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SM has been shamelessly successful in describing all collider and low-
energy experiments. Discovery of 125 GeV Higgs boson is the last piece of 
puzzle that falls into place. There is no more free unknown parameters in 
the SM

We know physics beyond SM exists (neutrino masses, dark matter, inflation, 
baryon asymmetry).  There are also some theoretical hints for new physics 
(strong CP problem, flavor hierarchies, gauge coupling unifications). 
Unfortunately, none of these issues points unambiguously to a concrete mass 
scale where new physics addressing the above mentioned problems should 
become manifest... 

In the past, the concept of naturalness was used as a guiding principle. 
Models addressing naturalness problem (supersymmetry, composite Higgs, ...) 
make very definite predictions about new particles and interactions that 
should become visible below 1 TeV energy scale. But all realistic models 
addressing naturalness have certain tensions and involve baroque theoretical 
constructions, which casts serious doubts on whether they are relevant in 
our reality  

Status report
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It is likely that for some time (maybe a few decades, maybe longer) we 
won’t be able to directly produce on-shell particles from beyond the SM

However, quantum mechanics comes to a rescue as all existing particle are 
continuously produced and annihilated off-shell,  and this way they may the 
affect the properties and interactions of the known SM particles

Therefore, in the near future of particle physics should be focused on 
precision measurements  

For this we need a versatile and general formalism, which can accommodate 
many different ways new physics may show up
 in experiment and indicate promising research directions

Lord Kelvin’s nightmare
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Fantastic Beasts and Where To Find Them
CMS

Imaginary  

Λ

x) It looks more and more likely that new degrees of freedom beyond the SM may not 
be directly available at the LHC or even at future colliders

x) However, even if it is not possible to see the head, it may be possible to see the tail...
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SM EFT, effective theory for the SM degrees of freedom where the electroweak 
symmetry is realized as a linear transformation of the SM fields

HEFT, effective theory for the SM degrees of freedom where electroweak 
symmetry is realized non-linearly 

Ad-hoc modifiers for SM couplings 

Formalisms for precision measurements

+

3 formalisms in use
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Assume that the SM degrees of freedom is all there is at the weak scale. But we 
treat the SM as an effective theory, and call it the SM EFT

In the SM EFT, the SM Lagrangian is treated as the lowest order approximation of 
the dynamics. Effects of heavy particles are encoded in new contact interactions of 
the SM fields in the Lagrangian

The SM EFT Lagrangian can be defined as an expansion in the inverse mass scale of 
heavy particles, which coincides with the expansion in operator dimensions  

Under certain (mild) assumptions, the SM EFT framework  allows one to describe 
effects of new physics beyond the SM in a model independent way

SM EFT
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X X

SM EFT Approach to BSM

Much as in SM, relativistic QFT with linearly 
realized SU(3)xSU(2)xU(1) local symmetry 
spontaneously broken by VEV of Higgs doublet field

SM EFT Lagrangian  expanded in inverse powers of 
Λ, equivalently in operator dimension D 

Basic assumptions

Lepton number or B-L violating, 
hence too small to probed at present  

and near-future colliders

By assumption, 
subleading

to D=6

Generated by integrating out 
heavy particles with mass scale Λ

In large class of BSM models that conserve B-L, 
D=6 operators capture leading effects of new physics

on collider observables at E << Λ

Buchmuller,Wyler
 (1986)
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The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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Warsaw basis for B-conserving D=6 operators

Grządkowski et al.
 1008.4884

This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the
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Framework general enough to describe leading effects of a large class (though not 
all!) of BSM scenarios

Theoretical correlations between signal and background and different signal 
channels taken into account 

Very easy to recast SM EFT results as constraints on specific BSM models 

SM EFT is consistent QFT, so that calculations and predictions can be systematically 
improved (higher-loops, higher order terms in EFT expansion if needed). In 
particular, SM EFT is renormalizable at each order in 1/Λ expansion

Some tools to assess validity of 1/Λ expansion 

Advantages of SM EFT 

Friday, April 21, 17



Alternative formalism inspired by low-energy QCD 
description of pions and kaons

No linear electroweak symmetry realized in 
Lagrangian -> replaced by non-linear version

Expansion in operator dimensions replaced by 
derivative expansion 

HEFT 

X h(x)

Λ 4πvX
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Chapter II.2. EFT Formalism 341

lous Higgs boson couplings, will be reviewed. The connection with the more common EFT based on
power counting by canonical dimension (SM + dimension-6 operators, sometimes referred to as SMEFT)
will also be discussed. We start with a phenomenologically oriented introduction, which will be followed
by a systematic formulation of the nonlinear EFT.

