Développement d'un algorithme de suivi de particules pour l'ILC.

Outils de surveillance en ligne de qualité de données

Rémi ÉTÉ Directeur de thèse : Imad LAKTINEH

Institut de Physique Nucléaire de Lyon

8 mars 2017

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives

Sommaire

Contexte théorique et expérimental

- Le modèle standard
- Le collisionneur linéaire international
- Le calorimètre hadronique semi-digital
- Performances du SDHCAL

2 Logiciel de surveillance de données

- Introduction
- Logiciel DQM4HEP
- Surveillance de la prise de données du SDHCAL

ArborPFA pour le prototype du SDHCAL

- Introduction aux algorithmes de suivi de particules
- Principe d'ArborPFA
- Algorithmes et résultats

ArborPFA pour le détecteur ILD

- Les algorithmes
- Calibration en énergie dans l'ILD
- Les performances physiques

Conclusion et perspectives

Contexte théorique et expérimental

Contexte théorique et expérimental

- Le modèle standard
- Le collisionneur linéaire international
- Le calorimètre hadronique semi-digital
- Performances du SDHCAL

Logiciel de surveillance de données

- Introduction
- Logiciel DQM4HEP
- Surveillance de la prise de données du SDHCAL

ArborPFA pour le prototype du SDHCAL

- Introduction aux algorithmes de suivi de particules
- Principe d'ArborPFA
- Algorithmes et résultats

ArborPFA pour le détecteur ILD

- Les algorithmes
- Calibration en énergie dans l'ILD
- Les performances physiques

Conclusion et perspectives

Contexte théorique et expérimental

Le modèle standard

Théorie décrivant 3 des 4 interactions fondamentales :

- L'interaction électromagnétique
- L'interaction faible
- L'interaction forte

Théorie de jauge $SU(3) \otimes SU_L(2) \otimes U(1)$

Des familles de particules

- 12 fermions
- 4 bosons de jauge
- 1 boson de Higgs

Modèle incomplet

- Pas de gravitation
- Masse/oscillation neutrinos
- Asymétrie matière/anti-matière

Contexte théorique et expérimental

Caractéristiques du collisionneur

- Particules : e⁺ e⁻
- Énergie : 250-500 GeV (1 TeV ?)
- Luminosité : $\sim 1 \cdot 10^{34} \mbox{ cm}^{-2} \mbox{s}^{-1}$
- Fréquence de collisions : 5 Hz
- Nb de particules par croisement : 2 · 10¹⁰
- Faisceaux polarisés : e⁻ (80%) e⁺ (30%)
- Deux détecteurs au points de collision : ILD et SiD

Contexte théorique et expérimental Le programme physique

Énergie	Réaction	Mesure physique
91 GeV	$e^+e^- ightarrow Z$	Mesure de précision électrofaible
160 GeV	$e^+e^- ightarrow WW$	Masse du boson W
250 GeV	$e^+e^- ightarrow Zh$	Couplage du Higgs
350-400 GeV	$e^+e^- ightarrow tar{t}$	Couplages et masse du quark top
	$e^+e^- ightarrow WW$	Couplages du W
	$e^+e^- ightarrow { m v}ar{ m v}h$	Couplages du Higgs
500 GeV	$e^+e^- ightarrow far{f}$	Recherche d'un boson Z'
	$e^+e^- ightarrow tar{t}h$	Couplages du Higgs au quark top
	$e^+e^- ightarrow extsf{Zhh}$	Auto-couplage du Higgs
	$e^+e^- ightarrow ~ ilde\chi ilde\chi$	Recherche de supersymétrie
	$e^+e^- ightarrow AH, H^+H^-$	Recherche de nouveaux états du Higgs
700 – 1000 <i>GeV</i>	$e^+e^- ightarrow u ar{ u}$ hh	Auto-couplage du Higgs
	$e^+e^- ightarrow u ar{ u}$ VV	Secteur du Higgs composite
	$e^+e^- ightarrow u \overline{ u} t \overline{t}$	Secteur du Higgs composite et quark top
	$e^+e^- ightarrow \widetilde{t}\widetilde{t}^*$	Recherche de supersymétrie

ILC Technical Design Report, Vol.2 : Physics

arXiv:1306.6352

Contexte théorique et expérimental

Le calorimètre hadronique semi-digital

Glass Resistive Plate Chamber

- Mélange gazeux : C₂H₂F₄ / CO₂ / SF₆
- Résitivité $\rho = 10^{13} \Omega.cm$
- Segmentation :
 - Transverse : 1 cm x 1 cm
 - Longitudinale : 2.8 cm (abs. + actif)
- Tension dans les chambres \sim 6.9 kV
- Lecture semi-digitale à 3 seuils (1, 2, 3)

Contexte théorique et expérimental Logiciel de surveillance de données ArborPFA pour le prototype du SDHCAL ArborPFA pour le détecteur ILD Conclusion et perspectives 00000000

Contexte théorique et expérimental Performances du SDHCAL

Contexte théorique et expérimental Logiciel de surveillance de données ArborPFA pour le prototype du SDHCAL ArborPFA pour le détecteur ILD Conclusion et perspectives 00000000

(1)

(2)

(3)

(4) (5)

Contexte théorique et expérimental

Performances du SDHCAL- reconstruction de l'énergie des hadrons

Principales observables du SDHCAL : N_{bit}, N₁, N₂, N₃ Reconstruction de l'énergie des hadrons :

 \rightarrow plusieurs estimateurs possibles !

