

Arbor: shower = tree

Goal:

Ultimate: 1-1 correspondence Realistic: recon. Physics Objects at high efficiency. & high precision **Performance:** Photon & Separation Lepton **Composed objects JET/MET** Higgs analysis at e+e-**About Time** At pp environment

Validation: Arbor Branch Length

Arbor: successfully tag sub-shower structure

Samples: Particle gun event at ILD HCAL (readout granularity 1cm² & layer thickness 2.65cm) Length:

Charged MCParticle: spatial distance between generation/end points Arbor branch: sum of distance between neighbor hits

Geometries

CEPC_v1 Forward Region & Yoke Thickness Modified w.r.t ild_o2_v05

Used for CEPC Higgs analysis

Simplified, Defect free geometry... Cylinder like calorimeter layers, & Silicon tracker (Optional)

Used for Arbor tuning, Calorimeter optimization & Conceptual SPPC Detector study...

Photons @ ECAL with 90mm W & 30 layers

Figure 3. Deposit energy ratio of 120GeV photon shower by the depth in tungsten, and the integrated result.

Photon Energy	95mm W	90mm W	85mm W	80mm W
175GeV	99.0%	98.6%	97.9%	96.9%
120GeV	99.2%	98.8%	98.2%	97.3%
75GeV	99.4%	99.1%	98.7%	98.1%

Table 1. Percentage of EM showers energy deposit in 80mm-95mm tungsten

30 * (3 mm W + 0.5 mm Silicon + 2 mm PCB)

Clustering: Ideal Vs Realistic

Separation

Two 5 GeV photons – separated at 4 mm, with 1 mm cell size

Figure 11. Event display of reconstructed di-photon.

Separation

Separation ~ 2 times Cell Size Phase transition ~ Moliere radius

Impact of Separation

Table 2. Percentage of photons that would be polluted by neighbor particle

Cell Size	Crucial Separation Distance with Arbor	Percentage of H->di photon	Percentage of Z->tautau
1mm	4mm	0	0.827%
5mm	9mm	0	0.486%
10mm	16mm	0.03%	1.96%
20mm	37mm	0.17%	18.4%

@ H->di photon

δ(Br×σ)/Br×σ % 05 52 400 25 σ /Mean = 1.73% Count 20 200 15 10 00 50 150 100 0.12 0.1 0.14 0.16 Energy [GeV]

 $\delta(Br \times \sigma)/Br \times \sigma vs \delta E/E$

 $μ^+μ$ ·H, H→ γγ τ⁺τ·H, H→ γγ

ν⊽**Η, Η→** γγ α**σ**Η, Η→ γγ

0.18 0.2 Photon E resolution

ion result; ∫ Ldt= 5 ab

Figure 15. The invariant mass distribution of reconstructed Higgs.

Relative Accuracy: ~ 8.5%

Leptons: essential for Higgs program

- Key objective: Identify the initial leptons
 - Leptons generated in Z decays in ZH events
 - Electrons in Z fusions
- Secondary: leptons generated in Higgs decay
 - H->WW/ZZ/tautau/µµ
 - H->bb, cc->leptonic decay
 - Hadron decays

Dan Yu: general Lepton ID for Calorimeter with High granularity (LICH)

BDT method using 4 classes of 24 input discrimination variables.

Test performance by requesting

Electron = E_likeness > 0.5 ; Muon = Mu_likeness > 0.5

Single charged reconstructed particle, for E > 2 GeV: lepton efficiency > 99.5% && Pion mis id rate ~ 1%

LICH @ IIH events

Geom 1/2: 10 (20) mm ECAL/HCAL Cell

Initial Leptons identified at satisfactory efficiency & purity (limited by separation power) More stringent requirement arrises from jet leptons...

Composed object: converted photon

14

Composed object: π_0 (Preliminary)

log10(Theta):log10(MCPiEn)

log10(Phi):log10(PiEn)

Testing on Higgs to di tau events. Tau inclusive decay (*X axis, Energy of Pi0, Y axis, Angle between two photons decayed from pi0*)

For pi0 with En > 3 GeV && En < 30 GeV, Reconstruction efficiency ~ 65%.. Horizontal line corresponding to 9 mm separation at ECAL. 16/03/2017

Tau reconstruction

- In no-jet environment: counting number of charged particle (pions & leptons), photons (pi0s) + restrict impact parameters leads to very high efficiency in Tau finding:
 - At inclusive Higgs decay sample: Efficiency ~ 98% for of H→TT event finding, with IIH and vvH final state. The remaining bkgrds are irreducible: H→WW/ZZ→leptonic/tau final state
 - In $\mu\mu$ H channel: δ N/N = 3%

JER/MET

- Digital ECAL mode: Energy Estimated as k*NHit for HCAL Cluster, Calibration Constant (k) optimized for both Pandora & Arbor via Scan
- MET: usually no ambiguity;
- Jet: Highly depending on Jet clustering if #Jet > 2...

Br(H→WW)

H→*WW*/*ZZ*: Portal to Higgs width & perfect test bed for detector/reconstruction performance...