A central goal of the LHC after the discovery of the Higgs boson will be a more comprehensive
investigation of its properties in order to test the underlying dynamics of electroweak symmetry break-
ing. At present, the Higgs boson couplings to gauge bosons and top quarks are compatible with the SM,
but deviations of O(10%) are still possible [6]. For the couplings to other fermions, or the triple-Higgs
boson coupling, even larger effects are not excluded. Anomalous Higgs boson couplings have the po-
tential to give much larger effects than new physics in electroweak gauge interactions, which is typically
constrained to the O(1%) level by electroweak precision measurements [721].

It then appears natural to focus the attention, in a first step, on the couplings of the Higgs particle.
This goal is also well motivated by the foreseeable precision at the LHC with 300 fb�1, projected to reach
several per cent accuracy for the Higgs boson couplings to gauge bosons and heavy fermions [724].

Following this line of reasoning, one is led to consider a generalization of the SM, in which the
gauge interactions are unchanged (at leading order), but general anomalous couplings are introduced for
the physical Higgs boson. To do this in a consistent, gauge-invariant way, the scalar fields have to be
decomposed into the three Goldstone fields 'a, described by

U = exp(2i'aT a/v) (II.2.161)

where T a are the generators of SU(2) with normalization Tr[T aT b] = �ab/2, and the physical Higgs
field h. This corresponds to a decomposition of the usual Higgs doublet �i, �̃i = "ij�⇤

j , into polar
coordinates p

2(�̃,�) ⌘ (v + h)U (II.2.162)

Under electroweak gauge transformations SU(2)L ⇥ U(1)Y

U ! gLUg†
Y , h ! h (II.2.163)

such that h is invariant, and its couplings can be consistently modified.II.45

The resulting generalized Lagrangian can be written as

L2 = �1

2
hGµ⌫G

µ⌫i � 1

2
hWµ⌫W

µ⌫i � 1

4
Bµ⌫B

µ⌫ +
X

 =qL,lL,uR,dR,eR

 ̄i 6D 

+
v2

4
hDµU †DµUi (1 + FU (h)) +

1

2
@µh@µh � V (h)

�v

"

q̄L

 

Yu +
1
X

n=1

Y (n)
u

✓

h

v

◆n
!

UP+qR + q̄L

 

Yd +
1
X

n=1

Y (n)
d

✓

h

v

◆n
!

UP�qR

+l̄L

 

Ye +
1
X

n=1

Y (n)
e

✓

h

v

◆n
!

UP�lR + h.c.

#

(II.2.164)

where
DµU = @µU + igWµU � ig0BµUT3, (II.2.165)

II.45The generic name of “nonlinear” comes from the fact that the scalar sector of the SM has a larger symmetry SU(2)L ⇥
SU(2)R (usually called chiral EW symmetry), under which the EW Goldstone bosons 'a in (II.2.161) transform nonlinearly,
in contrast to the usual Higgs doublet field, which transforms linearly. The relevant symmetry breaking pattern in the scalar
sector is then given by SU(2)L ⇥ SU(2)R ! SU(2)L+R, where the SU(2)L+R is usually called the custodial symmetry
group.
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and P± = 1/2 ± T3. The trace of a matrix A is denoted by hAi. The left-handed doublets of quarks and
leptons are written as qL and lL, the right-handed singlets as uR, dR, eR. Generation indices are omitted.
In the Yukawa terms the right-handed quark and lepton fields are collected into qR = (uR, dR)T and
lR = (⌫R, eR)T , respectively. In general, different flavour couplings Y (n)

u,d,e can arise at every order in
the Higgs field hn, in addition to the usual Yukawa matrices Yu,d,e. The detailed assumptions underlying
(II.2.164) are summarized in points (i) – (iii) below.

The first line in (II.2.164) represents the unbroken SM and the remaining lines describe the sector
of electroweak symmetry breaking. The h-dependent functions, analytic near zero field, are

FU (h) =
1

X

n=1

fU,n

✓

h

v

◆n

, V (h) = v4
1

X

n=2

fV,n

✓

h

v

◆n

(II.2.166)

In addition to modifying the Higgs boson couplings present in the SM, new couplings with higher powers
in the field h are introduced. All these couplings may deviate, in principle, by corrections of O(1)
from their (dimensionless) SM values. For smaller deviations, the Lagrangian in (II.2.164) continues
to describe the leading new-physics effects, as long as the anomalous couplings in the Higgs sector
dominate over other corrections from physics beyond the SM. (Those would be represented by operators
of chiral dimension 4 and higher, see the discussion of power counting below.)