Formule linéaire

$$E = \alpha \cdot N_1 + \beta \cdot N_2 + \gamma \cdot N_3$$

avec α , β et γ trois constantes.

- ✓ Application très simple aux techniques de PFA
- × Mauvaise linéarité à haute énergie

Formule quadratique

$$E = \alpha(\textit{NHit}) \cdot \textit{N}_1 + \beta(\textit{NHit}) \cdot \textit{N}_2 + \gamma(\textit{NHit}) \cdot \textit{N}_3$$

avec :

 α (*NHit*) = $\alpha_1 + \alpha_2 \cdot NHit + \alpha_3 \cdot NHit^2$ β (*NHit*) = $\beta_1 + \beta_2 \cdot NHit + \beta_3 \cdot NHit^2$

$$\gamma$$
(*NHit*) = $\gamma_1 + \gamma_2 \cdot NHit + \gamma_3 \cdot NHit^2$

- Bonne linéarité et résolution sur toute la gamme en énergie \checkmark
- Application aux techniques de PFA plus complexe ×

Contexte théorique et expérimental

Performances du SDHCAL- quelques désaccords ...

Logiciel de surveillance de données

Contexte théorique et expérimental

- Le modèle standard
- Le collisionneur linéaire international
- Le calorimètre hadronique semi-digital
- Performances du SDHCAL

Logiciel de surveillance de données

- Introduction
- Logiciel DQM4HEP
- Surveillance de la prise de données du SDHCAL

ArborPFA pour le prototype du SDHCAL

- Introduction aux algorithmes de suivi de particules
- Principe d'ArborPFA
- Algorithmes et résultats

ArborPFA pour le détecteur ILD

- Les algorithmes
- Calibration en énergie dans l'ILD
- Les performances physiques

Conclusion et perspectives

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives
0000000	0000	0000000000000000	0000000	00000

Logiciel de surveillance de données

Les systèmes de DQM

- Présents dans les expériences de physique de hautes énergies (i.e CMSSW ou AMORE)
- Évalue la qualité des données et alerte l'utilisateur d'un état anormal du système de détection

Principe général :

- collecte et distribution des données
- analyse des données
- collecte et distribution des histogrammes
- visualisation des histogrammes
- Principale différence : contenu/format des données

Nouveau logiciel : DQM4HEP

- Généricité : Système de plug-in + abstraction des événements (modèle/format)
- Analyses de données dédiées au DQM
- Interface graphique pour les opérateurs :
 - Gestionnaire graphique des runs
 - estionnaire graphique de processus à distance
 - Interface graphique de visualisation d'histogrammes

Logiciel de surveillance de données

Logiciel DQM4HEP- architecture logicielle

Logiciel de surveillance de données

Logiciel DQM4HEP- surveillance par les opérateurs (GUI)

- Client graphique multi-collecteurs : requête, filtrage, sélection d'histogrammes
- Affichage d'histogrammes multi-canvas
- Import/export des histogrammes ⇒ préparation des tests sur faisceau
 □ > <
 □ > <
 > <
 <
 <

 <li

Logiciel de surveillance de données

Surveillance de la prise de données du SDHCAL

Test sur faisceau combiné CALICE SiWEcal-SDHCAL au SPS (CERN) en Juin 2016

Données environnementales : T, P, HV, LV, I

Event display

Analyse des données du SiWEcal

Analyse des données brutes

Bilan du test sur faisceau

- Performances mémoires et réseau → perfectible
- Bonne prise en main du logiciel par les opérateurs

ArborPFA pour le prototype du SDHCAL

Contexte théorique et expérimental

- Le modèle standard
- Le collisionneur linéaire international
- Le calorimètre hadronique semi-digital
- Performances du SDHCAL

2 Logiciel de surveillance de données

- Introduction
- Logiciel DQM4HEP
- Surveillance de la prise de données du SDHCAL

ArborPFA pour le prototype du SDHCAL

- Introduction aux algorithmes de suivi de particules
- Principe d'ArborPFA
- Algorithmes et résultats

ArborPFA pour le détecteur ILD

- Les algorithmes
- Calibration en énergie dans l'ILD
- Les performances physiques

Conclusion et perspectives

ArborPFA pour le prototype du SDHCAL

Introduction aux algorithmes de suivi de particules

Définition

Algorithme(s) de reconstruction visant à reconstruire les particules individuellement en combinant les informations des sous-détecteurs les plus appropriés pour effectuer une mesure en énergie.

