Développement d'un algorithme de suivi de particules pour l'ILC.

Outils de surveillance en ligne de qualité de données

Rémi ÉTÉ Directeur de thèse : Imad LAKTINEH

Institut de Physique Nucléaire de Lyon

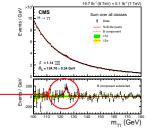
8 mars 2017

Sommaire

- Contexte théorique et expérimental
 - Le modèle standard
 - Le collisionneur linéaire international
 - Le calorimètre hadronique semi-digital
 - Performances du SDHCAL
- Logiciel de surveillance de données
 - Introduction
 - Logiciel DQM4HEP
 - Surveillance de la prise de données du SDHCAL
- ArborPFA pour le prototype du SDHCAL
 - Introduction aux algorithmes de suivi de particules
 - Principe d'ArborPFA
 - Algorithmes et résultats
- ArborPFA pour le détecteur ILD
 - Les algorithmes
 - Calibration en énergie dans l'ILD
 - Les performances physiques
- Conclusion et perspectives

- Contexte théorique et expérimental
 - Le modèle standard
 - Le collisionneur linéaire international
 - Le calorimètre hadronique semi-digital
 - Performances du SDHCAL
- Logiciel de surveillance de données
 - Introduction
 - Logiciel DQM4HEP
 - Surveillance de la prise de données du SDHCAL
- ArborPFA pour le prototype du SDHCAL
 - Introduction aux algorithmes de suivi de particules
 - Principe d'ArborPFA
 - Algorithmes et résultats
- ArborPFA pour le détecteur ILD
 - Les algorithmes
 - Calibration en énergie dans l'ILD
 - Les performances physiques
- Conclusion et perspectives

Le modèle standard


Le modèle standard

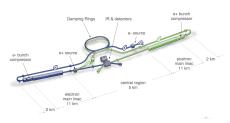
Théorie décrivant 3 des 4 interactions fondamentales :

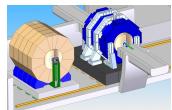
- L'interaction électromagnétique
- L'interaction faible
- L'interaction forte

Théorie de jauge $SU(3) \otimes SU_L(2) \otimes U(1)$

The CMS collaboration

Eur. Phys. J. C (2014) 74: 3076


Des familles de particules


- 12 fermions
- 4 bosons de jauge
- 1 boson de Higgs

Modèle incomplet

- Pas de gravitation
- Masse/oscillation neutrinos
- Asymétrie matière/anti-matière

Le collisionneur linéaire international - ILC

Caractéristiques du collisionneur

Particules : e⁺ e⁻

Énergie: 250-500 GeV (1 TeV?)

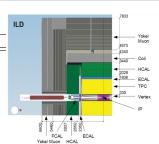
• Luminosité : $\sim 1 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

• Fréquence de collisions : 5 Hz

Nb de particules par croisement : 2 · 10¹⁰

Faisceaux polarisés : e⁻ (80%) - e⁺ (30%)

Deux détecteurs au points de collision : ILD et SiD

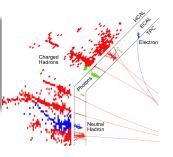

ILC Technical Design Report, Vol.1 Executive Summary arXiv:1306.6327

Énergie	Réaction	Mesure physique
91 <i>GeV</i>	$e^+e^-\rightarrowZ$	Mesure de précision électrofaible
160 <i>GeV</i>	$e^+e^- ightarrow WW$	Masse du boson W
250 GeV	$e^+e^- ightarrow \mathit{Zh}$	Couplage du Higgs
350 - 400 <i>GeV</i>	$e^+e^- ightarrow tar{t}$	Couplages et masse du quark top
	$e^+e^- ightarrow WW$	Couplages du W
	$e^+e^- ightarrow var{ extsf{v}} h$	Couplages du Higgs
500 <i>GeV</i>	$e^+e^- ightarrow far{f}$	Recherche d'un boson Z'
	${\sf e}^+{\sf e}^- ightarrow t ar t h$	Couplages du Higgs au quark top
	$e^+e^- o extit{Z}$ hh	Auto-couplage du Higgs
	$\mathrm{e^+e^-} ightarrow ilde{\chi} ilde{\chi}$	Recherche de supersymétrie
	$e^+e^- ightarrow AH, H^+H^-$	Recherche de nouveaux états du Higgs
700 – 1000 <i>GeV</i>	$e^+e^- ightarrow uar{ u}$ hh	Auto-couplage du Higgs
	$e^+e^- ightarrow u ar{ u} VV$	Secteur du Higgs composite
	$e^+e^- ightarrow uar{ u}tar{t}$	Secteur du Higgs composite et quark top
	$e^+e^- ightarrow \widetilde{t}\widetilde{t}^*$	Recherche de supersymétrie

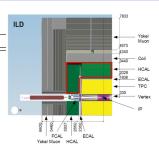
ILC Technical Design Report, Vol.2: Physics

arXiv:1306.6352

Détecteur	Mesure	Performance
Trajectographe	1 / δρ	10 ⁻⁵ (GeV/c) ⁻¹
Tracking + Calo (jet)	<u>ΔE</u>	3-4 %
	Résolution spatiale	< 3 μm
Vertex	Budget matière	< 0.15 % X ₀ /layer
	Rayon premier plan	≥ 1.6 cm



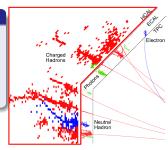
Des calorimètres pour le suivi de particules


- ECAL (résolution \simeq 12%/ \sqrt{E}) :
 - SiWECal: 5 mm x 5 mm
 - ScWECal: 5 mm x 45 mm + SSA
- HCAL (résolution $\simeq 60\%/\sqrt{E}$) :
 - AHCAL: 3 cm x 3 cm
 - SDHCAL: 1 cm x 1 cm

ILC Technical Design Report, Vol.4 Detectors

arXiv:1306.6329

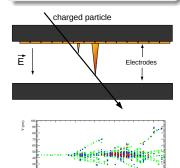
Détecteur	Mesure	Performance
Trajectographe	1 / δρ	10 ⁻⁵ (GeV/c) ⁻¹
Tracking + Calo (jet)	<u>ΔE</u>	3-4 %
	Résolution spatiale	< 3 μm
Vertex	Budget matière	< 0.15 % X ₀ /layer
	Rayon premier plan	≥ 1.6 cm



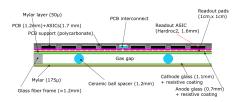
Des calorimètres pour le suivi de particules

- ECAL (résolution \simeq 12%/ \sqrt{E}) :
 - SiWECal: 5 mm x 5 mm
 - ScWECal: 5 mm x 45 mm + SSA
- HCAL (résolution $\simeq 60\%/\sqrt{E}$) :
 - AHCAL: 3 cm x 3 cm
 - SDHCAL: 1 cm x 1 cm