While L2 in (II.2.164) is gauge invariant, it is no longer renormalizable for general Higgs boson
couplings. Renormalizability would be recovered in the SM limit where

fU,1 = 2, fU,2 = 1, fV,2 = fV,3 =
m2

h

2v2
, fV,4 =

m2
h

8v2
, Y (1)

f = Yf , (II.2.167)

and all other couplings fU,n, fV,n, Y (n)
f equal to zero. In this limit (II.2.164) is just the SM written in

somewhat unconventional variables. All S-matrix elements are of course identical to the ones obtained
with the familiar linear Lagrangian.

If the deviations of the couplings from their SM values are smaller than unity, it is useful to
parameterize them by a quantity ⇠ ⌘ v2/f2, where f > v represents a new scale (which could be
related to a new strongly interacting dynamics). In models of a composite, pseudo-Goldstone Higgs
[658, 766–775] f corresponds to the Goldstone-boson decay constant. Experimentally, values of ⇠ =
O(10%) are currently still allowed.

For general Higgs boson couplings, the Lagrangian L2, nonrenormalizable in the traditional sense,
is still renormalizable in the modern sense, order by order in a consistent expansion [776]. It therefore
continues to serve as a fully consistent effective field theory. This EFT is known as the electroweak chiral
Lagrangian including a light Higgs boson. For the case without Higgs the electroweak chiral Lagrangian
has been formulated and applied in [777–793]. The generalization to include a light Higgs boson has
been developed in [683, 785, 794–804].

Having motivated the basic structure of the electroweak chiral Lagrangian, it is useful to sum-
marize the most important assumptions that define it as a systematic EFT. These concern the particle
content below a certain mass gap, the relevant symmetries, and the power counting:
(i) SM particle content, where (transverse) gauge bosons and fermions are weakly coupled to the Higgs-

sector dynamics.
(ii) SM gauge symmetries; conservation of lepton and baryon number; conservation at lowest order of

custodial symmetry in the strong sector, CP invariance in the Higgs sector and fermion flavour.
The latter symmetries are violated at some level, but this would only affect terms at subleading
order. Generalizations may in principle be introduced if necessary.

(iii) Power counting by chiral dimensions [805–808], equivalent to a loop expansion [683], with the
simple assignment of 0 for bosons (gauge fields Xµ, Goldstones ' and Higgs h) and 1 for each
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lous Higgs boson couplings, will be reviewed. The connection with the more common EFT based on
power counting by canonical dimension (SM + dimension-6 operators, sometimes referred to as SMEFT)
will also be discussed. We start with a phenomenologically oriented introduction, which will be followed
by a systematic formulation of the nonlinear EFT.

A central goal of the LHC after the discovery of the Higgs boson will be a more comprehensive
investigation of its properties in order to test the underlying dynamics of electroweak symmetry break-
ing. At present, the Higgs boson couplings to gauge bosons and top quarks are compatible with the SM,
but deviations of O(10%) are still possible [6]. For the couplings to other fermions, or the triple-Higgs
boson coupling, even larger effects are not excluded. Anomalous Higgs boson couplings have the po-
tential to give much larger effects than new physics in electroweak gauge interactions, which is typically
constrained to the O(1%) level by electroweak precision measurements [721].

It then appears natural to focus the attention, in a first step, on the couplings of the Higgs particle.
This goal is also well motivated by the foreseeable precision at the LHC with 300 fb�1, projected to reach
several per cent accuracy for the Higgs boson couplings to gauge bosons and heavy fermions [724].

