

> Physics

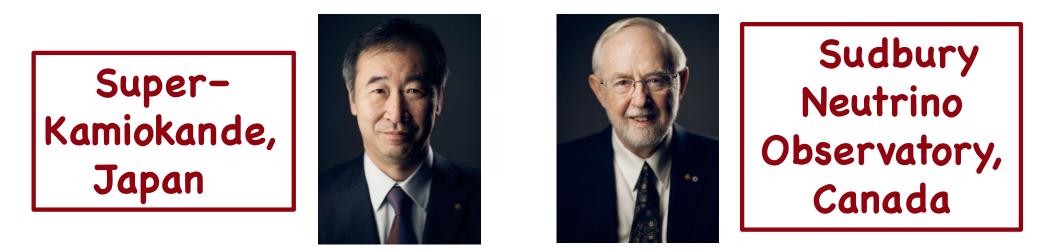
Experimental Findings

Theoretical Ideas

The Neutrino Breakthrough (1998 – ...)

Neutrinos have nonzero masses!

The 2015 Nobel Prize in Physics went to **Takaaki Kajita** and **Art McDonald** for the experiments that proved this.



The 2016 Breakthrough Prize in Fundamental Physics went to these two experiments and four subsequent ones.

The Origin of Neutrino Mass

The fundamental constituents of matter are the *quarks*, the *charged leptons*, and the *neutrinos*.

The discovery and study of the *Higgs boson* at CERN's Large Hadron Collider has provided strong evidence that the *quarks* and *charged leptons* derive their masses from an interaction with the *Higgs field*.

Most theorists strongly suspect that the origin of the neutrino masses is different from the origin of the quark and charged lepton masses.

The Standard-Model *Higgs field* is probably still involved, but there is probably something more something way outside the Standard Model —

Majorana masses.

More later

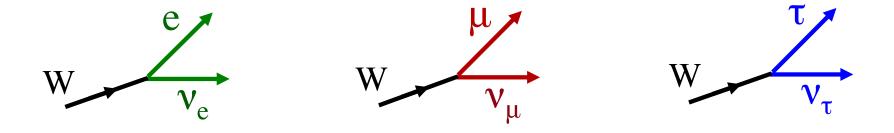
The discovery of neutrino mass comes from the observation of *neutrino flavor change (neutrino oscillation)*.

The Physics of Neutrino Oscillation

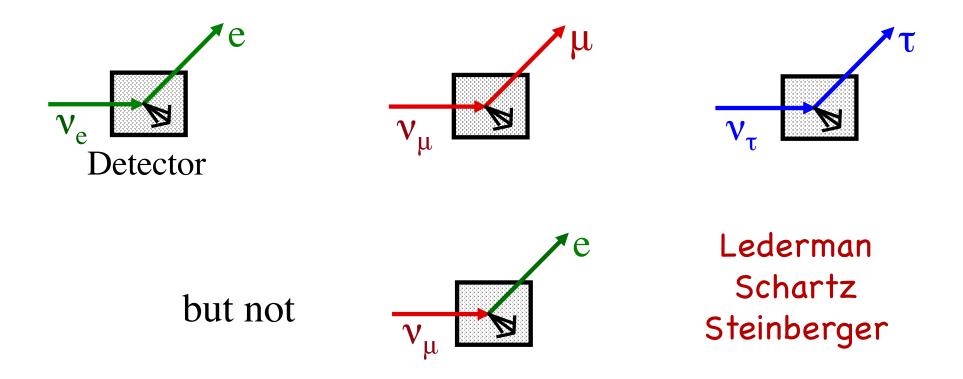
— Preliminaries

The Neutrino Flavors

We *define* the known neutrinos of specific flavor, v_e, v_μ, v_τ , by W boson decays:

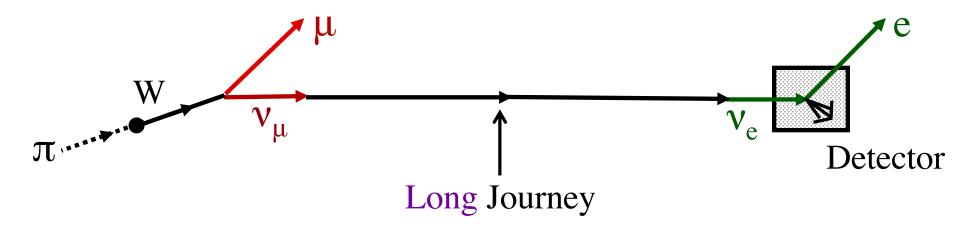


As far as we know, when a neutrino of given flavor interacts and turns into a charged lepton, that charged lepton will always be of the same flavor as the neutrino.



The weak interaction couples the neutrino of a given flavor only to the charged lepton of the same flavor.

Neutrino Flavor Change ("Oscillation") If neutrinos have masses, and leptons mix, we can have —



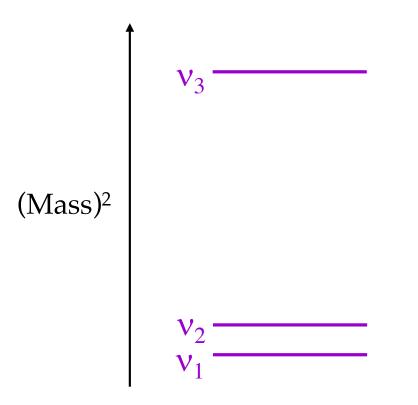
Give a v time to change character, and you can have

for example: $v_{\mu} \longrightarrow v_{e}$

The last 19 years have brought us compelling evidence that such flavor changes actually occur.

Flavor Change Requires Neutrino Masses

There must be some spectrum of neutrino mass eigenstates v_i :



Mass $(v_i) \equiv m_i$

Flavor Change Requires *Leptonic Mixing*

The neutrinos $v_{e,\mu,\tau}$ of definite flavor $(W \rightarrow e v_e \text{ or } \mu v_{\mu} \text{ or } \tau v_{\tau})$ must be superpositions of the mass eigenstates:

$$\begin{array}{c}
|\nu_{\alpha}\rangle = \sum_{i} U^{*}_{\alpha i} |\nu_{i}\rangle \\
\text{Neutrino of flavor} \\
\alpha = e, \mu, \text{ or } \tau
\end{array}$$

$$\begin{array}{c}
U^{*}_{\alpha i} |\nu_{i}\rangle \\
\text{Neutrino of definite mass } m_{i} \\
\text{"PMNS" Leptonic Mixing Matrix}
\end{array}$$

Notation: ℓ denotes a charged lepton. $\ell_e \equiv e, \ell_{\mu} \equiv \mu, \ell_{\tau} \equiv \tau$.

Since the only charged lepton v_{α} couples to is ℓ_{α} , the 3 v_{α} must be orthogonal.

To make up 3 orthogonal v_{α} , we must have at least 3 v_i . Unless some v_i masses are degenerate, all v_i will be orthogonal.

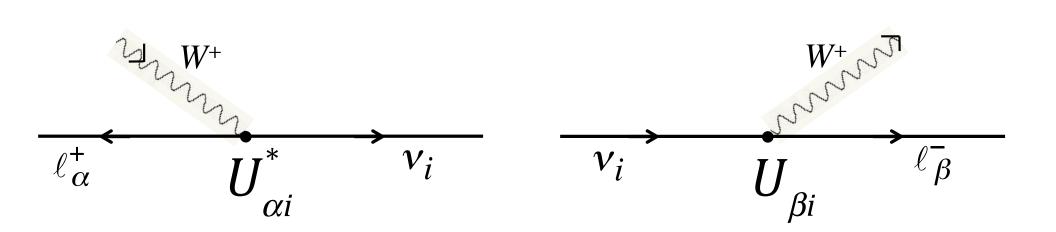
Then — $\delta_{\alpha\beta} = \left\langle v_{\alpha} \middle| v_{\beta} \right\rangle = \left\langle \sum_{i} U_{\alpha i}^{*} v_{i} \middle| \sum_{j} U_{\beta j}^{*} v_{j} \right\rangle$ This says that U is unitary, but note the unitary U may not be 3 x 3. *Leptonic mixing* is easily incorporated into the Standard Model (SM) description of the ℓvW interaction.