ILC Technical Design Report, Vol.4 Detectors

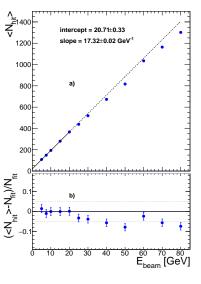

arXiv:1306.6329

Le calorimètre hadronique semi-digital


Semi-Digital Hadron Calorimeter

- Calorimètre à échantillonnage
- 48 plans :
 - Absorbeur en acier
 - Milieu actif: GRPC

Glass Resistive Plate Chamber


- Mélange gazeux : C₂H₂F₄ / CO₂ / SF₆
- Résitivité $\rho = 10^{13} \Omega.cm$
- Segmentation :
 - Transverse: 1 cm x 1 cm
 - Longitudinale : 2.8 cm (abs. + actif)
- ullet Tension dans les chambres \sim 6.9 kV
- Lecture semi-digitale à 3 seuils (1, 2, 3)

The Calice Collaboration

JINST **11** P04001

Contexte théorique et expérimental Performances du SDHCAL

 $\bar{\epsilon} = 0.96 \pm 0.03 \text{ (data)}$ $E = 0.96 \pm 0.02 \text{ (MC)}$ 0.65 Multiplicity

The Calice Collaboration

JINST **11** P04001

Performances du SDHCAL- reconstruction de l'énergie des hadrons

Principales observables du SDHCAL : N_{hit} , N_1 , N_2 , N_3 Reconstruction de l'énergie des hadrons :

→ plusieurs estimateurs possibles!

Formule linéaire

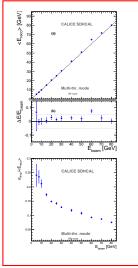
$$E = \alpha \cdot N_1 + \beta \cdot N_2 + \gamma \cdot N_3 \tag{1}$$

avec α , β et γ trois constantes.

- √ Application très simple aux techniques de PFA
- × Mauvaise linéarité à haute énergie

Formule quadratique

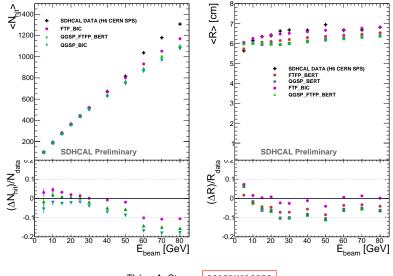
$$E = \alpha(NHit) \cdot N_1 + \beta(NHit) \cdot N_2 + \gamma(NHit) \cdot N_3$$
 (2)


avec:

$$\alpha(NHit) = \alpha_1 + \alpha_2 \cdot NHit + \alpha_3 \cdot NHit^2$$

$$\beta(NHit) = \beta_1 + \beta_2 \cdot NHit + \beta_3 \cdot NHit^2$$
 (4)

$$\gamma(NHit) = \gamma_1 + \gamma_2 \cdot NHit + \gamma_3 \cdot NHit^2$$
 (5)


- √ Bonne linéarité et résolution sur toute la gamme en énergie
 - Application aux techniques de PFA plus complexe

The Calice Collaboration
JINST 11 P04001

(3)

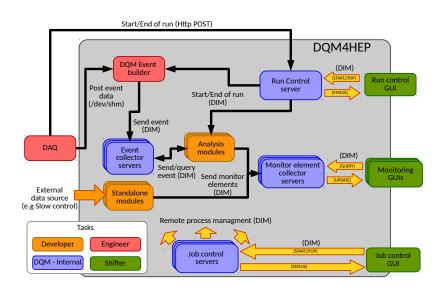
Performances du SDHCAL- quelques désaccords ...

Thèse A. Steen

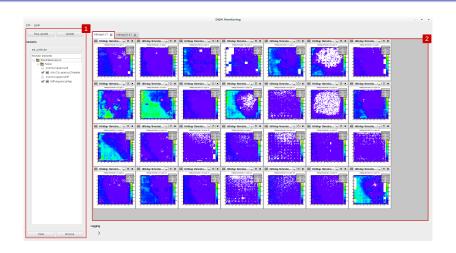
2015LY010230

- Contexte théorique et expérimental
 - Le modèle standard
 - Le collisionneur linéaire international
 - Le calorimètre hadronique semi-digital
 - Performances du SDHCAL
- Logiciel de surveillance de données
 - Introduction
 - Logiciel DQM4HEP
 - Surveillance de la prise de données du SDHCAL
- ArborPFA pour le prototype du SDHCAL
 - Introduction aux algorithmes de suivi de particules
 - Principe d'ArborPFA
 - Algorithmes et résultats
- ArborPFA pour le détecteur ILD
 - Les algorithmes
 - Calibration en énergie dans l'ILD
 - Les performances physiques
- 6 Conclusion et perspectives

Introduction


Les systèmes de DQM

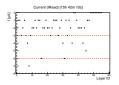
- Présents dans les expériences de physique de hautes énergies (i.e CMSSW ou AMORE)
- Évalue la qualité des données et alerte l'utilisateur d'un état anormal du système de détection
- Principe général :
 - collecte et distribution des données
 - analyse des données
 - Occidente et distribution des histogrammes
 - visualisation des histogrammes
- Principale différence : contenu/format des données


Nouveau logiciel: DQM4HEP

- Généricité : Système de plug-in + abstraction des événements (modèle/format)
- Analyses de données dédiées au DQM
- Interface graphique pour les opérateurs :
 - Gestionnaire graphique des runs
 - @ Gestionnaire graphique de processus à distance
 - Interface graphique de visualisation d'histogrammes

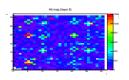
Logiciel DQM4HEP- architecture logicielle

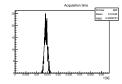
Logiciel de surveillance de données Logiciel DQM4HEP- surveillance par les opérateurs (GUI)



- Client graphique multi-collecteurs : requête, filtrage, sélection d'histogrammes
- Affichage d'histogrammes multi-canvas
- Import/export des histogrammes ⇒ préparation des tests sur faisceau

Surveillance de la prise de données du SDHCAL


Test sur faisceau combiné CALICE SiWEcal-SDHCAL au SPS (CERN) en Juin 2016


Données environnementales : T, P, HV, LV, I

Event display

Analyse des données du SiWEcal

Analyse des données brutes

Bilan du test sur faisceau

- Performances mémoires et réseau → perfectible
- Bonne prise en main du logiciel par les opérateurs

- Ontexte théorique et expérimental
 - Le modèle standard
 - Le collisionneur linéaire international
 - Le calorimètre hadronique semi-digital
 - Performances du SDHCAL
- Logiciel de surveillance de données
 - Introduction
 - Logiciel DQM4HEP
 - Surveillance de la prise de données du SDHCAL
- ArborPFA pour le prototype du SDHCAL
 - Introduction aux algorithmes de suivi de particules
 - Principe d'ArborPFA
 - Algorithmes et résultats
- ArborPFA pour le détecteur ILD
 - Les algorithmes
 - Calibration en énergie dans l'ILD
 - Les performances physiques
- Conclusion et perspectives

Introduction aux algorithmes de suivi de particules

Définition

Algorithme(s) de reconstruction visant à reconstruire les particules individuellement en combinant les informations des sous-détecteurs les plus appropriés pour effectuer une mesure en énergie.