Following this line of reasoning, one is led to consider a generalization of the SM, in which the
gauge interactions are unchanged (at leading order), but general anomalous couplings are introduced for
the physical Higgs boson. To do this in a consistent, gauge-invariant way, the scalar fields have to be
decomposed into the three Goldstone fields 'a, described by

U = exp(2i'aT a/v) (II.2.161)

where T a are the generators of SU(2) with normalization Tr[T aT b] = �ab/2, and the physical Higgs
field h. This corresponds to a decomposition of the usual Higgs doublet �i, �̃i = "ij�⇤

j , into polar
coordinates p

2(�̃,�) ⌘ (v + h)U (II.2.162)

Under electroweak gauge transformations SU(2)L ⇥ U(1)Y

U ! gLUg†
Y , h ! h (II.2.163)

such that h is invariant, and its couplings can be consistently modified.II.45

The resulting generalized Lagrangian can be written as

L2 = �1

2
hGµ⌫G

µ⌫i � 1

2
hWµ⌫W

µ⌫i � 1

4
Bµ⌫B

µ⌫ +
X

 =qL,lL,uR,dR,eR

 ̄i 6D 

+
v2

4
hDµU †DµUi (1 + FU (h)) +

1

2
@µh@µh � V (h)

�v

"

q̄L

 

Yu +
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X

n=1

Y (n)
u
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h

v

◆n
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UP+qR + q̄L
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n=1

Y (n)
d

✓

h

v

◆n
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UP�qR
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Ye +
1
X

n=1

Y (n)
e

✓

h

v

◆n
!

UP�lR + h.c.

#

(II.2.164)

where
DµU = @µU + igWµU � ig0BµUT3, (II.2.165)

II.45The generic name of “nonlinear” comes from the fact that the scalar sector of the SM has a larger symmetry SU(2)L ⇥
SU(2)R (usually called chiral EW symmetry), under which the EW Goldstone bosons 'a in (II.2.161) transform nonlinearly,
in contrast to the usual Higgs doublet field, which transforms linearly. The relevant symmetry breaking pattern in the scalar
sector is then given by SU(2)L ⇥ SU(2)R ! SU(2)L+R, where the SU(2)L+R is usually called the custodial symmetry
group.

HEFT 
Introduce triplet of 
Goldstone field φ

via unitary matrix U
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lous Higgs boson couplings, will be reviewed. The connection with the more common EFT based on
power counting by canonical dimension (SM + dimension-6 operators, sometimes referred to as SMEFT)
will also be discussed. We start with a phenomenologically oriented introduction, which will be followed
by a systematic formulation of the nonlinear EFT.

A central goal of the LHC after the discovery of the Higgs boson will be a more comprehensive
investigation of its properties in order to test the underlying dynamics of electroweak symmetry break-
ing. At present, the Higgs boson couplings to gauge bosons and top quarks are compatible with the SM,
but deviations of O(10%) are still possible [6]. For the couplings to other fermions, or the triple-Higgs
boson coupling, even larger effects are not excluded. Anomalous Higgs boson couplings have the po-
tential to give much larger effects than new physics in electroweak gauge interactions, which is typically
constrained to the O(1%) level by electroweak precision measurements [721].

It then appears natural to focus the attention, in a first step, on the couplings of the Higgs particle.
This goal is also well motivated by the foreseeable precision at the LHC with 300 fb�1, projected to reach
several per cent accuracy for the Higgs boson couplings to gauge bosons and heavy fermions [724].

Following this line of reasoning, one is led to consider a generalization of the SM, in which the
gauge interactions are unchanged (at leading order), but general anomalous couplings are introduced for
the physical Higgs boson. To do this in a consistent, gauge-invariant way, the scalar fields have to be
decomposed into the three Goldstone fields 'a, described by

U = exp(2i'aT a/v) (II.2.161)

where T a are the generators of SU(2) with normalization Tr[T aT b] = �ab/2, and the physical Higgs
field h. This corresponds to a decomposition of the usual Higgs doublet �i, �̃i = "ij�⇤
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coordinates p

2(�̃,�) ⌘ (v + h)U (II.2.162)

Under electroweak gauge transformations SU(2)L ⇥ U(1)Y

U ! gLUg†
Y , h ! h (II.2.163)

such that h is invariant, and its couplings can be consistently modified.II.45

The resulting generalized Lagrangian can be written as
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where
DµU = @µU + igWµU � ig0BµUT3, (II.2.165)

II.45The generic name of “nonlinear” comes from the fact that the scalar sector of the SM has a larger symmetry SU(2)L ⇥
SU(2)R (usually called chiral EW symmetry), under which the EW Goldstone bosons 'a in (II.2.161) transform nonlinearly,
in contrast to the usual Higgs doublet field, which transforms linearly. The relevant symmetry breaking pattern in the scalar
sector is then given by SU(2)L ⇥ SU(2)R ! SU(2)L+R, where the SU(2)L+R is usually called the custodial symmetry
group.