ArborPFA pour le prototype du SDHCAL

Introduction aux algorithmes de suivi de particules

Définition

Algorithme(s) de reconstruction visant à reconstruire les particules individuellement en combinant les informations des sous-détecteurs les plus appropriés pour effectuer une mesure en énergie.

PFA = Logiciel + Détecteur !

ArborPFA pour le prototype du SDHCAL

Introduction aux algorithmes de suivi de particules

Définition

Algorithme(s) de reconstruction visant à reconstruire les particules individuellement en combinant les informations des sous-détecteurs les plus appropriés pour effectuer une mesure en énergie.

PFA = Logiciel + Détecteur !

Contexte théorique et expérimental Logiciel de surveillance de données ArborPFA pour le prototype du SDHCAL ArborPFA pour le détecteur ILD Conclusion et perspectives

ArborPFA pour le prototype du SDHCAL

Introduction aux algorithmes de suivi de particules- PandoraPFA

ArborPFA pour le prototype du SDHCAL

Introduction aux algorithmes de suivi de particules- les performances de PandoraPFA

Extraction des performances

- $e^+e^-
 ightarrow q \overline{q}$
- Énergies : 91, 200, 360 et 500 GeV

<ロ > < 団 > < 団 > < 三 > < 三 > 三 = つ < で 20/48

Contexte théorique et expérimental Logiciel de surveillance de données ArborPFA pour le prototype du SDHCAL ArborPFA pour le détecteur ILD Conclusion et perspectives

ArborPFA pour le prototype du SDHCAL

Introduction aux algorithmes de suivi de particules- les performances de PandoraPFA

Extraction des performances

- $e^+e^- \rightarrow q\bar{q}$
- Énergies : 91, 200, 360 et 500 GeV

Les limites de PandoraPFA

- Conçu pour un Hcal analogique
- Optimisé pour une taille de cellule 3 cm x 3 cm
- Calcul d'énergie analogique dans les algorithmes

0000000	0000	000000000000000000000000000000000000000	0000000	00000	
Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspective	

ArborPFA pour le prototype du SDHCAL

Principe

Algorithme de *clustering* basé sur la topologie en arbre des gerbes hadroniques.

ArborPFA pour le prototype du SDHCAL Principe d'ArborPFA

Principe

Algorithme de *clustering* basé sur la topologie en arbre des gerbes hadroniques.

Gerbe hadronique

0000000	0000	000000000000000000000000000000000000000	000000	00000
Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspective

ArborPFA pour le prototype du SDHCAL Principe d'ArborPFA

Principe

Algorithme de *clustering* basé sur la topologie en arbre des gerbes hadroniques.

Gerbe hadronique

dans un calorimètre

ArborPFA pour le prototype du SDHCAL Principe d'ArborPFA

Principe

Algorithme de *clustering* basé sur la topologie en arbre des gerbes hadroniques.

Gerbe hadronique

dans un calorimètre

avec ArborPFA

H. Videau (ALEPH), M. Ruan (LCC)

ArborPFA pour le prototype du SDHCAL Principe d'ArborPFA

Principe

Algorithme de *clustering* basé sur la topologie en arbre des gerbes hadroniques.

Gerbe hadronique

dans un calorimètre

avec ArborPFA

H. Videau (ALEPH), M. Ruan (LCC)

Quelques définitions

- Vertex : Point (sommet) dans l'espace relié par un ou plusieurs connecteurs (+ vertex racines et feuilles)
- Connecteur : Lien (arrête) orienté liant deux vertex
- Arbre : Ensemble de vertex reliés par des connecteurs (arbre enraciné).
 - il est connexe
 - · possède un unique vertex sans prédecesseur,
 - tous les autres vertex possèdent un unique prédécesseur.

ArborPFA pour le prototype du SDHCAL

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- · Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

ArborPFA pour le prototype du SDHCAL

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- · Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces \rightarrow clusters
- Association clusters \rightarrow clusters
- Création de PFOs

ArborPFA pour le prototype du SDHCAL

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- · Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces \rightarrow clusters
- Association clusters \rightarrow clusters
- Création de PFOs

ArborPFA pour le prototype du SDHCAL

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- · Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces → clusters
- Association clusters \rightarrow clusters
- Création de PFOs

ArborPFA pour le prototype du SDHCAL

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- · Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces \rightarrow clusters
- Association clusters \rightarrow clusters
- Création de PFOs

ArborPFA pour le prototype du SDHCAL

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- · Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces \rightarrow clusters
- $\bullet \ \ \text{Association clusters} \rightarrow \text{clusters}$
- Création de PFOs

ArborPFA pour le prototype du SDHCAL

ArborPFA pour le SDHCAL

- Test du principe de l'algorithme
- · Capacité à reconstruire un hadron isolé
- Capacité à séparer un hadron neutre d'un hadron chargé

- Création de vertex
- Construction des arbres et clusters
 - Connexions des vertex
 - Nettoyage des connexions
- Association traces \rightarrow clusters
- Association clusters \rightarrow clusters
- Création de PFOs

ArborPFA pour le prototype du SDHCAL Algorithmes et résultats- Nettoyage des connexions