Introduction aux algorithmes de suivi de particules

Définition

Algorithme(s) de reconstruction visant à reconstruire les particules individuellement en combinant les informations des sous-détecteurs les plus appropriés pour effectuer une mesure en énergie.

PFA = Logiciel + Détecteur!

Introduction aux algorithmes de suivi de particules

Définition

Algorithme(s) de reconstruction visant à reconstruire les particules individuellement en combinant les informations des sous-détecteurs les plus appropriés pour effectuer une mesure en énergie.

PFA = Logiciel + Détecteur!

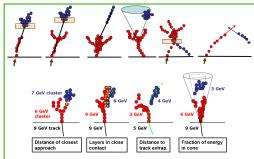
Sous-détecteurs appropriés

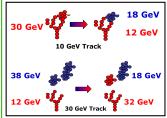
- e±: Tracker + Ecal
- h^{\pm} : Tracker + Ecal + Hcal
- μ[±]: Tracker + Ecal + Hcal + chambres à muons
- γ : Ecal
- h⁰ · Ecal + Hcal

Composition moyenne d'un jet de 100 GeV

- 65 % particules chargées
- 25 % photons
- 10 % hadrons neutres.

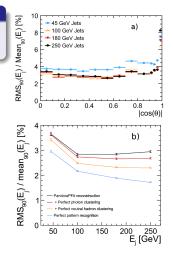

O. Lobban, A. Sriharan, R. Wigmans


NIM **A495** (2002), 107–120



Introduction aux algorithmes de suivi de particules- PandoraPFA

PandoraPFA Clustering en cônes récursifs Associations topologiques Association trace ↔ cluster Association cluster ↔ cluster Re-clustering statistique Compatibilité E − p Clustering local



Introduction aux algorithmes de suivi de particules- les performances de PandoraPFA

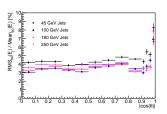
Extraction des performances

- $e^+e^- \rightarrow q\bar{q}$
- Énergies: 91, 200, 360 et 500 GeV

M. A. Thomson

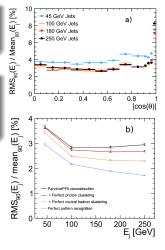
NIM, A611:25-40,2009

Introduction aux algorithmes de suivi de particules- les performances de PandoraPFA


Extraction des performances

- $e^+e^- \rightarrow q\bar{q}$
- Énergies: 91, 200, 360 et 500 GeV

Les limites de PandoraPFA

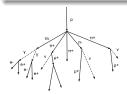

- Conçu pour un Hcal analogique
- Optimisé pour une taille de cellule 3 cm x 3 cm
- Calcul d'énergie analogique dans les algorithmes

PandoraPFA avec le SDHCAL

Thèse A. Steen

2015LY010230

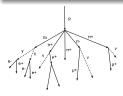
M. A. Thomson **NIM**, A611:25-40,2009

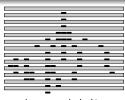

NIM, A611:25-40,2009

Principe d'ArborPFA

Principe

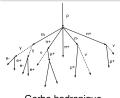
ArborPFA pour le prototype du SDHCAL Principe d'ArborPFA

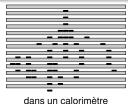

Principe

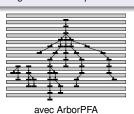

Gerbe hadronique

Principe d'ArborPFA

Principe

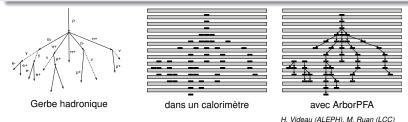

Gerbe hadronique


dans un calorimètre


Principe d'ArborPFA

Principe

Gerbe hadronique



H. Videau (ALEPH), M. Ruan (LCC)

Principe d'ArborPFA

Principe

Algorithme de *clustering* basé sur la **topologie en arbre** des gerbes hadroniques.

Quelques définitions

- Vertex : Point (sommet) dans l'espace relié par un ou plusieurs connecteurs (+ vertex racines et feuilles)
- Connecteur : Lien (arrête) orienté liant deux vertex
- Arbre : Ensemble de vertex reliés par des connecteurs (arbre enraciné).
 - il est connexe
 - o possède un unique vertex sans prédecesseur,
 - tous les autres vertex possèdent un unique prédécesseur.

Algorithmes et résultats

ArborPFA pour le SDHCAL

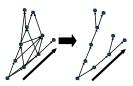
- Test du principe de l'algorithme
- Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

Algorithmes et résultats

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces → clusters
- Association clusters → clusters
- Création de PFOs

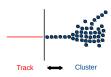


Algorithmes et résultats

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces → clusters
- Association clusters → clusters
- Création de PFOs

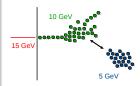


Algorithmes et résultats

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces → clusters
- Association clusters → clusters
- Création de PFOs

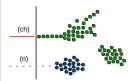


Algorithmes et résultats

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettovage des connexions
- Association traces → clusters
- Association clusters → clusters
- Création de PFOs

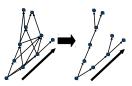


Algorithmes et résultats

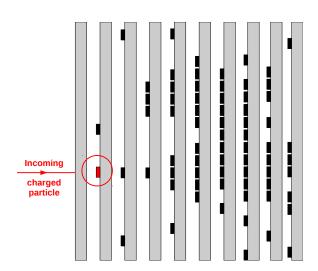
ArborPFA pour le SDHCAL

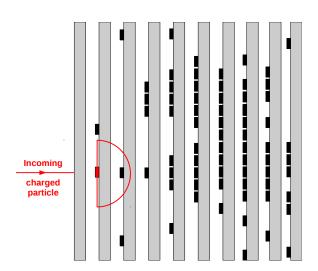
- Test du principe de l'algorithme
- Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

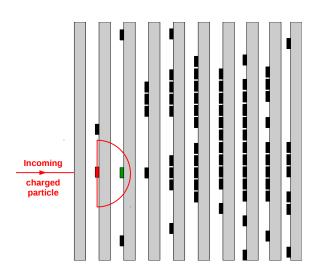
- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces → clusters
- Association clusters → clusters
- Création de PFOs

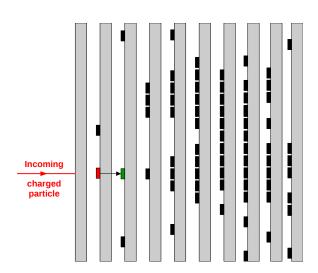


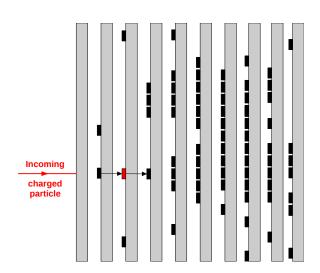
Algorithmes et résultats

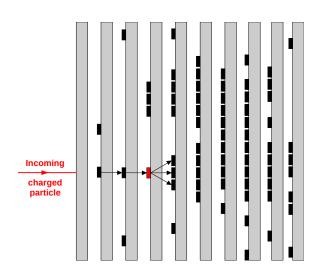

ArborPFA pour le SDHCAL

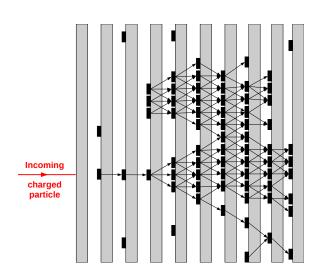

- Test du principe de l'algorithme
- Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