Transformation of U
under SU(2)LxU(1)

implies electroweak symmetry
is realized non-linearly on φ Higgs boson is perfect singlet

under electroweak symmetry

Lowest order
Lagrangian

supplemented
by higher-derivative

terms

for review see e.g. 
LHCHXSWG 1610.07922
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derivative, weak coupling (e.g. gauge or Yukawa), and fermion bilinear:

[Xµ,', h]� = 0 , [@µ, g, y,  ̄]� = 1 (II.2.168)

The loop order L of a term in the Lagrangian is equivalent to its chiral dimension (or chiral order)
2L + 2.
Under these assumptions the expression in (II.2.164) follows as the most general Lagrangian built

from terms of chiral dimension 2 (corresponding to loop-order L = 0). This is the systematic basis for
the leading-order electroweak chiral Lagrangian.

Functions F (h) multiplying the Higgs or the fermion kinetic terms can be removed by field redef-
initions and are therefore omitted in (II.2.164) [653, 801].

Note that the Higgs potential V (h), being related to the light Higgs boson mass ⇠ m2
h, carries

chiral dimension 2. This is explicitly realized in models where the Higgs is a pseudo-Goldstone and its
potential is generated at one loop (proportional to two powers of weak coupling, hidden in the coefficients
fV,n) [658, 770–773].

Expressions of the form ( ̄ )2(h/v)n,  ̄�µ⌫ Xµ⌫(h/v)n, Xµ⌫Xµ⌫(h/v)n+1, n � 0, where
 is a fermion and Xµ⌫ a gauge field-strength tensor, might superficially look like terms entering the
Lagrangian at chiral dimension 2. However, they represent local interactions arising from the (weak)
coupling of  and X to the new-physics sector, according to assumption (i) above. The weak coupling
associated with  ̄ or Xµ⌫ carries chiral dimension. The operators above then acquire a chiral dimension
of at least 4, which eliminates them from the leading-order Lagrangian [683].

II.2.4.b Renormalization of the chiral Lagrangian
As the electroweak chiral Lagrangian defines a consistent quantum field theory, loop corrections can be
systematically included. For the case without Higgs field this has been discussed in detail in [809–813].
The one-loop divergent parts arising from the scalar sector have recently been also obtained in the chiral
Lagrangian including the light Higgs boson [800, 814–818].

At one-loop order, terms up to chiral dimension 4 need to be included and the Lagrangian can be
written as L = L2 + L4 + LGF + LFP, including also gauge-fixing and ghost terms. In general, the
leading-order approximation is given by the tree-level amplitudes from L2. The next-to-leading order
corrections consist of the one-loop amplitudes with vertices from L2, together with tree-level contribu-
tions to first order in L4. The latter comprise new interactions, not present in L2, and act as counterterms
for the one-loop divergences. In general, they may get contributions from heavy states with masses of
order ⇤ that are integrated out in the EFT [819–821]. This pattern is known from the chiral perturba-
tion theory of pions. It is typical for the systematics of a nonrenormalizable EFT. Explicit examples are
discussed in Section II.2.4.e.

The local operators in L4 have been discussed for the bosonic sector in [799], a subset of the
fermionic terms has been considered in [822]. A systematic presentation of the complete basis of local
operators in L4 can be found in [801]. Concentrating on the electroweak bosonic sector one has (with
2a = fU,1, b = fU,2 in (II.2.166))

L2 = �1

2
hWµ⌫W

µ⌫i � 1

4
Bµ⌫B

µ⌫

+
v2

4



1 + 2a
h

v
+ b

h2

v2
+ . . .

�

hDµU †DµUi +
1

2
@µh @µh + . . .

L4 = a1g
0ghUT3Bµ⌫U

†Wµ⌫i + ia2g
0hUT3Bµ⌫U

†[V µ, V ⌫ ]i � ia3ghWµ⌫ [V
µ, V ⌫ ]i

+a4hVµV⌫ihV µV ⌫i + a5hVµV µihV⌫V
⌫i +

e2

16⇡2
c��

h

v
Fµ⌫F

µ⌫ +
ghh

v4
(@µh@µh)2
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Table 102: Example of the renormalization structure. Running of some NLO coefficients [800, 814, 815].