For this interaction, we then have —

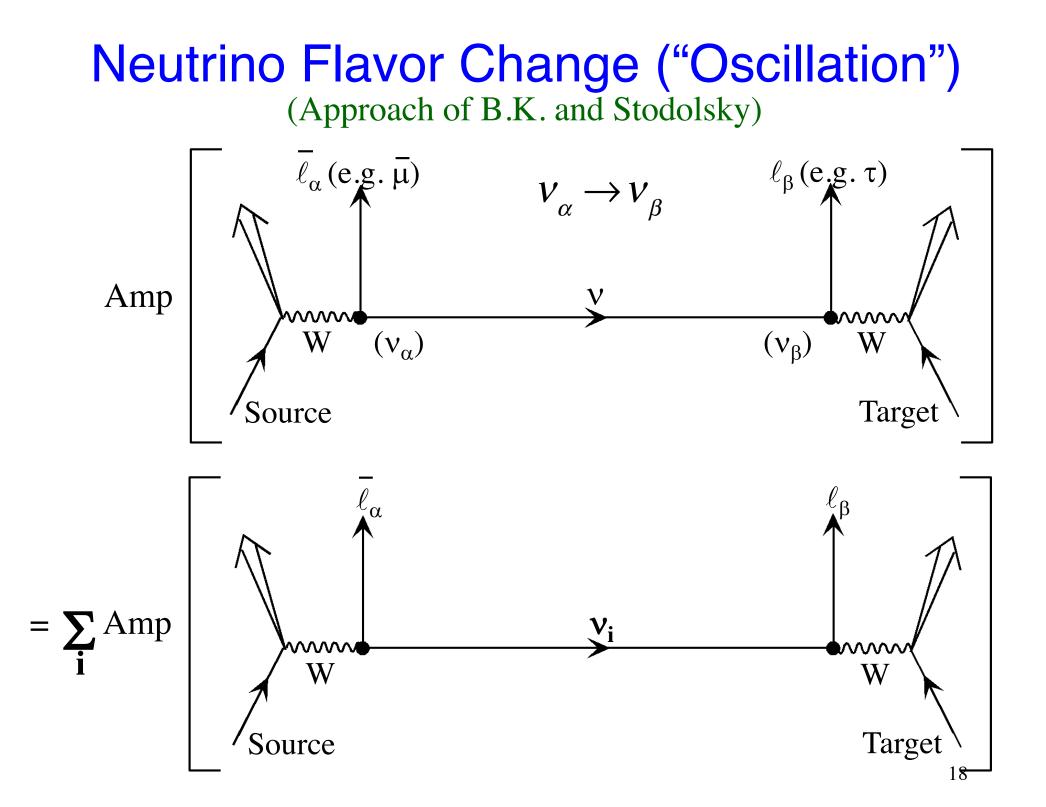
Semi-weak coupling $\mathcal{L}_{SM} = -\frac{g}{\sqrt{2}} \sum_{\alpha=e,\mu,\tau} \left(\overline{\ell}_{L\alpha} \gamma^{\lambda} v_{L\alpha} W_{\lambda}^{-} + \overline{v}_{L\alpha} \gamma^{\lambda} \ell_{L\alpha} W_{\lambda}^{+} \right)$ $= -\frac{g}{\sqrt{2}} \sum_{\substack{\alpha=e,\mu,\tau \\ i=1,2,3}} \left(\overline{\ell}_{L\alpha} \gamma^{\lambda} U_{\alpha i} v_{L i} W_{\lambda}^{-} + \overline{v}_{L i} \gamma^{\lambda} U_{\alpha i}^{*} \ell_{L\alpha} W_{\lambda}^{+} \right)$ Taking mixing into account

