Cosmology: the Cosmic Dawn and Epoch of Reionization

Xiang-Ping Wu

Why is this topic important?

What is currently the biggest challenge in this field? Why?

What do we need to solve it?

Why would GRAND help solve it?

v = 1420 MHz / (1+z) $\lambda = 21 (1+z) \text{ cm}$

Pritchard & Loeb (2011)

Measurements of the CD/EOR

1. Global Signatures (total power)

2. Fluctuations (power spectrum)

3. Imaging (structures)

Global Signature

DARE

Power Spectrum

LWA

MITEoR

HERA

Deep imaging of EoR

Square Kilometre Array (SKA)

Cosmology: the Cosmic Dawn and Epoch of Reionization

Following Mauricio's Order

Why is this topic important?

What is currently the biggest challenge in this field? Why?

What do we need to solve it?

Why would GRAND help solve it?

Signal of EoR

Furlanetto et al. (2003)

$$\delta T \approx 23.5(1+\delta) x_{\rm H} \left(\frac{T_{\rm s} - T_{\rm CMB}}{T_{\rm s}}\right) \left(\frac{\Omega_{\rm b}h^2}{0.02}\right) \left(\frac{0.15}{\Omega_{\rm M}h^2}\right)^{1/2} \left(\frac{1+z}{10}\right)^{1/2} {\rm mK}$$

Need High Sensitivity to see images and structures!

Examples: Measurements of Global Signature of EoR

EDGES

SCI-HI

SCI-HI

Magnitude comparison of foregrounds (blue), residuals from 4.4h of integration(red) and predictions (black)

Cosmology: the Cosmic Dawn and Epoch of Reionization

Following Mauricio's Order

- Why is this topic important?
- What is currently the biggest challenge in this field? Why?
- What do we need to solve it?
- Why would GRAND help solve it?

GRAND's Targets

1. Global Signatures (total power)

(next a few years)

2. Fluctuations (power spectrum)

(next a few years)

3. Imaging (structures)

(next 10 years @ SKA only

Detection of the Global Signature of CD/EoR @ GRAND

Technical Requirements

Frequencies:10 - 200MHzSensitivity:1mKIntegration time:24h for 1 antennaStability:1mK over 24 hCalibration :1mKForegrounds:1mK

Detection of the Global Signature of CD/EoR @ GRAND

Disadvantages

Cosmic Rays & Neutrinos:

time domain: pulses@triggers

CD/EoR Detection : frequency domain: noise

Different Working Modes !

Detection of the Global Signature of CD/EoR @ GRAND

Advantages

Many independent Antannas:

- 1. Good for Stability Control
- 2. Good for Statistics
- 3. Polarization Information