Fundamental ν physics in GRAND

Mauricio Bustamante

Center for Cosmology and AstroParticle Physics (CCAPP)

The Ohio State University

GRAND workshop IAP, May 17–19, 2017

Key questions

- Why is looking for new physics important? Reveals underlying structure of particles and interactions
- What is currently the biggest challenge in the field?
 - Small effects
 - Tests limited by energy of known v sources (MeV–PeV)
 - Limited by statistics, mainly (but not exclusively)
- What do we need to solve it?

Higher energies; large statistics; good energy, angular, flavor resolution

- Why would GRAND help solve it?
 - EeV energies, large statistics, great angular resolution
 - Not great for flavor; unknown energy resolution

Why look for new physics in HE astro. ν 's?

The highest energies (~ PeV)

- Probe physics at new energy scales

The longest baselines (~ Gpc)

- Tiny effects can accumulate and become observable

It comes for free

The new-physics reach of HE astrophysical ν 's

If new-physics effects are ~ $\kappa E^n L$ (with κ its strength), we can probe

$$\kappa \sim 4 \cdot 10^{-47} \left(rac{E}{\mathsf{PeV}}
ight)^{-n} \left(rac{L}{\mathsf{Gpc}}
ight)^{-1} \; \mathsf{PeV}^{n+1}$$

(Current limits: $\lesssim 10^{-30}$ PeV)

[BARENBOIM, QUIGG, *PRD* **67**, 073024 (2003)] [BEACOM, BELL, HOOPER, PAKVASA, WEILER, *PRL* **90**, 181301 (2003)] [MALTONI, WINTER, *JHEP* **07**, 064 (2008)] [BAERWALD, MB, WINTER, *JCAP* **1210**, 020 (2012)] [PAGLIAROLI, PALLADINO, VILLANTI, VISSANI, *PRD* **92**, 113008 (2015)]

The new ν physics tensor

Where it happens?

	At source	During propagation	At detection
Spectrum	Matter effects	New interactions, sterile neutrinos	New resonances
Direction	DM decay / annihilation	New v -N, v-DM interactions	Anomalous v magnetic moment
Flavor ratios	Matter effects	u decay, sterile $ u$, new operators	Non-standard interactions
	Spectrum Direction Flavor ratios	At sourceSpectrumMatter effectsDirectionDM decay / annihilationFlavor ratiosMatter effects	At sourceDuring propagationSpectrumMatter effectsNew interactions, sterile neutrinosDirectionDM decay / annihilationNew ν-N, ν-DM interactionsFlavor ratiosMatter effectsν decay, sterile ν, new operators

How is the new physics introduced?/

[ARGÜELLES, BUSTAMANTE, CONRAD, KHEIRANDISH, VINCENT, In prep.]

New physics in the spectral shape: $\nu - \nu$ interaction

Secret neutrino interactions between astrophysical neutrinos and the cosmic neutrino background:

Cross section:

$$\sigma = \frac{g^4}{4\pi} \frac{s}{(s - M^2)^2 + M^2 \Gamma^2}$$

Resonance at

$$E_{\rm res} = \frac{M^2}{2m_{\rm v}}$$

[NG & BEACOM, *PRD* **6**, 065035 (2014)] [CHERRY, FRIEDLAND, SHOEMAKER, 1411.1071] [BLUM, HOOK, MURASE, 1408.3799]

GRAND: Will need resolution of 0.1-0.2 in $\log_{10} E$

New physics in the angular dist.: $\nu - N$ interaction

Angular distribution of IceCube (contained) events (10 TeV–2 PeV) compatible with SM ν –N cross sections —

GRAND: Test σ at $E_{cm} \gtrsim 1$ PeV (vs. ~ 25 GeV man-made, ~ TeV IceCube) [CONNOLLY, THORNE, WATER, PRD 2011 [1102.0691]]

New physics in the angular dist.: ν -DM interaction

Interaction between IceCube neutrinos and the Galactic DM profile —

[ARGÜELLES et al. 1703.00451]

Expected: fewer events towards the Galactic Center

Observed: Isotropy

GRAND: Angular resolution of $\lesssim 0.05^{\circ}$ can test the inner GC

New physics in the flavor composition

Flavor ratios — at production

 $p\gamma \rightarrow \Delta^+(1232) \rightarrow \pi^+ n \qquad \pi^+ \rightarrow \mu^+ \nu_\mu \rightarrow e^+ \nu_e \bar{\nu}_\mu \nu_\mu$