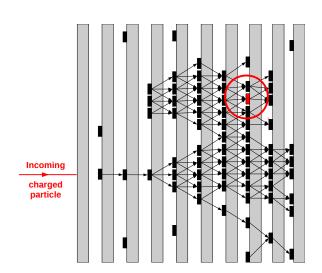

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces → clusters
- Association clusters → clusters
- Création de PFOs



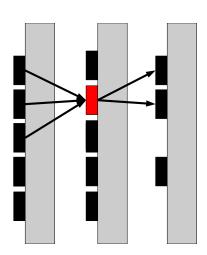








ArborPFA pour le prototype du SDHCAL Algorithmes et résultats- Nettoyage des connexions

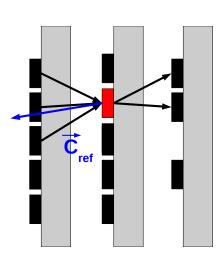


Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$-ec{C}_{ref} = w_{bck}.\sum_{b} ec{c}_{b} \ + w_{fwd}.\sum_{f} ec{c}_{f}$$

ightarrow Direction la plus probable pour une connexion vers l'arrière



Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$-ec{C}_{ref} = w_{bck}.\sum_b ec{c}_b \ + w_{fwd}.\sum_f ec{c}_f$$

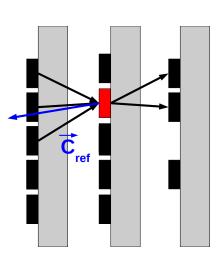
→ Direction la plus probable pour une connexion vers l'arrière

Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$-\vec{C}_{ref} = w_{bck} \cdot \sum_{b} \vec{c}_{b}$$

 $+ w_{fwd} \cdot \sum_{f} \vec{c}_{f}$


→ Direction la plus probable pour une connexion vers l'arrière

Paramètre d'ordre :

$$\kappa = \left(\frac{\theta}{\pi}\right)^{
ho_{\theta}} . \left(\frac{\Delta}{\Delta_{max}}\right)^{
ho_{\Delta}}$$

→ Alignement entre un connecteur et le vecteur de référence

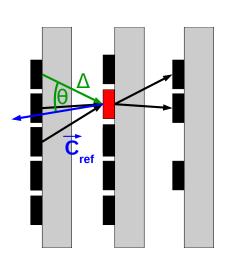
$$(p_{\theta}=1 \text{ et } p_{\Delta}=5)$$

Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$-\vec{C}_{ref} = w_{bck} \cdot \sum_{b} \vec{c}_{b}$$

 $+ w_{fwd} \cdot \sum_{f} \vec{c}_{f}$


→ Direction la plus probable pour une connexion vers l'arrière

Paramètre d'ordre :

$$\kappa = \left(\frac{\theta}{\pi}\right)^{
ho_{\theta}} . \left(\frac{\Delta}{\Delta_{max}}\right)^{
ho_{\Delta}}$$

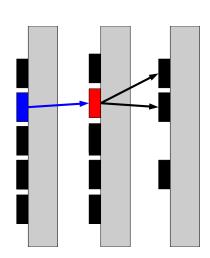
→ Alignement entre un connecteur et le vecteur de référence

$$(p_{\theta}=1 \text{ et } p_{\Delta}=5)$$

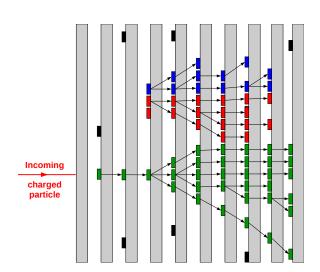
Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$-ec{C}_{ref} = w_{bck}.\sum_{b} ec{c}_{b} \ + w_{fwd}.\sum_{f} ec{c}_{f}$$


→ Direction la plus probable pour une connexion vers l'arrière

Paramètre d'ordre :


$$\kappa = \left(\frac{\theta}{\pi}\right)^{\rho_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{\text{max}}}\right)^{\rho_{\Delta}}$$

→ Alignement entre un connecteur et le vecteur de référence

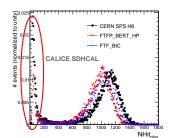
$$(p_{\theta}=1 \text{ et } p_{\Delta}=5)$$

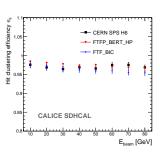
ArborPFA pour le prototype du SDHCAL Algorithmes et résultats- Nettoyage des connexions

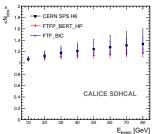
Algorithmes et résultats- Hadrons isolés

Définition

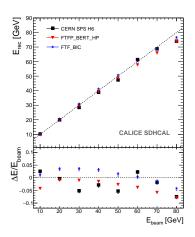
Efficacité de clustering ε_s :

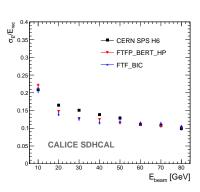

$$\varepsilon_s = N_{hit.ch}/N_{hit.tot}$$


Efficacité :

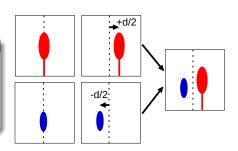

• $\varepsilon_s > 95\%$ sur toute la gamme en énergie

Nombre de PFOs:


- 1 < N_{PFO} < 1.35
- Fragmentation ≯ E_{beam} ≯



Algorithmes et résultats- Hadrons isolés



Algorithmes et résultats- Séparation de deux hadrons

Jeu de données

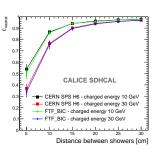
- 1 hadron chargé
 - E_{beam} = 10, 30 GeV
- 1 hadron chargé
 - E_{beam} = 10 GeV
 - hits de la trace primaire retirés
 - → émulation d'un hadron neutre

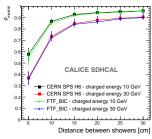
Superposition de deux événements hadroniques

- Détermination des points d'entrée et barycentres.
- Suppression des hits du segment de trace primaire du hadron de 10 GeV
- ullet Centrage au centre du calorimètre (x et y) puis décalage de \pm d/2 dans la direction x
- Hits superposés : le seuil le plus haut est assigné au nouveau hit superposé
- Les hits sont étiquetés suivant leur appartenance : hadron 1, 2 ou 3 (hits superposés).