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$egin{aligned} -ec{C}_{\textit{ref}} &= w_{bck} \cdot \sum_{b} ec{c}_{b} \ &+ w_{\textit{fwd}} \cdot \sum_{f} ec{c}_{f} \end{aligned}$$

 \rightarrow Direction Ia plus probable pour une connexion vers l'arrière

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$-ec{C}_{\it ref} = w_{\it bck} . \sum_{b} ec{c}_{b} \ + w_{\it fwd} . \sum_{f} ec{c}_{f}$$

 \rightarrow Direction Ia plus probable pour une connexion vers l'arrière

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$-ec{C}_{ref} = w_{bck} . \sum_{b} ec{c}_{b} \ + w_{fwd} . \sum_{f} ec{c}_{f}$$

 \rightarrow Direction Ia plus probable pour une connexion vers l'arrière

Paramètre d'ordre :

$$\kappa = \left(\frac{\theta}{\pi}\right)^{p_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{max}}\right)^{p_{\Delta}}$$

 \rightarrow Alignement entre un connecteur et le vecteur de référence

$$(p_{\theta} = 1 et p_{\Delta} = 5)$$

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$ec{C}_{\it ref} = w_{\it bck} . \sum_{b} ec{c}_{b}
onumber \ + w_{\it fwd} . \sum_{f} ec{c}_{f}$$

 \rightarrow Direction Ia plus probable pour une connexion vers l'arrière

Paramètre d'ordre :

$$\kappa = \left(\frac{\theta}{\pi}\right)^{p_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{max}}\right)^{p_{\Delta}}$$

 \rightarrow Alignement entre un connecteur et le vecteur de référence

$$(p_{\theta} = 1 et p_{\Delta} = 5)$$

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Nettoyage des connexions

Vecteur de référence :

$$ec{C}_{ref} = w_{bck} \cdot \sum_{b} ec{c}_{b}
onumber \ + w_{fwd} \cdot \sum_{f} ec{c}_{f}$$

 \rightarrow Direction Ia plus probable pour une connexion vers l'arrière

Paramètre d'ordre :

$$\kappa = \left(\frac{\theta}{\pi}\right)^{p_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{max}}\right)^{p_{\Delta}}$$

 \rightarrow Alignement entre un connecteur et le vecteur de référence

$$(p_{\theta} = 1 et p_{\Delta} = 5)$$

・ロ · ・ 一 · ・ = · ・ = · = ・ つ へ · 25/48

ArborPFA pour le prototype du SDHCAL Algorithmes et résultats- Nettoyage des connexions

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Hadrons isolés

Définition

Efficacité de clustering ε_s :

 $\varepsilon_s = N_{hit,ch}/N_{hit,tot}$

Efficacité :

- $\epsilon_s > 95\%$ sur toute la gamme en énergie Nombre de PFOs :
 - 1 < N_{PFO} < 1.35
 - Fragmentation *∧* E_{beam} *∧*

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Hadrons isolés

・
 ・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</l>

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Séparation de deux hadrons

Superposition de deux événements hadroniques

- Détermination des points d'entrée et barycentres.
- Suppression des hits du segment de trace primaire du hadron de 10 GeV
- Centrage au centre du calorimètre (x et y) puis décalage de \pm d/2 dans la direction x
- Hits superposés : le seuil le plus haut est assigné au nouveau hit superposé
- Les hits sont étiquetés suivant leur appartenance : hadron 1, 2 ou 3 (hits superposés).

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Séparation de deux hadrons

Définition

Efficacité ε_n du hadron neutre :

$$\epsilon_n = N_{good}/N_{init,tot}$$

Pureté ρ_n du hadron neutre :

$$\rho_n = N_{good}/N_{rec,tot}$$

- Distance de séparation $\searrow \Rightarrow \varepsilon_n \searrow \rho_n \searrow$
- Chevauchement des gerbes = confusion
- Confusion *∧* quand *E_{ch} ∧*

<ロ><日><日><日><日><日><日><日><日><日><10</td>

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Séparation de deux hadrons

N_{PFO} :

Distance de séparation $\searrow N_{PFO} \searrow$

 \rightarrow Fusion du hadron neutre dans le hadron chargé plus fréquent

Énergie reconstruite : Estimateur d'énergie quadratique Distance $\searrow E_{n,rec} \searrow$

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Séparation de deux hadrons

Énergie reconstruite pour $n > 0 \rightarrow$ constante pour toutes les distances de séparation

A faible distance de séparation

- ⇒ comportement binaire de la reconstruction :
 - soit au moins un hadron neutre + énergie neutre correctement estimée
 - soit pas de hadron neutre → fusionné dans le hadron chargé

ArborPFA pour le prototype du SDHCAL

Algorithmes et résultats- Erreurs systématiques

Erreurs systématiques

- Variation des paramètres de l'algorithme
- 8 paramètres
- $\sigma_{tot} = \sigma_{stat} \oplus \sigma_{sys}$