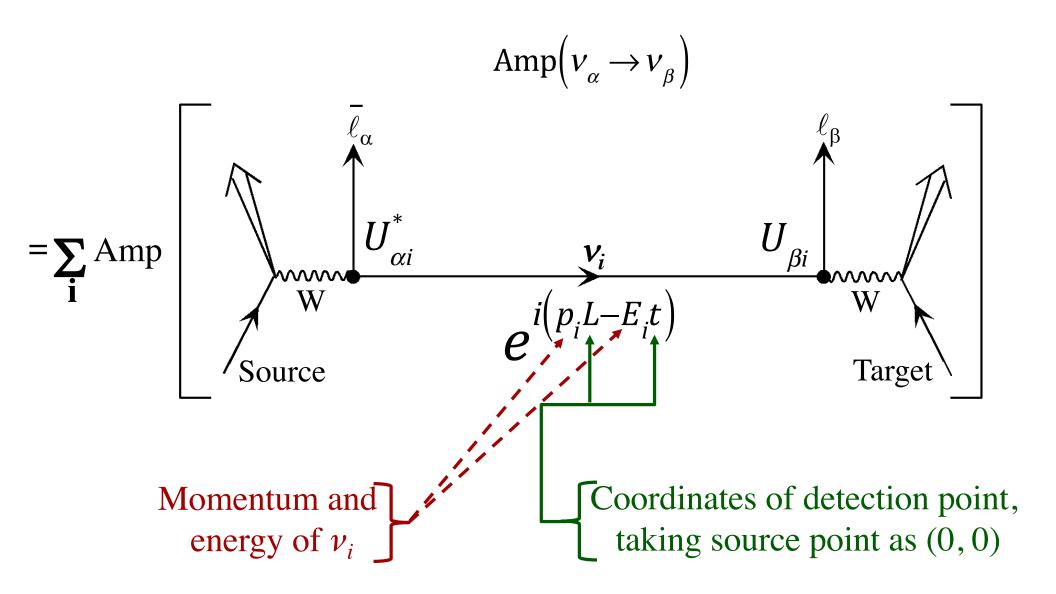
The SM interaction conserves the Lepton Number L, defined by $L(v) = L(\ell^{-}) = -L(\overline{v}) = -L(\ell^{+}) = 1$.

Mixing Matrix Elements At the Vertices



How Neutrino Oscillation Works





Neutrino sources are ~ constant in time.

Averaged over time, the

$$e^{-iE_{1}t} - e^{-iE_{2}t} \quad \text{interference}$$

is
$$\left\langle e^{-i(E_{1}-E_{2})t} \right\rangle_{t} = 0 \quad \text{unless } E_{2} = E_{1}.$$

Only neutrino mass eigenstates with a common energy E are coherent.

(Stodolsky)