�a1�a2+a3 �c�� �a1 �a2�a3 �a4 �a5

0 0 �1
6(1 � a2) �1

6(1 � a2) 1
6(1 � a2)2 1

8(b � a2)2 + 1
12(1 � a2)2

+
dhh

v2
(@µh@µh)hD⌫U

†D⌫Ui +
ehh

v2
(@µh@⌫h)hDµU †D⌫Ui + . . . (II.2.169)

where Vµ ⌘ (DµU)U † and Fµ⌫ is the photon field strength. Here only a subset of the operators in L4

has been displayed, corresponding to those needed in the discussion below. All operators that need to be
included as counterterms are manifestly custodially preserving, except for the custodial breaking from
U(1)Y . This is so because the initial theory is custodially invariant when Yukawas are neglected.

As a simple example for renormalization, consider the oblique S-parameter. The first non-vanishing
contribution to S appears at NLO. One finds that the one-loop amplitude is UV–divergent and needs to
be renormalized by means of the NLO parameter a1. In the MS scheme one obtains [787, 815, 819]

S = � 16⇡ar
1 +

(1 � a2)

12⇡

✓

5

6
+ ln

µ2

m2
h

◆

(II.2.170)

In this expression, the oblique parameter is defined with the reference value mRef
h set to the physical

Higgs boson mass [738]. Since fermionic couplings to gauge bosons receive only NLO contributions
from new physics, fermion loops do not affect this result. Their impact would be a NNLO effect..

Renormalization leads to a scale dependence of the coefficients. In general, the relation between
a given renormalized chiral parameter Cr(µ) and the corresponding bare parameter C(B) from the L4

Lagrangian (e.g. a1), together with the resulting µ-dependence, is given by

dCr

d ln µ
= � �C

16⇡2
, Cr(µ) = C(B) +

�C

32⇡2

1

✏̂
(II.2.171)

where an MS subtraction of the UV divergence has been performed. Here 1/✏̂ = µ�2✏(1/✏��E+ln 4⇡),
with D = 4 � 2✏.

The running of the L4 parameters C = a1, a2, a3, c�� [815] (relevant e.g. for �� ! wawb)
and of C = a4, a5 (contributing to ZZ and W+W� scattering [800, 814]) is shown in Table 102. It is
apparent that the S-parameter in (II.2.170) is independent of the renormalization scale µ.

II.2.4.c Connection of chiral Lagrangian to -formalism
The couplings of the leading-order Lagrangian in (II.2.164), which are non-standard in general, are
displayed in Figure 187. They parameterize the leading new-physics effects in tree-level processes.

A further consideration is needed for the application of the chiral Lagrangian to processes that
arise only at one-loop level in the SM. Important examples are h ! gg, h ! �� and h ! Z�. In
this case local terms at NLO will also become relevant, in addition to the standard loop amplitudes with
modified couplings from (II.2.164). The reason is that both contributions can lead to deviations of the
amplitude from the SM at the same order, ⇠ ⇠/16⇡2. The complete list of NLO operators has first been
worked out in [801]. The terms that are relevant here are

e2Fµ⌫F
µ⌫h, eg0Fµ⌫Z

µ⌫h, g2
shGµ⌫G

µ⌫ih (II.2.172)

On the other hand, the analogous terms g02Zµ⌫Zµ⌫h and g2W+
µ⌫W

�µ⌫h in the subleading Lagrangian
yield only subleading contributions, of O(⇠/16⇡2), to the tree-level amplitudes for h ! ZZ and h !

Friday, April 21, 17



More general than SM EFT, so more flexible to describe BSM models

HEFT is consistent QFT, so that calculations and predictions can be systematically 
improved (higher-loops, higher order terms in EFT expansion if needed). In 
particular, HEFT is renormalizable at each order in loop expansion

Advantages of HEFT 

However

The non-linear Lagrangian becomes strongly coupled at the scale 4πv∼3 TeV, where 
amplitudes lose perturbative unitarity. This is true even for very small deformations 
from the SM, due to multi-Higgs production processes quickly growing with energy

The non-linear formalism is relevant probably only for BSM theories with new particles 
whose masses vanish in the limit on no electroweak symmetry breaking  
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Couplings to 
EW gauge 

bosons

Self-
Couplings Couplings 

to fermions

Coupling modifiers

Assume only new physics only modifies coupling  strength of interactions 
already present in SM Lagrangian

Note that this makes sense only at tree level, as loops will always generate counterterms 
for interactions that go beyond the SM Lagrangian

Similarly as for HEFT,  amplitudes hit strong coupling around the scale 4πv∼3 TeV, 
even for very small deformations of the couplings  from the SM value
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Higgs Couplings
in effective theories
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Corrections to Higgs self-
couplings 

Corrections to SM Higgs 
couplings to 2 SM fields and 
new tensor structures of 
these interactions