Paramètraa	Valeur	Variation	Variation
Farametres	nominale	inférieure	supérieure
Distance de connexion 1	45 mm	40 mm	50 mm
Distance de connexion 2	65 mm	60 mm	70 mm
Angle de connexion	0.7 rad	0.6 rad	0.8 rad
Poids des connexions vers l'arrière 1	2	1	3
Poids des connexions vers l'avant 1	3	2	4
Poids des connexions vers l'arrière 2	1	0.01	2
Poids des connexions vers l'avant 2	5	4	6
Coupure sur la taille des fragments	20	15	25

ArborPFA pour le détecteur ILD

Contexte théorique et expérimental

- Le modèle standard
- Le collisionneur linéaire international
- Le calorimètre hadronique semi-digital
- Performances du SDHCAL

Logiciel de surveillance de données

- Introduction
- Logiciel DQM4HEP
- Surveillance de la prise de données du SDHCAL

ArborPFA pour le prototype du SDHCAL

- Introduction aux algorithmes de suivi de particules
- Principe d'ArborPFA
- Algorithmes et résultats

ArborPFA pour le détecteur ILD

- Les algorithmes
- Calibration en énergie dans l'ILD
- Les performances physiques

Conclusion et perspectives

ArborPFA pour le détecteur ILD Algorithmes et résultats

ArborPFA pour le détecteur ILD

- Utilisation de tous les détecteurs :
 - Connexion/nettoyage dans le ECAL
 - Connexion ECAL-HCAL
 - Prise en compte du champ magnétique
- Étude de linéarité et de résolution en énergie pour les hadrons neutres K^L₀
 - Calibration initiale de référence $\rightarrow \phi = 0$ et $\theta = 1.5$ rad
 - Correction en énergie près des interstices dans le tonneau central (5 modules)
 - Correction en énergie en fonction de l'angle $\boldsymbol{\theta}$
- Performances physiques sur un système di-jets $e^+e^- o qar q$
 - Linéarité, résolution en énergie
 - Contribution de différents termes de confusions

Géométrie à la Videau

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives
0000000	0000	000000000000000	000000	00000

ArborPFA pour le détecteur ILD Les algorithmes- Les algorithmes de reconstruction

Implémentation pour le détecteur ILD

• Préparation de l'évenement

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives
0000000	0000	000000000000000	000000	00000

ArborPFA pour le détecteur ILD Les algorithmes- Les algorithmes de reconstruction

Implémentation pour le détecteur ILD

- Préparation de l'évenement
- Reconstruction des photons

・ロト ・ 一部 ト ・ 目 ト ・ 王 ト ・ 三 ト ・ 三 ト ・ 36/48

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspective
0000000	0000	000000000000000	000000	00000

ArborPFA pour le détecteur ILD Les algorithmes- Les algorithmes de reconstruction

Implémentation pour le détecteur ILD

- Préparation de l'évenement
- Reconstruction des photons
- Clustering principal
 - · Connexion des vertex et nettoyage des connexions

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives
0000000	0000	000000000000000	000000	00000

Les algorithmes- Les algorithmes de reconstruction

Implémentation pour le détecteur ILD

- Préparation de l'évenement
- Reconstruction des photons
- Clustering principal
 - · Connexion des vertex et nettoyage des connexions
 - Associations topologiques

<ロ > < 回 > < 回 > < 目 > < 目 > 三日 の Q (36/48

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspective
0000000	0000	0000000000000000	000000	00000

Les algorithmes- Les algorithmes de reconstruction

Implémentation pour le détecteur ILD

- Préparation de l'évenement
- Reconstruction des photons
- Clustering principal
 - · Connexion des vertex et nettoyage des connexions
 - Associations topologiques
- Reclustering
 - Reclustering en cas d'excès en énergie
 - · Reclustering en cas d'énergie manquante
 - · Reclustering en cas d'associations trace-cluster multiples

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives
0000000	0000	000000000000000	000000	00000

Les algorithmes- Les algorithmes de reconstruction

Implémentation pour le détecteur ILD

- Préparation de l'évenement
- Reconstruction des photons
- Clustering principal
 - · Connexion des vertex et nettoyage des connexions
 - Associations topologiques
- Reclustering
 - Reclustering en cas d'excès en énergie
 - Reclustering en cas d'énergie manquante
 - · Reclustering en cas d'associations trace-cluster multiples
- Création et identification des particules reconstruites

ArborPFA pour le détecteur ILD

Calibration en énergie dans l'ILD- Calibration et corrections en énergie

Calibration initiale ($\phi = 0, \theta = 1.5$ rad)

- Kaons neutres K_0^L , E = [5, 80] GeV
- Estimateur d'énergie :

$$E_{rec} = \sum_{i} \left(c_{h}^{e}.e_{i} \right) + \left(\alpha.N_{1} + \beta.N_{2} + \gamma.N_{3} \right)$$

avec :

- $c_{h}^{e} = 1.075 \; GeV$
- $\alpha = 0.0433 \pm 10^{-4} \text{ GeV}$ • $\beta = 0.0884 \pm 10^{-4} \text{ GeV}$
- $\gamma = 0.4573 \pm 10^{-4} GeV$