	Z→II	tautau	VV	qq
H→WW*→4q	6.91k	3.45k	19.74k	69.1k
μνqq	2.27k	1.14k	6.47k	22.7k
evqq	2.27k	1.14k	6.47k	22.7k
eevv	186	93	527	1.9k
μμνν	186	93	527	1.9k
eµvv	372	186	1154	3.7k
X + tau	3.2k	1.6k	9.14k	32.0k
Extrapolated from ILC results				
Await for tau finder				
Await for the SM Background simulation				
Full Simulation				
	Preliminary result acquired			
	Unexplored			

Expected Number of events with different objects

- Br(H \rightarrow WW), Combined accuracy ~ 1.0% from 13 independent full simulation analyses
 - 1.45% at IIH, $H \rightarrow WW^* \rightarrow$ inc channels, 12 independent channels.
 - ~ 1.7% at vvH, $H \rightarrow WW^* \rightarrow 4q$ channel (Preliminary. ILC extrapolation = 2.3%)
 - 2.3% at qqH, $H \rightarrow WW^* \rightarrow 2qIv$ channel (extrapolated from ILC full simulation)
 - Combined: 1.0%

16/03/2011 igh efficiency in event reconstruction

$Br(H \rightarrow ZZ)$

Z→II tautau VV qq H→ZZ*→4q 888 444 3.10k 9.24k 5.29k 2v + 2q508 254 1.77k 2l + 2a 170 85 596 1.8k 4v 73 36 254 756 508 2I + 2v49 24 170 86 41 8 4 28 X + tau 120 418 60 1246 More than 2 jets, Await for sophisticated Jet Clustering Await for tau finder limited accuracy $\sim > 50\%$ Explored by H->invisible analysis -> Accuracy ~ 40% Promising channels

Unexplored

Expected Number of events with different objects

- Br(H \rightarrow ZZ), explored at 18 different channels with full simulation (IIvvqq, 4lqq, Il4q, 2l4v)
 - 8 Channels has individual accuracy better than 25%: Combined accuracy ~ **5.4%**
 - 8 with accuracy worse than 25 50%
 - 2 with accuracy worse than 50% (IIH, $H \rightarrow ZZ \rightarrow 4q$ and vvH, $H \rightarrow ZZ \rightarrow IIvv$)
 - If electron id efficiency ~ muon id: 4.8%
 - If tau finder (used for veto) is mature: ??
- 16/03/20+7 TLEP extrapolation: 4.3%

Applied to CEPC Higgs analysis

Now: ~50 independent analyse	es ;	at
Full Simulation level		

	PreCDR (Jan 2015)	Now (Aug 2016)
σ(ZH)	0.51%	0.50%
σ(ZH)*Br(H→bb)	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.2%
σ(ZH)*Br(H→WW)	1.5%	1.0%
σ(ZH)*Br(H→ZZ)	4.3%	4.3%
σ(ZH)*Br(H→π)	1.2%	1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
σ(ZH)*Br(H→Zγ)	-	~4 o
σ(ZH)*Br(H→μμ)	17%	12%
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)	95%. CL = 1.4e-3	1.4e-3
Br(H→ee/emu)	-	1.7e-4/1.2e-4
Br(H→bbχχ)	<10 ⁻³	3.0e-4

About time...

b,

4

-

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 1201 Lun Section: 13 Beparation & Speed @ pp

Arbor @ pp collisions

140 PU event reconstructed at ~1 min/evt With KD-tree algorithm, complexity reduced From N² to Nlog(N)

Reconstructed with Arbor

1 TeV hadronic shower at 20 PU, at eta ~ 2: Perturbation from PU ~ 0.1% level

DRUID, RunNum = 0, EventNum = 1

DRUID, RunNum = 0, EventNum = 1

50 PU

DRUID, RunNum = 0, EventNum = 1

Arbor...

62-

95%

Photon

Separation (photon efficiently separated at Dis > 2*Cell size) 80% Lepton: eff/purity $\sim 99\%$ for initial leptons identification in Higgs events 95% To be extended to Particle identification (Pi-Kaon Photon-Neutral hadron) Composed object reconstruction 50% Tau finding in qqH, H→tautau, eto Jet Energy Resolution 75% Dedicated Identification of Fragments & Core/Cluster, Energy Estimator Fully Tested at Higgs analyses Detector Optimization: Active cooling free calorimeter leads to a degrading of event reconstruction

efficiency about 1-2%... but have significant impact on Tau related topics KD algorithm enhanced, speed ~ o(Nlog(N)). Promising at pp

Identify Goal

Thanks

Br(H→WW) @ 10mm/20mm Cell size

Br(H→WW) via vvH, H→WW*→lvqq

No lose in the object level efficiency; JER slightly degraded, ~ 5/10% at 10/20 mm (*ill. behaviors: stay to be tuned*)

Over all: event reco. efficiency varies ~1%

			J
CEPC_v1	2885	2783	96.5%
TG1	2878	2814	97.8%
TG2	2878	2807	97.5%

TG1: E30L_H48L_10mm, TG2: E30L_H48L_20mm

Br(H→ZZ) @ 10mm/20mm Cell size

Br(H \rightarrow ZZ) via vvH, H \rightarrow ZZ* \rightarrow Ilqq

Over all event reco. efficiency reduced ~2%

	Events	Recon.	Efficiency
CEPC_v1	4143	3957	95.5%
TG2	808	754	93.3%

16/03/2017

33

Longitudinal: #Layer & Si Thickness

Energy Resolution is comparable at:

20 * 1.5 mm Si + 4.5 mm W 25 * 1 mm Si + 3.6 mm W 30 * 0.5 mm Si + 3 mm W

Impact of Cell Size: Position/Angular

Arbor @ single particle

Arbor @ single particle

Separation: Jets

Tau Tagging @ 140PU

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 1201 Lumi section: 13

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 1216 Lumi section: 13

En > 15 GeV Clusters

En > 30 GeV Clusters