Higgs couplings to 3 or more 
SM particles affecting multi-
body Higgs decays 

Effects of SM EFT D=6 operators on Higgs couplings
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Map from Warsaw basis 

where again all the couplings are real. In order to define a complete basis of D=6

operators in the next section I will need the dipole type couplings:

Ldipole = �1 + h/v

4v

"
gs

X

f2u,d

p
mfImfJ

v
f c
I�µ⌫T

a[dGf ]IJfJG
a
µ⌫

+e
X

f2u,d,e

p
mfImfJ

v
f c
I�µ⌫ [dAf ]IJfJAµ⌫

+
q
g2L + g2Y

X

f2u,d,e

p
mfImfJ

v
f c
I�µ⌫ [dZf ]IJfJZµ⌫

+
p
2gL

p
muImuJ

v
uc
I�µ⌫ [dWu]IJdJW

+
µ⌫ +

p
2gL

p
mdImdJ

v
dcI�µ⌫ [dWd]IJuJW

�
µ⌫

+
p
2gL

p
meImeJ

v
ecI�µ⌫ [dWe]IJ⌫JW

�
µ⌫ + h.c.

�
, (2.37)

where �µ⌫ = i
2 (�µ�̄⌫ � �⌫ �̄µ), and dGf , dAf , dZf , and dWf are general complex 3⇥ 3

matrices.

The couplings, in Eq. (2.35), Eq. (2.36), and Eq. (2.37) are related to the Wilson

coe�cients in the Warsaw basis by:

�cw = cH⇤ � 5g2L � g2Y
4(g2L � g2Y )

cHD � 4gLgY
g2L � g2Y

cHWB +
3g2L + g2Y
4(g2L � g2Y )

⇣
[c``]1221 � 2[c(3)H`]11 � 2[c(3)H`]22

⌘
,

�cz = cH⇤ � 1

4
cHD +

3

4

⇣
[c``]1221 � 2[c(3)H`]11 � 2[c(3)H`]22

⌘
, (2.38)

[�yf ]IJe
i�f

IJ = � vp
2mfImfJ

[c†fH ]IJ+�IJ

✓
cH⇤ � 1

4
cHD +

1

4
[c``]1221 � 1

2
[c(3)H`]11 �

1

2
[c(3)H`]22

◆
,

(2.39)

24

cgg =
4

g2s
cHG,

cww =
4

g2L
cHW ,

c�� = 4

✓
1

g2L
cHW +

1

g2Y
cHB � 1

gLgY
cHWB

◆
,

czz = 4
g2LcHW + g2Y cHB + gLgY cHWB

(g2L + g2Y )
2

,

cz� =
4cHW � 4cHB � 2

g2L�g2Y
gLgY

cHWB

g2L + g2Y
, (2.40)

c̃gg =
4

g2s
cHG̃,

c̃�� = 4

✓
1

g2L
cHW̃ +

1

g2Y
cHB̃ � 1

gLgY
cHW̃B

◆
,

c̃zz = 4
g2LcHW̃ + g2Y cHB̃ + gLgY cHW̃B

(g2L + g2Y )
2

,

c̃z� =
4cHW̃ � 4cHB̃ � 2

g2L�g2Y
gLgY

cHW̃B

g2L + g2Y
, (2.41)

cz⇤ =
1

2g2L

⇣
cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

⌘
,

c�⇤ =
1

g2L � g2Y

✓
2
g2L + g2Y
gLgY

cHWB + cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

◆
,

cw⇤ =
1

2(g2L � g2Y )

✓
4
gY
gL

cHWB + cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

◆
, (2.42)

25

The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.

13

relative correction to W mass

 Higgs couplings to pairs of SM fields in SM EFT

Important: correlations between 
different parameters describing 

deviations from SM
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In SM EFT Higher-point Higgs vertices with gauge bosons and fermions are 
correlated with gauge boson couplings to fermions  

Thus, they are related to precisely measured observables at LEP and low-energy 
experiments

Correlations between higher order Higgs couplings and vertex corrections in SM EFT

LHCHXSWG
1610.07922

All in all, vertex- and dipole-type interactions of Higgs with 2 fermions and 1 
gauge field can be neglected in the LHC context, given constraints from other 

precision experiments (and assuming MFV)
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 Higgs couplings in HEFT

However, no correlation 
between Higgs 

and non-Higgs couplings! 