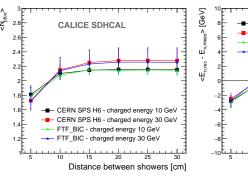
Algorithmes et résultats- Séparation de deux hadrons

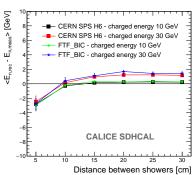
Définition


Efficacité ε_n du hadron neutre :


$$\varepsilon_n = N_{good}/N_{init,tot}$$

Pureté ρ_n du hadron neutre :


$$\rho_n = N_{good}/N_{rec,tot}$$

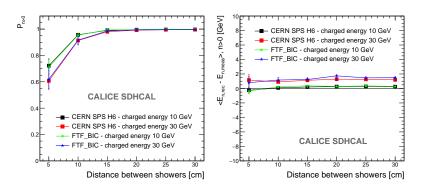

- Distance de séparation \(\sigma ⇒ ε_n \(\sigma ρ_n \(\sigma \)
- Chevauchement des gerbes = confusion

Algorithmes et résultats- Séparation de deux hadrons

N_{PFO}:

Distance de séparation $\searrow N_{PFO} \searrow$

ightarrow Fusion du hadron neutre dans le hadron chargé plus fréquent


Énergie reconstruite :

Estimateur d'énergie quadratique

Distance $\searrow E_{n,rec} \searrow$

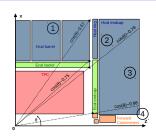
Algorithmes et résultats- Séparation de deux hadrons

Énergie reconstruite pour $n > 0 \rightarrow$ constante pour toutes les distances de séparation

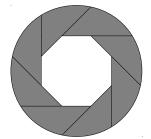
A faible distance de séparation

- ⇒ comportement binaire de la reconstruction :
 - soit au moins un hadron neutre + énergie neutre correctement estimée
 - ullet soit pas de hadron neutre o fusionné dans le hadron chargé

Algorithmes et résultats- Erreurs systématiques


Erreurs systématiques

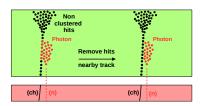
- Variation des paramètres de l'algorithme
- 8 paramètres
- $\sigma_{tot} = \sigma_{stat} \oplus \sigma_{sys}$


Paramètres	Valeur nominale	Variation inférieure	Variation supérieure
Distance de connexion 1	45 mm	40 mm	50 mm
Distance de connexion 2	65 mm	60 mm	70 mm
Angle de connexion	0.7 rad	0.6 rad	0.8 rad
Poids des connexions vers l'arrière 1	2	1	3
Poids des connexions vers l'avant 1	3	2	4
Poids des connexions vers l'arrière 2	1	0.01	2
Poids des connexions vers l'avant 2	5	4	6
Coupure sur la taille des fragments	20	15	25

- Contexte théorique et expérimental
 - Le modèle standard
 - Le collisionneur linéaire international
 - Le calorimètre hadronique semi-digital
 - Performances du SDHCAL
- 2 Logiciel de surveillance de données
 - Introduction
 - Logiciel DQM4HEP
 - Surveillance de la prise de données du SDHCAL
- ArborPFA pour le prototype du SDHCAL
 - Introduction aux algorithmes de suivi de particules
 - Principe d'ArborPFA
 - Algorithmes et résultats
- ArborPFA pour le détecteur ILD
 - Les algorithmes
 - Calibration en énergie dans l'ILD
 - Les performances physiques
- Conclusion et perspectives

- Utilisation de tous les détecteurs :
 - Connexion/nettovage dans le ECAL
 - Connexion FCAL-HCAL
 - Prise en compte du champ magnétique
- Étude de linéarité et de résolution en énergie pour les hadrons neutres K_0^L
 - Calibration initiale de référence $\rightarrow \phi = 0$ et $\theta = 1.5$ rad
 - · Correction en énergie près des interstices dans le tonneau central (5 modules)
 - ullet Correction en énergie en fonction de l'angle ullet
- Performances physiques sur un système di-jets $e^+e^- \rightarrow q\bar{q}$
 - Linéarité, résolution en énergie
 - Contribution de différents termes de confusions

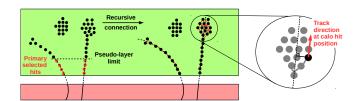
Les algorithmes- Les algorithmes de reconstruction


Implémentation pour le détecteur ILD

Préparation de l'évenement

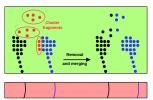
Les algorithmes- Les algorithmes de reconstruction

Implémentation pour le détecteur ILD

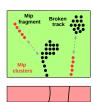

- Préparation de l'évenement
- Reconstruction des photons

Les algorithmes- Les algorithmes de reconstruction

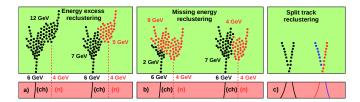
Implémentation pour le détecteur ILD


- Préparation de l'évenement
- Reconstruction des photons
- Clustering principal
 - Connexion des vertex et nettoyage des connexions

Les algorithmes- Les algorithmes de reconstruction

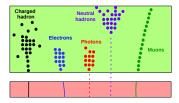

Implémentation pour le détecteur ILD

- Préparation de l'évenement
- Reconstruction des photons
- Clustering principal
 - Connexion des vertex et nettoyage des connexions
 - Associations topologiques


11 GeV

Les algorithmes- Les algorithmes de reconstruction

Implémentation pour le détecteur ILD

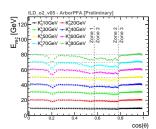

- Préparation de l'évenement
- Reconstruction des photons
- Clustering principal
 - Connexion des vertex et nettoyage des connexions
 - Associations topologiques
- Reclustering
 - Reclustering en cas d'excès en énergie
 - · Reclustering en cas d'énergie manquante
 - Reclustering en cas d'associations trace-cluster multiples

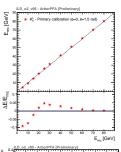
Les algorithmes- Les algorithmes de reconstruction

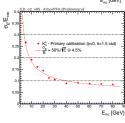
Implémentation pour le détecteur ILD

- Préparation de l'évenement
- Reconstruction des photons
- Clustering principal
 - Connexion des vertex et nettoyage des connexions
 - Associations topologiques
- Reclustering
 - Reclustering en cas d'excès en énergie
 - · Reclustering en cas d'énergie manquante
 - Reclustering en cas d'associations trace-cluster multiples
- Création et identification des particules reconstruites

Calibration en énergie dans l'ILD- Calibration et corrections en énergie

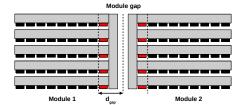

Calibration initiale ($\phi = 0$, $\theta = 1.5$ rad)


- Kaons neutres K_0^L , E = [5,80] GeV
- Estimateur d'énergie :

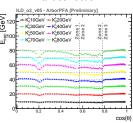

$$\textit{E}_{\textit{rec}} = \sum_{\textit{i}} \left(\textit{c}_\textit{h}^\textit{e}.\textit{e}_\textit{i}\right) + \left(\alpha.\textit{N}_1 + \beta.\textit{N}_2 + \gamma.\textit{N}_3\right)$$

avec:

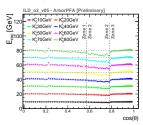
- $c_b^e = 1.075 \; GeV$
- $\alpha = 0.0433 \pm 10^{-4} \ GeV$
- $\beta = 0.0884 \pm 10^{-4} \ GeV$
- $\gamma = 0.4573 \pm 10^{-4} \ GeV$


