSOI2=-10V 4000 3000 2000 V_RST(preirrad)=550mV 1000 V_RST(100kGy)=950mV INT TIME=120ns ኅ 2 18 6 16 20 8 10 14 VSensor Bias (VV)

Charge (ADC count)

Sensor test

Development history (2)

SOI Pixel sensor (8 µm pixel)

fpixb (MX1711): pixel size 8 um x 512 x 192 pixels

No storage capacitor Not good at synchronous measurement Good at asynchronous measurement

Spatial resolution study

Experimental Setup

500 mm

X-ray generator (Rigaku) Target – Cr/Cu/Mo Normal focus 1 mm

- Test chart (Kyokko) Pb 30 μm < 20 LP/mm

Micro chart (JIMA) Au 1 μm 3-50 μm slits

- X-ray Imaging demonstration

SOI sensors

Spatial resolution X-ray

X-ray test chart + X-ray tube

16µm zoom-in

JIMA X-ray test chart image

2015/8/13

INTPIX4-8

	INTPIX4	INTPIX5	INTPIX6	INTPIX7	INTPIX8
Process	MX1350	MX1501	MX1594	MX1655	MX1786
Pixel size	17 um sq	12 um sq	12 um sq	12 um sq	16 um sq
# of pix.	512 x 832 (425,984	896 x 1408	896 x 1408	1408 x	640 x 1024 (655, 360)
	pix)	(1, 261, 568)	(1, 261, 568)	1408 (1, 982, 464)	
Chip size	10.2 x 15.4mm2	12.2 x 18.4 mm2	12.2 x 18.4 mm2	18.4 x 18.4 mm2	12.2 x 18.4 mm2
Sensitive area	8.7 x 14.1mm2	10.7 x 16.9 mm2	10.7 x 16.9 mm2	16.9 x 16.9 mm2	10.9 x 17.4
Global Shutter	yes	yes	yes	yes	yes
Rolling Shutter	no	yes	yes	yes	yes
Frontend Amp	PMOS Source Follower	PMOS Source Follower	PMOS Source Follower	PMOS Source Follower	PMOS Charge Amp
CDS	In Pixel CDS	Column CDS	Column CDS	In Pixel CDS	In Pixel CDS
Sensor gain	~14uV/e-	~2.5/15 uV/e-	~2.5/15 uV/e-	~16 uV/e-	~12/18/36/80 uV/e-
Gain Sw	no	yes(1bit)	yes(1bit)	no	yes(2bit)
# of output	1or13	1or11	1or11	1or11	1or16
Wafer type	n-type	n-type	INTPIX6n(n, n-DSOI)	N,p,p–DSOI	N,p,p-dsoi
			INTPIX6p(p)		

Integration-type sensor - INTPIX8 (FY14-1)

Double SOI (Cz-p) 300 μm Single SOI (FZ-p) 500 μm

Low gain mode G0,G1 off High gain mode G0,G1 on

Pixel layout 16 µm x 16 µm

Integration-type p-type SSOI/DSOI sensor - INTPIX8 (FY14-1)

Top view

Side view

Am-241 spectra by p-type SSOI/DSOI INTPIX8

Am-241 spectrum by p-type SSOI/DSOI INTPIX8

Fe-55 spectra with high gain mode

Tinteg.=0.5ms,Vsensor=-200V, -50deg.C

Demonstration of X-ray imaging

Preliminary Confidential

X

INTPIX8 Low gain mode 40 keV Monochro. X-ray 1ms x 500 frame KEK PF-AR NE-7A Beam size 40mm(H) x 4mm(V)

A well-known cable

Sensor test and DAQ system

~230mm

DAQ system in the future

SEABAS3 with Kintex-7 & DDR3 memory & 10 Gbps? (~2018?)

Summary & Future prospect

Integration-type pixel sensor with single/double SOI wafer w./o. storage capacitor --- FPIX series: pixel size > 8 um w. storage capacitor --- INTPIX series and more: pixel size > 12um New counting type pixel sensor with double SOI wafer will be developed

Future prospect

Small pixel less than 8um? \rightarrow active marge, 3D chip...

Optimization/modification of storage capacitor 1.5fF/um2 \rightarrow larger capacitance per um2

Readout board upgrade (go to 10 Gbps?)

Integration-type pixel sensor with column ADC (DIPIX2?)

High resistivity p-type double SOI integration-type pixel sensor (INTPIX8)

supplement

Transistor test

FET threshold shifts and compensation in DSOI

IV curves of an NMOS (2MGy irradiated) with Changing VDSOI2

Residual of Vth shifts of various FET types (FETs grouped into 3 in VSOI2 setting)

S. Honda et al., "Total Ionization Damage Compensations in Double Silicon-on-Insulator Pixel Sensors", PoS (TIPP2014)039.

K. Hara et al., "Initial Characteristics and Radiation Damage Compensation of Double Silicon-on-Insulator Pixel Device,", PoS(VERTEX2014)033.

An example of Sensor layout

HV ring (p+)

Maximum (?) breakdown voltages

Operation voltage is typically less than 400V

After high voltage more than 900V, the sensor got non-recoverable damage. Therefore we don't repeat this study yet.

I-V curve vs depletion thickness

NFZ-INTPIX8 5 kOhm cm Sensor thickness 500 um Curve slope changes at overdepletion point

Depletion thickness(um)

P-type DSOI INTPIX8 1kOhm cm Sensor thickness 300 um

Breakdown voltage ~ -450V Not fully depleted

