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Pritchard & Loeb (2011)

1420 MHz  / (1 z)  

The best  window

21 (1 z) cm  



Measurements of the CD/EOR

1.  Global Signatures (total power)

2. Fluctuations (power spectrum) 

3. Imaging (structures)



BIGHORNS

SARAS

LEDA

EDGES

SCI-HI

30 
 

 
 

Fig. 5. Science Instrument deployed in space including bi-conical dipoles at the top, supported 

by a light-weight dielectric frame, the 2-m length deployed radials that serve as a ground-plane, 

and the solar panels at the bottom of the spacecraft. 

 

 

 

 
Fig. 6.  Simulated antenna beam pattern as a function of angle at 75 MHz. The response is 

normalized to unity at the maximum, and the coordinate system is chosen such that the antenna 

points toward the positive y-axis (θ=φ=90°). 
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H ydrogen E poch of R eionization A rray (H E R A ) 3

F igu re 1. R endering of the 320-elem ent core (left) of the fullH E R A -350 array and picture of 19 H E R A 14-m , zenith-pointing
dishes (w ith PA P E R elem ents in the background) currently deployed in South A frica (right).

its previous neutral state in a period called the E poch
ofR eionization. T his period is show n in Figure 2 as the
rapid transition from separated large reionized “bub-
bles”to the m erged reionized state and to structures
that begin to resem ble the denizens of our current uni-
verse. T he structure ofthe IG M thuscontainsa panoply
of inform ation about the underlying astrophysical and
cosm ologicalphenom ena governing cosm ic evolution.
T he evolution ofthe cosm ic structure depends on the
localand average cosm ic density,the relative velocities
of baryons and dark m atter, and the sizes and cluster-
ing ofthe first galaxies to form . B ut it also depends on
the constituents ofthose first galaxies—so-called P opu-
lation III stars (stars form ed very early w ith little to no
elem ents heavier than helium ), later generation stars,
stellar rem nants, X -ray binaries, and early superm as-
sive black holes. B ulk properties like ultraviolet and
X -ray lum inosities and spectra also a↵ect the therm al
and ionization states of the IG M . T he w ealth of un-
explored physics during the C osm ic D aw n,culm inating
in the E poch of R eionization, led the m ost recent U S
N ational A cadem ies astronom y decadal survey entitled
N ew W orlds,N ew H orizons to highlight it as one ofthe
top three “priority science objectives”for the decade
(N ationalA cadem y ofScience 2010).
E xploring the interplay of galaxies and large-scale
structure during the E O R requires com plem entary ob-
servational approaches. M easurem ents of the C osm ic
M icrow ave B ackground (C M B ;the photons perm eating
the universe after becom ing transparent to its ow n ra-
diation by the recom bination of the protons and elec-
tronsabout400,000 yearsafterthe B ig B ang)by C O B E ,
W M A P and P lanck provide initialconditions for struc-
ture form ation. T hom son scattering of C M B photons
by the ionized particles constrains the integrated col-
um n ofionized gas and kinetic Sunyaev-Zel’dovich m ea-
surem ents constrain the duration ofthe“patchy”phase
of cosm ic structures. B ut even w ith these m easure-
m ents,the detailed evolution ofthe IG M is only loosely
constrained (H aim an & H older 2003; M ortonson & H u
2008;Zahn et al.2012;M esinger et al.2012). Lym an-↵
absorption features in quasar and γ-ray burst spectra
give ionization constraints at the tailend ofreionization
(z < 7,Fan et al.2006;M cG reer et al.2015),but these
features saturate at low neutral fractions xH I & 10− 4,

F igu re 2. R endering of cosm ic evolution from just after the
B ig B ang to today (background im age credit Loeb/Scientific
A m erican). T he labels show the redshift and the frequency
ofthe red-shifted hydrogen line (rest frequency 1420 M H z) at
di↵erent ages of the U niverse. T he solid w hite lines bracket
the H E R A E O R band and the dashed ones bracket the ex-
tended frequency goal. C M B observations observe the after-
glow ofthe B ig B ang (far left) and B aryonic A coustic O scil-
lation (B A O ) surveys proposed target z ⇡ 0.8-2.5. Lim ited
surveys span back to about z ⇡ 7.

w here xH I isthe fraction ofhydrogen in itsneutralstate.
M easurem ents of galaxy populations in deep H ub-
ble Space Telescope observations have pinned dow n the
bright end of the galaxy lum inosity function at z . 8
(Schenker et al. 2013; B ouw ens et al. 2015b) and are
pushing deeper (e.g.M cLeod et al.2015),but producing
a consistent ionization history requires broad extrapo-
lations to low er-m ass galaxies and ad hoc assum ptions
about the escape fraction of ionizing photons and the
faint-end cuto↵ of ionizing galaxies (R obertson et al.
2015; B ouw ens et al. 2015a). Sim ilarly, deducing the
ionization state ofthe IG M from quasar proxim ity zones
(C arilliet al.2010;B olton et al.2011;B osm an & B ecker
2015) and the dem ographics of Ly-↵ em itting galaxies
(Fontana et al. 2010; Schenker et al. 2012; Treu et al.
2012;D ijkstra etal.2014)isuncertain and highly m odel-
dependent. See F igure 3 for these constraints on the
hydrogen neutral fraction as a function of redshift. A s
show n,existing probesare lim ited in theirability to con-
strain reionization,and w illbe forthe foreseeable future.
H E R A uses another com plem entary probe— the 21 cm
“spin-flip”transition of neutral hydrogen — to bring
new capabilities in this area. T he next sub-sections out-
line these goals.
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Signal of EoR

Need High Sensitivity 

to see images and structures!

Furlanetto et al. (2003)
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(Jelic et al.) 

Need the State-of-Art Technologies  

to remove foregrounds!



Bowman & Rogers 

(2010, Nat 468)

EDGES SCI-HI

arXiv.1311.0014

Examples:  Measurements of Global Signature of EoR



Magnitude comparison of foregrounds (blue), residuals 

from 4.4h of integration(red) and predictions (black)

SCI-HI
arXiv.1311.0014
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GRAND’s Targets   

1.  Global Signatures (total power)

2. Fluctuations (power spectrum) 

3. Imaging (structures)

(next 10 years @ SKA only 

(next a few years) 

(next a few years) 



Detection of  the Global Signature of CD/EoR

@ GRAND

Frequencies:        10 - 200MHz

Sensitivity:           1mK

Integration time:   24h for 1 antenna

Stability:               1mK over 24 h

Calibration :         1mK

Foregrounds:       1mK

Technical Requirements



Detection of  the Global Signature of CD/EoR

@ GRAND

Cosmic Rays & Neutrinos: 

time domain:  pulses@triggers

Disadvantages

CD/EoR Detection : 

frequency domain: noise

Different Working Modes !



Detection of  the Global Signature of CD/EoR

@ GRAND

Advantages

Many independent Antannas:

1. Good for Stability Control

2. Good for Statistics

3. Polarization Information