・<一
 ・<三
 ・<三
 ・<三
 ・<三
 ・<三
 ・<三
 ・<
 ・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</li

ArborPFA pour le détecteur ILD

Calibration en énergie dans l'ILD- Calibration et corrections en énergie

Correction près des interstices

- Tonneau central séparé en 5 modules
- Budget matière plus important près des interstices
 - \rightarrow Énergie manquante !
- Correction en énergie : Comptage de l'énergie déposé près des interstices E_{gap}

$$E_{rec,gap} = E_{rec} + \alpha_{gap}.E_{gap}$$

avec $\alpha_{gap} = 1.5254$

ArborPFA pour le détecteur ILD

Calibration en énergie dans l'ILD- Calibration et corrections en énergie

Correction en fonction de cosθ Énergie manquante dans le tonneau et les bouchons Ajustement linéaire dans les régions 1 et 3 → 4 paramètres / point d'énergie

ightarrow Ajustement d'un polynôme d'ordre 2

Avant correction

・<一
 ・<三
 ・<三
 ・<三
 ・<三
 ・<三
 ・<三
 ・<
 ・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</li

Calibration en énergie dans l'ILD- Calibration et corrections en énergie

Après correction

・<一
 ・<三
 ・<三
 ・<三
 ・<三
 ・<
 ・<
 ・<
 ・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Les performances physiques- Les performances physiques

Performances ArborPFA :

- E_{tot} : déviation à la linéarité $\sim 1-2\%$
- E_{jet} : résolution relative (JER) $\sim 5-7\%$

Confusions :

- Perfect photon : JER $\sim 4.5-6\%$
- $\bullet~$ Perfect PFA : JER $\sim 4\%$

・<一
 ・<三
 ・<三
 ・<三
 ・<三
 ・<三
 ・<
 ・<
 ・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ArborPFA pour le détecteur ILD

Les performances physiques- Les performances physiques

Résolution en énergie des jets (JER) :

- Basse énergie \rightarrow résolution du détecteur
- Haute énergie \rightarrow confusion dans les jets

Région intermédiaire ($cos(\theta) \in [0.58, 0.78]$) :

- Dégradation de la résolution
- Perfect PFA : pas de dégradation

Perfect PFA :

- Particules chargées (65%) : \rightarrow E \simeq $|\vec{p}|$ (TPC)
- Photons (25%) :
 - ightarrow Ecal + pas de correction en énergie
- Hadrons neutre (10%) :
 - \rightarrow Ecal + Hcal + correction en énergie

ArborPFA
Conclusion et perspectives

Contexte théorique et expérimental

- Le modèle standard
- Le collisionneur linéaire international
- Le calorimètre hadronique semi-digital
- Performances du SDHCAL

Logiciel de surveillance de données

- Introduction
- Logiciel DQM4HEP
- Surveillance de la prise de données du SDHCAL

ArborPFA pour le prototype du SDHCAL

- Introduction aux algorithmes de suivi de particules
- Principe d'ArborPFA
- Algorithmes et résultats

ArborPFA pour le détecteur ILD

- Les algorithmes
- Calibration en énergie dans l'ILD
- Les performances physiques

Conclusion et perspectives

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives
0000000	0000	0000000000000000	0000000	• 0 000

Conclusion et perspectives

ArborPFA pour le SDHCAL

- Un logiciel de reconstruction par méthode de suivi de particules a été développé pour le SDHCAL
- Une première implémentation visant à tester le principe sous-jacent d'ArborPFA dans le prototype du SDHCAL a été développée :
 - Hadrons seuls \rightarrow bonnes performances ($\epsilon_s >$ 96% et $\Delta E/E <$ 10%)
 - Deux hadrons proches \rightarrow bonnes performances pour d > 10cm. En deçà (5cm) : p_n =0.7 $\Rightarrow \Delta E/E < 5\%$
- Résultats publiés dans une note d'analyse CALICE (CAN-054)

ArborPFA pour le détecteur ILD

- Une seconde version a été développée pour le détecteur ILD
- Des corrections en énergie (hadrons isolés) ont été développées, mais ne s'avèrent pas encore suffisantes
- De nouveaux algorithmes ont été développés pour tenir compte de tous les détecteurs (ECAL, TPC) et pour traiter de nouveaux problèmes de topologie
- Les performances physiques ont été évaluées :
 - E_{tot} : déviation à la linéarité $\sim 1 2\%$
 - JER $\simeq 5-7\%$

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives
0000000	0000	000000000000000	0000000	00000

Conclusion et perspectives

Surveillance de la qualité des données pour le SDHCAL

- Un logiciel générique, DQM4HEP, a été développé et l'architecture a été présentée
- Une solution dédiée à la combinaison des détecteurs SiWEcal et SDHCAL a été implémentée et déployée lors de plusieurs tests sur faisceaux
- Les performances mémoires et réseaux ont montré un logiciel utilisable mais perfectible sur certains points
- Résultats présentés à IEEE (poster) et publiés dans un conference record
- Intégration au projet européen AIDA 2020 : WP5, Task 5.4 "Development of data quality and slow control monitoring"