Calibration en énergie dans l'ILD- Calibration et corrections en énergie

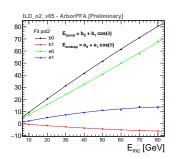
Correction près des interstices

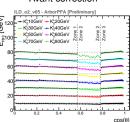

- Tonneau central séparé en 5 modules
- Budget matière plus important près des interstices
 - \rightarrow Énergie manquante!
- Correction en énergie :
 Comptage de l'énergie déposé près des interstices E_{gap}

$$E_{rec,gap} = E_{rec} + \alpha_{gap}.E_{gap}$$

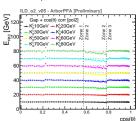

avec $\alpha_{gap} = 1.5254$

Avant correction

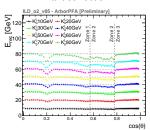

Après correction

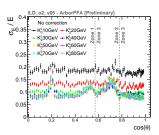

Calibration en énergie dans l'ILD- Calibration et corrections en énergie

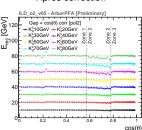
Correction en fonction de $cos\theta$

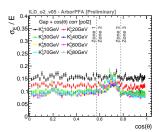

- Énergie manquante dans le tonneau et les bouchons
- Ajustement linéaire dans les régions 1 et 3
 - \rightarrow 4 paramètres / point d'énergie
 - → Ajustement d'un polynôme d'ordre 2

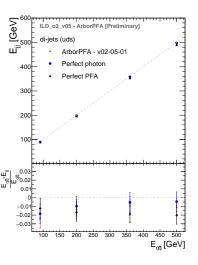
Avant correction




Après correction

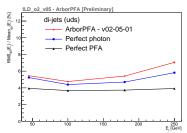

Calibration en énergie dans l'ILD- Calibration et corrections en énergie


Avant correction



Après correction

Les performances physiques- Les performances physiques



Performances ArborPFA:

- E_{tot} : déviation à la linéarité $\sim 1 2\%$
- E_{jet} : résolution relative (JER) $\sim 5-7\%$

Confusions:

- $\bullet~$ Perfect photon : JER $\sim 4.5-6\%$
- ullet Perfect PFA : JER $\sim 4\%$

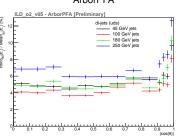
Les performances physiques- Les performances physiques

Résolution en énergie des jets (JER) :

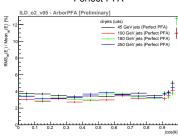
- Basse énergie → résolution du détecteur
- Haute énergie → confusion dans les jets

Région intermédiaire ($cos(\theta) \in [0.58,0.78]$) :

- Dégradation de la résolution
- Perfect PFA : pas de dégradation


Perfect PFA:

• Particules chargées (65%) :


$$\rightarrow$$
 E $\simeq |\vec{p}|$ (TPC)

- Photons (25%):
 - → Ecal + pas de correction en énergie
- Hadrons neutre (10%):
 - → Ecal + Hcal + correction en énergie

ArborPFA

Perfect PFA

- Contexte théorique et expérimental
 - Le modèle standard
 - Le collisionneur linéaire international
 - Le calorimètre hadronique semi-digital
 - Performances du SDHCAL
- Logiciel de surveillance de données
 - Introduction
 - Logiciel DQM4HEP
 - Surveillance de la prise de données du SDHCAL
- ArborPFA pour le prototype du SDHCAL
 - Introduction aux algorithmes de suivi de particules
 - Principe d'ArborPFA
 - Algorithmes et résultats
- ArborPFA pour le détecteur ILD
 - Les algorithmes
 - Calibration en énergie dans l'ILD
 - Les performances physiques
- Conclusion et perspectives

ArborPFA pour le SDHCAL

- Un logiciel de reconstruction par méthode de suivi de particules a été développé pour le SDHCAL
- Une première implémentation visant à tester le principe sous-jacent d'ArborPFA dans le prototype du SDHCAL a été développée :
 - Hadrons seuls \rightarrow bonnes performances ($\epsilon_s >$ 96% et $\Delta E/E <$ 10%)
 - Deux hadrons proches → bonnes performances pour d > 10cm.
 En decà (5cm): p_n=0.7 ⇒ ΔE/E < 5%
 - 2... doga (co...) : p₁₁=c... / **2**2/2 (c/)
- Résultats publiés dans une note d'analyse CALICE (CAN-054)

ArborPFA pour le détecteur ILD

- Une seconde version a été développée pour le détecteur ILD
- Des corrections en énergie (hadrons isolés) ont été développées, mais ne s'avèrent pas encore suffisantes
- De nouveaux algorithmes ont été développés pour tenir compte de tous les détecteurs (ECAL, TPC) et pour traiter de nouveaux problèmes de topologie
- Les performances physiques ont été évaluées :
 - E_{tot} : déviation à la linéarité $\sim 1 2\%$
 - $\bullet \ \mathsf{JER} \simeq 5-7\%$

Surveillance de la qualité des données pour le SDHCAL

- Un logiciel générique, DQM4HEP, a été développé et l'architecture a été présentée
- Une solution dédiée à la combinaison des détecteurs SiWEcal et SDHCAL a été implémentée et déployée lors de plusieurs tests sur faisceaux
- Les performances mémoires et réseaux ont montré un logiciel utilisable mais perfectible sur certains points
- Résultats présentés à IEEE (poster) et publiés dans un conference record
- Intégration au projet européen AIDA 2020 : WP5, Task 5.4 "Development of data quality and slow control monitoring"

AIDA-2020-NOTE-2017-001

cds.cern.ch/record/2241973

• Logiciel utilisé par d'autres prototypes CALICE : SiWEcal (LLR) et AHcal (DESY)

Perspectives

ArborPFA pour l'ILD

Points clés :

- • Évaluation des performances de reconstruction/identification de chaque type de particules
 → Particule seule + séparation
- Amélioration des corrections en énergie
 → Modification des correction et ajout de nouvelles (région 2)
- Optimisation des paramètres de l'algorithme → Procédure d'optimisation??
- Évaluation des erreurs systématiques pour la JER (+ autres)

Pour aller plus loin:

- Ajout d'associations topologiques supplémentaires
 - \rightarrow Support de la rétro-diffusion, etc ...
- Reconstruction des muons

Perspectives

DQM4HEP

- Remplacement de ROOT pour les histogrammes
 - → Amélioration des performances mémoires et réseau
 - ightarrow Implémentation d'une conversion DQM4HEP \leftrightarrow ROOT
- Refactoring de la couche réseau
 - ightarrow Meilleure maintenance sur le long terme
- Extension de la configuration du logiciel
 - → Solution plus centralisée (DB) et plus "user friendly" (XML, json, yaml, ...)
- Interface web de visualisation
 - ightarrow Pas d'installation du logiciel pour les opérateurs
- Application de suivi de déploiement du logiciel
 - → Surveillance des performances de chacune des applications en direct
- Rédaction d'une documentation développeur/utilisateur/opérateur

Merci pour votre attention!