For each mass eigenstate ν_i ,

$$p_i = \sqrt{E^2 - m_i^2} \cong E - \frac{m_i^2}{2E}$$

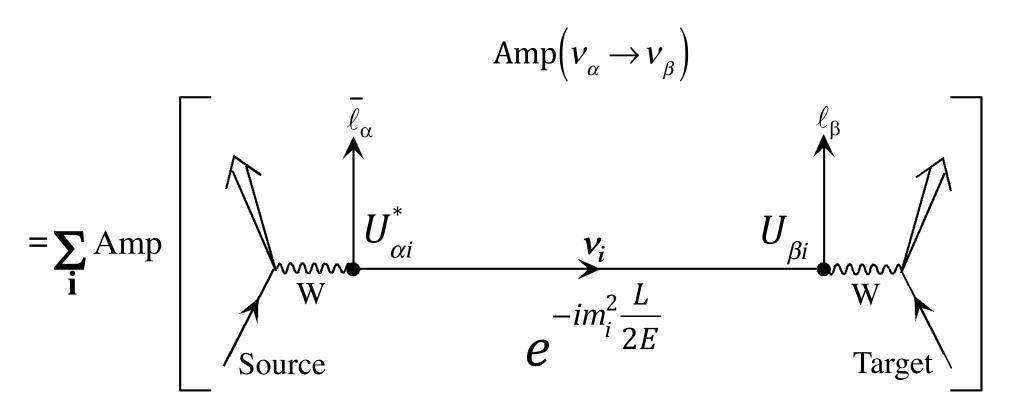
٠

Then the plane-wave factor $e^{i(p_i L - E_i t)}$ is —

$$e^{i\left(p_{i}L-E_{i}t\right)} \cong e^{i\left\{\left(E-\frac{m_{i}^{2}}{2E}\right)L-Et\right\}} = e^{iE\left(L-t\right)}e^{-im_{i}^{2}\frac{L}{2E}}$$

Irrelevant overall phase factor

Then —



$$=\sum_{i}U_{\alpha i}^{*}e^{-im_{i}^{2}\frac{L}{2E}}U_{\beta i}$$

22

Probability of Neutrino Oscillation in Vacuum

$$P(v_{\alpha} \rightarrow v_{\beta}) = \left| \operatorname{Amp}(v_{\alpha} \rightarrow v_{\beta}) \right|^{2} =$$

$$= \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin^{2}\left(\Delta m_{i j}^{2} \frac{L}{4E}\right)$$

$$+ 2 \sum_{i>j} \operatorname{Im}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin\left(\Delta m_{i j}^{2} \frac{L}{2E}\right)$$

where
$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$
.

Neutrino flavor change implies neutrino mass!

Neutrinos vs. Antineutrinos $\left[\overline{v}_{\alpha}(RH) \rightarrow \overline{v}_{\beta}(RH)\right] = CP\left[v_{\alpha}(LH) \rightarrow v_{\beta}(LH)\right]$

A difference between the probabilities of these two oscillations in vacuum would be a leptonic violation of CP invariance.

Assuming CPT invariance —

$$P\left[\overline{v}_{\alpha}(\mathrm{RH}) \rightarrow \overline{v}_{\beta}(\mathrm{RH})\right] = P\left[v_{\beta}(\mathrm{LH}) \rightarrow v_{\alpha}(\mathrm{LH})\right]$$

$$P\left(\overline{V}_{\alpha} \rightarrow \overline{V}_{\beta}\right) =$$

$$= \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}\left(\Delta m_{i j}^{2}\frac{L}{4E}\right)$$

$$\stackrel{+}{\underset{(\pm)}{=}} 2\sum_{i>j} \operatorname{Im}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin\left(\Delta m_{i j}^{2}\frac{L}{2E}\right)$$

In neutrino oscillation, CP non-invariance comes from phases in the leptonic mixing matrix U.

Note: Including
$$\hbar$$
 and c , $\Delta m_{ij}^2 \frac{L}{4E} = 1.27 \Delta m_{ij}^2 (\text{eV}^2) \frac{L(\text{km})}{E(\text{GeV})}$

Must we assume all mass eigenstates have the same *E*?

No, we can take entanglement into account, and use momentum-energy conservation.

The oscillation probabilities are still the same.

(B.K.)

When Only Two Flavors and Two Mass Eigenstates Matter

 $V_{2} \xrightarrow{\Delta m^{2}} U = \begin{pmatrix} U_{\alpha 1} & U_{\alpha 2} \\ U_{\beta 1} & U_{\beta 2} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} e^{i\xi} & 0 \\ 0 & 1 \end{pmatrix}$ $V_{1} \xrightarrow{\Delta m^{2}} Mixing angle$

For
$$\beta \neq \alpha$$
, $P\left(\overline{v}_{\alpha}^{\prime} \leftrightarrow \overline{v}_{\beta}^{\prime}\right) = \sin^{2} 2\theta \sin^{2} \left(\Delta m^{2} \frac{L}{4E}\right)$

For no flavor change,

$$P\left(\overline{v}_{\alpha}^{\prime} \rightarrow \overline{v}_{\alpha}^{\prime}\right) = 1 - \sin^{2} 2\theta \sin^{2} \left(\Delta m^{2} \frac{L}{4E}\right)$$

For Some Applications, the Plane Wave Treatment of Neutrino Oscillation Is Wrong

The probability of neutrino oscillation depends on the distance *L* between the neutrino source and the point of detection.