AIDA-2020-NOTE-2017-001

cds.cern.ch/record/2241973

Logiciel utilisé par d'autres prototypes CALICE : SiWEcal (LLR) et AHcal (DESY)

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives
0000000	0000	0000000000000000	000000	00000

Conclusion et perspectives

ArborPFA pour l'ILD

Points clés :

- Évaluation des performances de reconstruction/identification de chaque type de particules
 Particule seule + séparation
- 2 Amélioration des corrections en énergie
 - \rightarrow Modification des correction et ajout de nouvelles (région 2)
- Optimisation des paramètres de l'algorithme
 - \rightarrow Procédure d'optimisation ? ?
- Évaluation des erreurs systématiques pour la JER (+ autres)

Pour aller plus loin :

- Ajout d'associations topologiques supplémentaires
 - \rightarrow Support de la rétro-diffusion, etc ...
- Reconstruction des muons

Contexte	e théoriqu 0000	e et expérimental	Logiciel de surveilla 0000		ArborPFA pour le prototy	/pe du SDHCAL 0000	ArborPFA pour le détecteur Il 0000000	Conclusion et p 00000	perspectives
Con	iclus	ion et pe	erspective	S					
	DQM	I4HEP							
	•	$\begin{array}{l} {\sf Remplacer} \\ \rightarrow {\sf Amélior} \\ \rightarrow {\sf Impléme} \end{array}$	ment de ROO ation des pert entation d'une	T pour les formances e conversic	histogrammes mémoires et rés on DQM4HEP ↔	seau → ROOT			
	۰	Refactoring ightarrow Meilleur	g de la coucho re maintenanc	e réseau ce sur le lo	ng terme				
	•	Extension \rightarrow Solution	de la configur n plus centrali	ation du lo sée (DB) e	giciel t plus " <i>user frier</i>	ndly" (XML	, json, yaml,)		
	۰	Interface w \rightarrow Pas d'in	reb de visualis Istallation du l	ation ogiciel pou	ır les opérateurs	i			
	۰	Application \rightarrow Surveill	i de suivi de d ance des perf	éploiemen ormances	t du logiciel de chacune des	applicatio	ns en direct		
	٠	Rédaction	d'une docume	entation dé	veloppeur/utilisa	ateur/opéra	ateur		

Contexte théorique et expérimental	Logiciel de surveillance de données	ArborPFA pour le prototype du SDHCAL	ArborPFA pour le détecteur ILD	Conclusion et perspectives
				00000

Merci pour votre attention !

Polarisation des faisceaux :

$$e_L^- e_R^+$$
 ou $e_L^+ e_R^-$ ou $e_R^- e_R^+$ ou $e_L^- e_L^+$

Conservation de l'hélicité $\Rightarrow e_L^- e_R^+, e_L^+ e_R^-$ uniquement

 \rightarrow Augmentation de la luminosité (\times 1.5 - 2) !

- $e^+e^-
 ightarrow$ s-channel \Rightarrow couplage des hélicités e^+e^-
- $e^+e^-
 ightarrow$ t-channel \Rightarrow couplage des états finaux

$$\sigma_{pol} = (1 - P_{e^-} P_{e^+}) \cdot \sigma_{unpol} \cdot (1 - P_{eff} \cdot A_{LR})$$

avec :

•
$$A_{LR} = \frac{\sigma_{-+} - \sigma_{+-}}{\sigma_{-+} + \sigma_{+-}} \cdot \frac{1 - P_{e^-} \cdot P_{e^+}}{P_{e^+} - P_{e^-}}$$

• $P_{eff} = (P_{e^-} - P_{e^+}) / (1 - P_{e^-} \cdot P_{e^+})$

Processus	P _e -	P _e +	$\sigma_{\it pol}/\sigma_{\it unpol}$
e $^+e^- ightarrow ZH$	0.8	0	\sim 1.13
$e^+e^- ightarrow ZH$	0.8	0.3	\sim 1.44
e $^+e^- ightarrow ZH$	0.8	0.55	\sim 1.71
$e^+e^- ightarrow H u_e ar{ u_e}$	0.8	0	\sim 1.90
$e^+e^- ightarrow H u_e ar{ u_e}$	0.8	0.3	\sim 2.40
$e^+e^- ightarrow H u_e ar{ u_e}$	0.8	0.55	\sim 2.95

Mode	LHC	ILC(250)	ILC(500)	ILC(1000)
WW	4.1 %	1.9 %	0.24	0.17 %
ZZ	4.5 %	0.44 %	0.30 %	0.27 %
bb	13.6 %	2.7 %	0.94 %	0.69 %
gg	8.9 %	4.0 %	2.0 %	1.4 %
γγ	7.8 %	4.9 %	4.3 %	3.3 %
$\tau^+\tau^-$	11.4 %	3.3 %	1.9 %	1.4 %
сē	-	4.7 %	2.5 %	2.1 %
tī	15.6 %	14.2 %	9.3 %	3.7 %
$\mu^+\mu^-$	-	-	-	16 %
self	-	-	104 %	26 %
BR(invis.)	< 9 %	< 0.44 %	< 0.30 %	< 0.26 %
$\Gamma_T(h)$	20.3 %	4.8 %	1.6 %	1.2 %