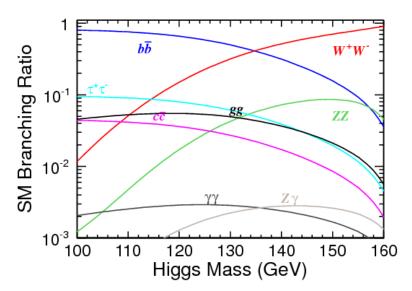
Polarisation des faisceaux :

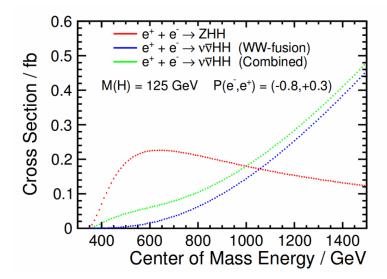
$$e_L^-e_R^+$$
 ou $e_L^+e_R^-$ ou $e_R^-e_R^+$ ou $e_L^-e_L^+$

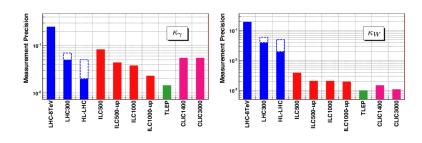
Conservation de l'hélicité $\Rightarrow e_L^-e_R^+, e_L^+e_R^-$ uniquement

- \rightarrow Augmentation de la luminosité (\times 1.5 2)!
 - $e^+e^- \rightarrow$ s-channel \Rightarrow couplage des hélicités e^+e^-
 - $e^+e^- \rightarrow$ t-channel \Rightarrow couplage des états finaux

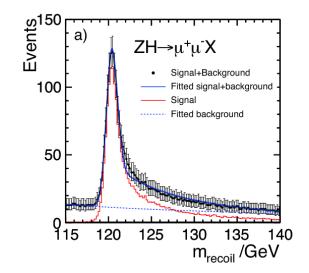
$$\sigma_{pol} = (1 - P_{e^-} P_{e^+}) . \sigma_{unpol} . (1 - P_{eff} . A_{LR})$$

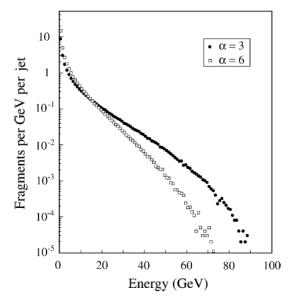

avec:

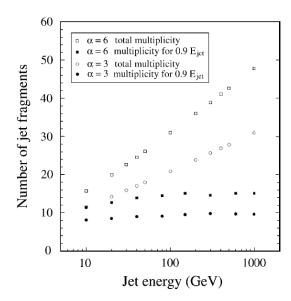

•
$$A_{LR} = \frac{\sigma_{-+} - \sigma_{+-}}{\sigma_{-+} + \sigma_{+-}} \cdot \frac{1 - P_{e^-} \cdot P_{e^+}}{P_{e^+} - P_{e^-}}$$

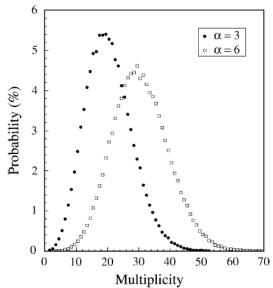

•
$$P_{eff} = (P_{e^-} - P_{e^+}) / (1 - P_{e^-} . P_{e^+})$$

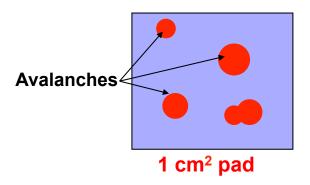
Processus	$P_{e^{-}}$	P_{e^+}	$\sigma_{pol}/\sigma_{unpol}$
$e^+e^- o ZH$	0.8	0	~ 1.13
$e^+e^- ightarrow extit{ZH}$	0.8	0.3	\sim 1.44
$e^+e^- ightarrow extit{ZH}$	0.8	0.55	\sim 1.71
$e^+e^- ightarrow H u_e ar{ u_e}$	0.8	0	~ 1.90
$e^+e^- ightarrow au u_e ar{ u_e}$	0.8	0.3	\sim 2.40
$e^+e^- ightarrow H u_e ar{ u_e}$	0.8	0.55	\sim 2.95

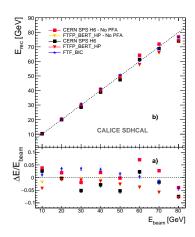

Mode	LHC	ILC(250)	ILC(500)	ILC(1000)
WW	4.1 %	1.9 %	0.24	0.17 %
ZZ	4.5 %	0.44 %	0.30 %	0.27 %
bb	13.6 %	2.7 %	0.94 %	0.69 %
gg	8.9 %	4.0 %	2.0 %	1.4 %
γγ	7.8 %	4.9 %	4.3 %	3.3 %
$ au^+ au^-$	11.4 %	3.3 %	1.9 %	1.4 %
сō	-	4.7 %	2.5 %	2.1 %
t₹	15.6 %	14.2 %	9.3 %	3.7 %
$\mu^+\mu^-$	-	-	-	16 %
self	-	-	104 %	26 %
BR(invis.) < 9 %	< 0.44 %	< 0.30 %	< 0.26 %
$\Gamma_T(h)$	20.3 %	4.8 %	1.6 %	1.2 %

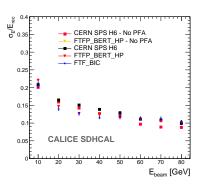


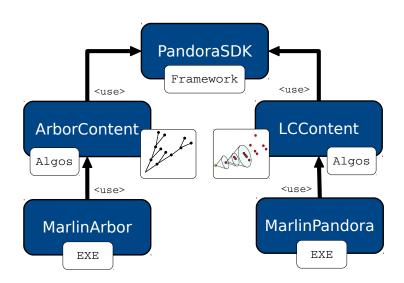


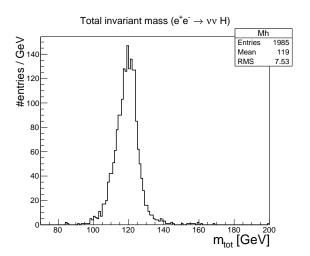


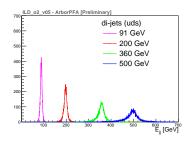

			Machine standarde 500 GeV			Amélioration 1 TeV
Énergie au centre de masse	E _{CM}	GeV	250	350	500	1000
Taux de collisions	f _{rep}	Hz	5	5	5	4
Nombre de paquets	n _b		1312	1312	1312	2450
Nombre de particules par paquet	N	×10 ¹⁰	2	2	2	2.74
Séparation entre les paquets	δt_b	ns	554	554	554	366
Courant de pulsation	I _{beam}	mA	5.8	5.8	5.8	7.6
Gradient d'accélération	G_{a}	$MV.m^{-1}$	14.7	21.4	31.5	38.2
Puissance moyenne du faisceau	P _{beam}	MW	2.9	7.3	10.5	27.2
Polarisation des électrons	<i>P_</i>	%	80	80	80	80
Polarisation des positons	P_+	%	30	30	30	20
Étalement en énergie des électrons	$\Delta p/p$	%	0.190	0.158	0.124	0.083
Étalement en énergie des positons	$\Delta p/p$	%	0.152	0.100	0.070	0.043
Longueur des paquets	σ_z	mm	0.3	0.3	0.3	0.250
Taille horizontale du faisceau au point de collision	σ_{x}^{*}	nm	729.0	683.5	474	481
Taille verticale du faisceau au point de collision	σ_y^*	nm	7.7	5.9	5.9	2.8
Luminosité	L	$\times 10^{34} cm^{-2} s^{-1}$	0.75	1.0	1.8	3.6