Flavor ratios at production: $(f_e: f_\mu: f_\tau)_S \approx (1/3: 2/3: 0)$

 $(1/3:2/3:0)_{S}$ 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 *f*_{τ,S}_{0.6} 0.5 $f_{\mu,S}$ 0.4 0.7 0.3 0.8 0.2 0.9 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Ó 0.1 $f_{e,S}$

 $(1/3:2/3:0)_{S}$ 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 *f*_{τ,S}_{0.6} 0.5 $f_{\mu,S}$ 0.4 0.7 0.3 0.8 0.2 0.9 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Ó 0.1 $f_{e,S}$

 $(1/3:2/3:0)_{S}$ 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 *f*_{τ,S}_{0.6} 0.5 $f_{\mu,S}$ 0.4 0.7 0.3 0.8 0.2 0.9 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Ó 0.1 $f_{e,S}$

 $f_{\tau,\oplus}$ outside [0.30,0.35] could imply new physics

The flavor problem in GRAND

GRAND sees ν_{τ} (to first order)

- To compute $f_{\tau,\oplus} \equiv \Phi_{\nu_{\tau}}/\Phi_{\text{tot}}$, we need the Φ_{tot} from elsewhere
- Φ_{tot} only available if ARA, ARIANNA, ANITA see a flux
- $\blacktriangleright\,$ So, flavor studies only possible if the cosmogenic ν flux is $\gtrsim 10^{-9}\,$ GeV cm^{-2} s^{-1} sr^{-1}\,

New physics — of the truly exotic kind

What kind of NP lives outside the blue region?

> NP that changes the values of the mixing parameters, e.g.,

violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

violation of equivalence principle

[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

coupling to a torsion field

[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

renormalization-group running of mixing parameters

[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

- ► active-sterile mixing [AEIKENS et al., JCAP 10, 1510 (2015)] [BRDAR et al., 1611.04598]
- flavor-violating physics
- $v \bar{v}$ mixing (if v, \bar{v} flavor ratios are considered separately)

New physics — high-energy effects (I)

Add a new-physics term to the standard oscillation Hamiltonian:

 $H_{\rm tot} = H_{\rm std} + H_{\rm NP}$

$$H_{\text{std}} = \frac{1}{2E} U_{\text{PMNS}}^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2 \right) U_{\text{PMNS}}$$
$$H_{\text{NP}} = \sum_{n} \left(\frac{E}{\Lambda_n} \right)^n U_n^{\dagger} \operatorname{diag} \left(O_{n,1}, O_{n,2}, O_{n,3} \right) U_n$$

n = 1

n = 0

- coupling to a torsion field
- CPT-odd Lorentz violation

- equivalence principle violation
- CPT-even Lorentz violation

Experimental upper bounds from atmospheric v's: $O_0 \lesssim 10^{-23} \text{ GeV}$ $O_1/\Lambda_1 \lesssim 10^{-27} \text{ GeV}$

[Argüelles, Katori, Salvadó, *PRL* **115**, 161303 (2015)] [MB, Gago, Peña-Garay, *JHEP* **1004**, 005 (2010)] [IceCube Coll., *PRD* **82**, 112003 (2010)] [SUPER-K Coll., *PRD* **91**, 052003 (2015)]

New physics — high-energy effects (II)

Truly exotic new physics is indeed able to populate the white region:

- use current bounds on $O_{n,i}$
- sample the unknown NP mixing angles

[ARGÜELLES, KATORI, SALVADÓ PRL 115, 161303 (2015)]

Joint production of UHECRs, ν 's, and γ 's

neutrino energy \simeq proton energy / 20 neutrino energy \simeq gamma-ray energy / 2

E.g., 20-PeV protons could make PeV neutrinos and gamma rays

Flavor content of the mass eigenstates

Flavor content for every allowed combination of mixing parameters:

$$|U_{\alpha i}|^2 = |U_{\alpha i}(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP})|^2$$

MB, BEACOM, WINTER, PRL 115, 161302 (2015)

Flavor mixing in high-energy astrophysical neutrinos

Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$ transition:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{k>j} \operatorname{\mathsf{Re}}\left(U_{\alpha j}U_{\alpha k}^{*}U_{\beta j}U_{\beta k}^{*}\right)\sin^{2}\left(\frac{\Delta m_{k j}^{2}L}{4E}\right) + 2\sum_{k>j}\operatorname{\mathsf{Im}}\left(U_{\alpha j}U_{\alpha k}^{*}U_{\beta j}U_{\beta k}^{*}\right)\sin\left(\frac{\Delta m_{k j}^{2}L}{2E}\right)$$