CLIC3000

			Machine	e standarde	500 GeV	Amelioration 1 IeV
Énergie au centre de masse	E _{CM}	GeV	250	350	500	1000
Taux de collisions	f _{rep}	Hz	5	5	5	4
Nombre de paquets	nb		1312	1312	1312	2450
Nombre de particules par paquet	N	×10 ¹⁰	2	2	2	2.74
Séparation entre les paquets	δt_b	ns	554	554	554	366
Courant de pulsation	Ibeam	mA	5.8	5.8	5.8	7.6
Gradient d'accélération	Ga	$MV.m^{-1}$	14.7	21.4	31.5	38.2
Puissance moyenne du faisceau	Pbeam	MW	2.9	7.3	10.5	27.2
Polarisation des électrons	<i>P</i> _	%	80	80	80	80
Polarisation des positons	P_+	%	30	30	30	20
Étalement en énergie des électrons	$\Delta p/p$	%	0.190	0.158	0.124	0.083
Étalement en énergie des positons	$\Delta p/p$	%	0.152	0.100	0.070	0.043
Longueur des paquets	σ_z	mm	0.3	0.3	0.3	0.250
Taille horizontale du faisceau au point de collision	σ_{χ}^{*}	nm	729.0	683.5	474	481
Taille verticale du faisceau au point de collision	σ_y^*	nm	7.7	5.9	5.9	2.8
Luminosité	L	$ imes 10^{34} cm^{-2} s^{-1}$	0.75	1.0	1.8	3.6

<ロ><日><日><日><日</th><日</th><日</th><1/30</th>

・ ロ ト ・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ ト ・ シ へ い 12/30

・ロ > ・ () > ・ () = > ・ () = うへで 13/30

<ロ><日><日><日><日</th><日</th><日</th><日</th><14/30</th>

ArborPFA

Perfect PFA

<ロト < 団ト < ヨト < ヨト ミヨ > つへで 15/30

Nombre de PFOs hadrons neutres pour $E_{tot} = 200 \ GeV$

Nombre de PFOs photons pour $E_{tot} = 200 \ GeV$

<ロ > < 団 > < 豆 > < 豆 > ミ 三 = つへで 17/30

Nombre de PFOs total pour $E_{tot} = 200 \ GeV$

<ロ > < 団 > < 豆 > < 豆 > < 豆 > 三 = つへで 18/30

Nombre de PFOs chargés pour $E_{tot} = 200 \ GeV$

<ロ > < 団 > < 豆 > < 豆 > < 豆 > 三 = つ < で 19/30

Énergie des hadrons neutres pour $E_{tot} = 200 \ GeV$

<ロ > < 団 > < 団 > < 臣 > < 臣 > 王 = つへで 20/30

Énergie des photons pour $E_{tot} = 200 \ GeV$

<ロ > < 団 > < 豆 > < 豆 > < 豆 > 三 = つへで 21/30

Énergie totale pour $E_{tot} = 200 \ GeV$

<ロ > < 団 > < 豆 > < 豆 > < 豆 > 三 = つ < で 22/30

Énergie des particules chargées pour $E_{tot} = 200 \ GeV$

<ロ > < 団 > < 豆 > < 豆 > ミ 三 = つへで 23/30

Module environnemental

- Traitement de données environnementales (T, P, HV, gaz, ...)
- Pas de données transmises au module
- Produit des éléments de surveillance (histogrammes, graphes, ...)
- Évalue la qualité des données (Q-tests)

es performances mémoires							
Processus	Mémoire virtuelle (KB)	Mémoire résiduelle (KB)	% Mémoire	% CPU			
Slow control	619600	256194	3.23	19.75			
Analyse ECal	410477	89444	<u>1.13</u>	7.35			
Analyse données brutes	580559	221993	2.8	32.4			
Event display	545670	237811	3	50.4			
Collecteur d'éléments de surveillance	607924	305080	3.72	5.05			
Collecteur d'événements physiques 1	558420	270784	3.3	13.57			
Collecteur d'événements physiques 2	518524	252332	3.08	7.57			
Gestionnaire de <i>run</i>	-	-	-	(0.03)			
Convertisseurs SHM	1061870	638328	7.79	7.76			

Les performances réseau Serveur/processus sortant		Serveur/processus entrant	Bande passante (MB/s)
lyosdhcal9/Convertisseurs	\rightarrow	lyosdhcal10/Collecteurs d'événements physique	12
lyosdhcal10/Collecteurs d'événements physique	\longrightarrow	lyosdhcal7/Modules d'analyse de données	41
lyosdhcal7/Modules d'analyse de données	\rightarrow	lyosdhcal10/Collecteur d'éléments de surveillance	12
			'

29/30

##