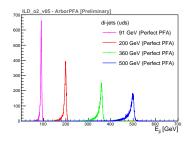


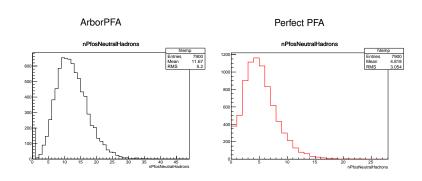




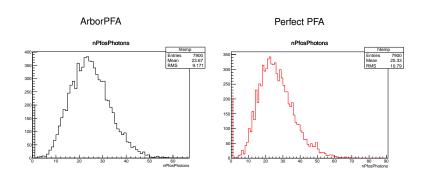




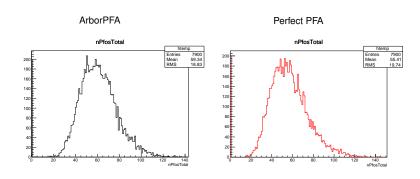


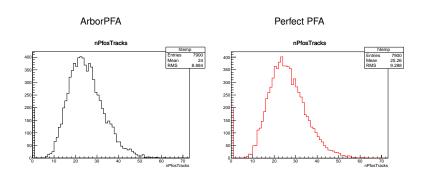


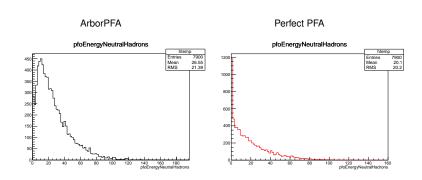
ArborPFA

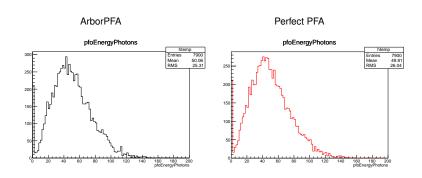


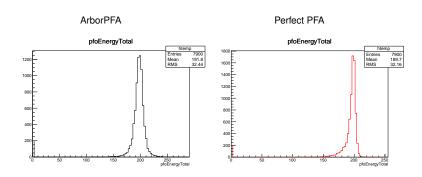
Perfect PFA

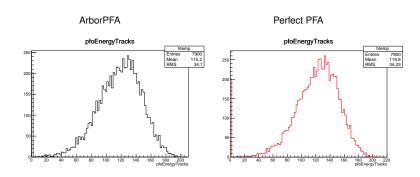


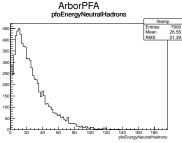

Nombre de PFOs hadrons neutres pour E_{tot} = 200 GeV

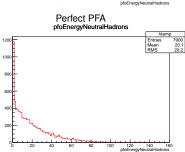

Nombre de PFOs photons pour $E_{tot} = 200 \ GeV$


Nombre de PFOs total pour $E_{tot} = 200 \ GeV$

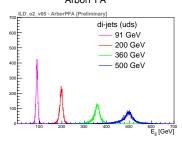

Nombre de PFOs chargés pour $E_{tot} = 200 \ GeV$


Énergie des hadrons neutres pour $E_{tot} = 200 \ GeV$

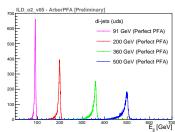

Énergie des photons pour $E_{tot} = 200 \ GeV$



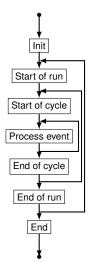
Énergie totale pour $E_{tot} = 200 \ GeV$



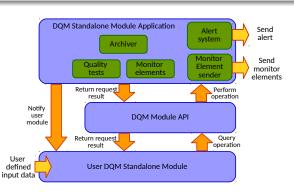
Énergie des particules chargées pour $E_{tot} = 200 \ GeV$

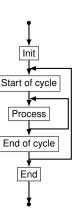


ArborPFA


Perfect PFA

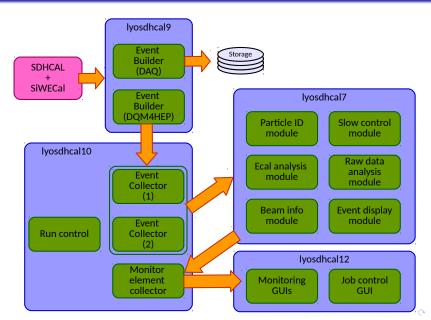
Module d'analyse de données

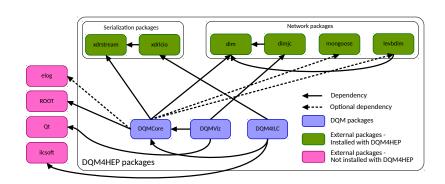

- Conçu pour l'analyse de données (raw data, tracking, PFA, etc ...)
- Produit des élements de surveillance (histogrammes, graphes, ...)
- Évalue la qualité des données (Q-tests)
- Structuré en séquence de runs et de cycles



Module environnemental

- Traitement de données environnementales (T, P, HV, gaz, ...)
- Pas de données transmises au module
- Produit des éléments de surveillance (histogrammes, graphes, ...)
- Évalue la qualité des données (Q-tests)





Les performances mémoires				
Processus	Mémoire virtuelle (KB)	Mémoire résiduelle (KB)	% Mémoire	% CPU
Slow control	619600	256194	3.23	19.75
Analyse ECal	410477	<u>89444</u>	<u>1.13</u>	7.35
Analyse données brutes	580559	221993	2.8	32.4
Event display	545670	237811	3	50.4
Collecteur d'éléments de surveillance	607924	305080	3.72	5.05
Collecteur d'événements physiques 1	558420	270784	3.3	13.57
Collecteur d'événements physiques 2	518524	252332	3.08	7.57
Gestionnaire de <i>run</i>	-	-	-	(0.03)
Convertisseurs SHM	1061870	638328	7.79	7.76

Serveur/processus sortant		Serveur/processus entrant	Bande passante (MB/s)
lyosdhcal9/Convertisseurs	\longrightarrow	lyosdhcal10/Collecteurs d'événements physique	12
lyosdhcal10/Collecteurs d'événements physique	\longrightarrow	lyosdhcal7/Modules d'analyse de données	41
lyosdhcal7/Modules d'analyse de données	\longrightarrow	lyosdhcal10/Collecteur d'éléments de surveillance	12