For
$$\begin{cases} E_{\nu} \sim 1 \text{ PeV} \\ \Delta m_{kj}^2 \sim 10^{-4} \text{ eV}^2 \end{cases} \Rightarrow \underbrace{L_{\text{osc}} \sim 10^{-10} \text{ Mpc}}_{\text{high-energy osc. length}} \ll \underbrace{L = 10 \text{ Mpc} - \text{few Gpc}}_{\text{typical astrophysical baseline}}$$

- Therefore, oscillations are very rapid
- They average out after only a few oscillations lengths:

$$\sin^2{(\ldots)} \rightarrow 1/2$$
 , $~\sin{(\ldots)} \rightarrow 0$

Hence, for high-energy astrophysical neutrinos:

 $\langle P_{\alpha\beta} \rangle = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$ \blacktriangleleft incoherent mixture of mass eigenstates

Due to flavor mixing:
$$f_{\alpha,\oplus} = \sum_{\beta} \langle P_{\beta\,\alpha} \rangle f_{\beta,S} = \sum_{\beta} \left(\sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2 \right) f_{\beta,S}$$

 $(1/3:2/3:0)_S \xrightarrow{\text{Best-fit mixing params. NH}} (0.36:0.32:0.32)_{\oplus}$
 $0.1 \xrightarrow{0.1} 0.9 \xrightarrow{0.1} 0.8 \xrightarrow{0.1} 0.2 \xrightarrow{0.1} 0.9 \xrightarrow{0.1} 0.8 \xrightarrow{$

Embracing our ignorance

We ignore or do not know perfectly the two key ingredients -

Flavor ratios at the source

 $0 \leqslant f_{e,S} \leqslant 1$ $0 \leqslant f_{\mu,S} \leqslant 1 - f_{e,S}$ $0 \leq f_{\tau,S} \leq 1 - f_{e,S} - f_{\mu,S}$ 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 $f_{\tau,S_{0.6}}$ $f_{\mu,S}$ 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1 0 02 03 04 0 5 0 6 07 ດ໌ຮ 0.9 Ó 0 1 $f_{e,S}$

Mixing parameters

Flavor composition — standard allowed region

All possible source flavor ratios

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

Std. mixing can access $only \sim 10\%$ of the possible combinations

Flavor composition — standard allowed region

All possible source flavor ratios

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

Std. mixing can access $only \sim 10\%$ of the possible combinations

Selected source compositions

We can look at results for particular choices of ratios at the source:

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

Selected source compositions

We can look at results for particular choices of ratios at the source:

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

Selected source compositions

We can look at results for particular choices of ratios at the source:

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

Energy dependence of the composition at the source

Different ν production channels are accessible at different energies

TP13: pγ model, target photons from co-accelerated electrons [HŪMMER et al., Astropart. Phys. 34, 205 (2010)]

Will be difficult to resolve

[KASHTI, WAXMAN, PRL 95, 181101 (2005)] [LIPARI, LUSIGNOLI, MELONI, PRD 75, 123005 (2007)]

IceCube analysis of flavor composition

Using contained events + throughgoing muons:

- Best fit: $(f_e:f_{\mu}:f_{\tau})_{\oplus} = (0.49:0.51:0)_{\oplus}$
- Compatible with standard source compositions
- Bounds are weak need more data and better flavor-tagging

How does IceCube see neutrinos?

Two types of fundamental interactions:

Tracks

Made mainly by CC v_{μ}

Two event topologies (below $E_{\nu} \sim 5 \text{ PeV}$):

Showers Made by CC $ν_e$ or $ν_τ$; or by NC $ν_x$

Two classes of new physics

- Neutrinos propagate as incoherent mix of v₁, v₂, and v₃
- Each has a different flavor content:

- The flavor ratios at Earth are the result of their combination
- New physics may
 - **1** Only reweigh the proportion of each v_i reaching Earth (*e.g.*, decay)
 - 2 Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Two classes of new physics

- Neutrinos propagate as incoherent mix of v₁, v₂, and v₃
- Each has a different flavor content:

- The flavor ratios at Earth are the result of their combination
- New physics may
 - **1** Only reweigh the proportion of each v_i reaching Earth (*e.g.*, decay)
 - 2 Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Region of flavor ratios accessible with decay

Region of all linear combinations of v_1 , v_2 , v_3 :

Decay can access only ~ 25% of the possible combinations

Region of flavor ratios accessible with decay

Region of all linear combinations of v_1 , v_2 , v_3 :

Decay can access only ~ 25% of the possible combinations