To determine L, we must know where the neutrino started, and where it was detected.

A plane wave has a definite, precise momentum p.

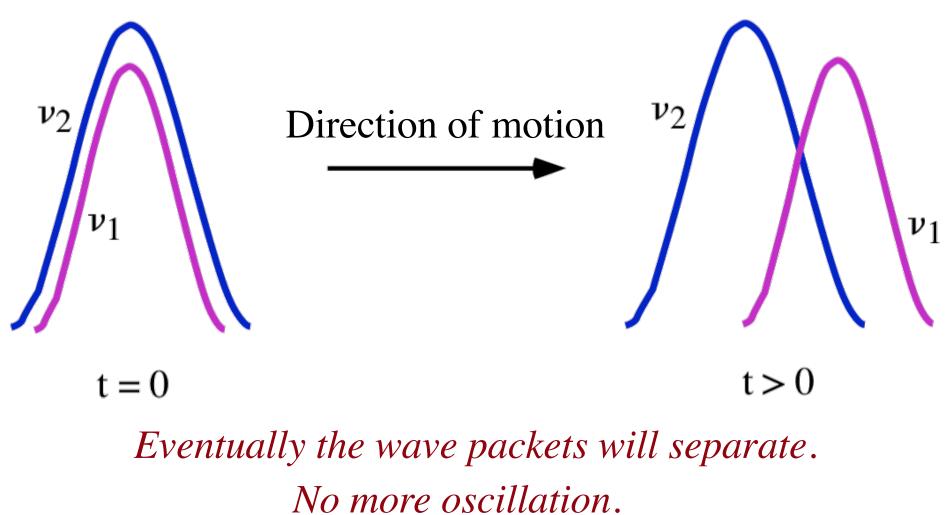
Heisenberg: $\Delta x \Delta p \ge \hbar/2$.

If we know precisely the momentum with which a neutrino was born, we know nothing about <u>where</u> it was born.

The Wave Packet Picture

Each mass eigenstate is described by a wave packet.

Suppose v_2 is heavier than v_1 .



How soon do the wave packets separate??

For accelerator neutrinos with energy E = 1 GeV, and a wave packet width equal to the length of the pion decay region where the neutrinos are born, the bigger $\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$ leads to wave packet separation in

10^{20} km.

This separation may be safely ignored!

However, for supernova neutrinos from SN 1987A, with energy $E \sim 10$ MeV, and a wave packet width equal to an *estimated* inter-nucleon distance within the star, separation occurs in

10^{3} km.

Supernova neutrinos are no longer oscillating when they reach us.

Different mass eigenstates <u>produced at the</u> <u>same instant</u> arrive at separate times, depending on their individual speeds.

The arrival time difference for the SN 1987 A neutrinos could have been ~ 10⁻⁴ sec.

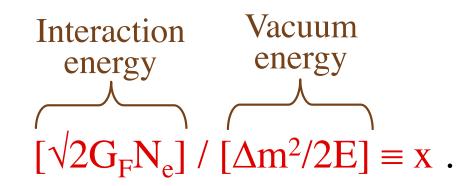
Neutrino Flavor Change In Matter

Coherent forward scattering via this W-exchange interaction leads to an extra interaction potential energy —

 $V_{W} = \begin{cases} +\sqrt{2}G_{F}N_{e}, & v_{e} \\ -\sqrt{2}G_{F}N_{e}, & \overline{v_{e}} \end{cases}$ Fermi constant ______ Electron density

This raises the effective mass of v_e , and lowers that of $\overline{v_e}$.

The fractional importance of matter effects on an oscillation involving a vacuum splitting Δm^2 is —



The matter effect —

- Grows with neutrino energy E

- Is sensitive to $Sign(\Delta m^2)$

— Reverses when ν is replaced by $\overline{\nu}$

This last is a "fake CP violation" that has to be taken into account in searches for genuine CP violation.