Also, no correlation 
between

couplings to WW and to 
ZZ/Zγ/γγ, 

unless custodial symmetry
imposed

Testing the correlations may be one day the best means of
differentiating between the SM EFT and HEFT descriptions 

All the same couplings 
as in SM EFT do arise

Friday, April 21, 17



In SM EFT there is order parameter Λ that controls deviations of Higgs boson 
couplings from SM predictions.  As long as Λ/g*>>v, the couplings should be close 
to SM values, as measured by LHC experiments. 

In HEFT there is no order parameter that controls deviations of Higgs boson 
couplings from SM predictions. The experimental proximity of Higgs boson 
couplings to SM values must be considered accidental in the HEFT framework

Expansion parameter for  Higgs couplings

SM EFT HEFT
free O(1) parameter free O(1) parameter
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LHC Higgs vs
other precision 
measurements
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LHC Higgs new physics reach

Example (always arise for composite Higgs)
This operator modifies  Higgs 
boson kinetic term. To retrieve 

canonical normalization we 
need to rescale:

Note that everything that is order 1/Λ^4 has to be consistently ignored in my calculation, 
otherwise I need to also take into account dimension-8 operator
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But then *all* Higgs boson couplings 
present in SM are universally rescaled

Bound on Wilson coefficient cH☐ from Higgs signal strength measurements at LHC

ATLAS + CMS
1606.02266

or
Assuming this is leading 
dimension-6 operator

For negative sign

weakly coupled

strongly coupled

LHC Higgs new physics reach
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Precision measurements new physics reach
LHC Higgs precision measurements are typically irrelevant to constraint BSM 

physics that violates approximate symmetries of the SM  

E.g.  for baryon-number 
violating new physics we 
can probe dimension-6 

operator suppressed by up 
to 10^16 GeV

February 6, 2015 1:3 World Scientific Review Volume - 9in x 6in submit page 11

11

Table 1. Bounds on some �F = 2 operators, (C/⇤2)O, with O given in the first column.
The bounds on ⇤ assume C = 1, the bounds on C assume ⇤ = 1TeV. (From Ref. [17].)

Operator
Bound on ⇤ [TeV] (C = 1) Bound on C (⇤ = 1TeV)

Observables
Re Im Re Im

(s̄L�µ
dL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK ; ✏K

(s̄R dL)(s̄LdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK ; ✏K

(c̄L�µ
uL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD; |q/p|,�D

(c̄R uL)(c̄LuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD; |q/p|,�D

(b̄L�µ
dL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mBd

; S KS

(b̄R dL)(b̄LdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mBd
; S KS

(b̄L�µ
sL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs ; S �

(b̄R sL)(b̄LsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs ; S �

✏0K is notoriously hard to calculate, involving cancellation between two com-
parable terms, each with sizable uncertainties. (Lattice QCD calculations
of the hadronic matrix elements for ✏0K may be reliably computed in the
future.) At present, we cannot prove nor rule out that a large part of the
observed value of ✏0K is due to BSM. Thus, to test CP violation, one had
to consider other systems; it was realized in the 1980s that many precise
measurements of CP violation are possible in B decays.

In the kaon sector, precise calculations of rare decays involving neutrinos
(see Fig. 4) are possible, and the SM predictions are

B(K+! ⇡+⌫⌫̄) = (7.8±0.8)⇥10�11, B(K0
L ! ⇡0⌫⌫̄) = (2.4±0.4)⇥10�11.

(26)
The K0

L decay is CP violating, and therefore it is under especially good
theoretical control, since it is determined by the top quark loop contri-
butions, and CP conserving charm quark contributions are absent (which
enter K+ ! ⇡+⌫⌫̄ and are subject to some hadronic uncertainties).

Our current knowledge from 7 events at E787/E949 is B(K ! ⇡+⌫⌫̄) =
(17.3+11.5

�10.5) ⇥ 10�11, whereas in the KL mode the bound is many times
the SM rate. NA62 at CERN aims to measure the K+ rate with 10%
uncertainty, and will start to have dozens of events in 2015. The KL mode
will probably be first observed by the KOTO experiment at J-PARC.

Fig. 4. Diagrams contributing to K ! ⇡⌫⌫̄ decay.

E.g. for flavor violating new 
physics we can probe  
dimension-6 operators 

suppressed up 100 TeV-100 PeV

Isidori
1302.0661

Also lepton-flavor violating  or 
flavor conserving CP-violating  

operators are probed up to 100 
TeV

A  giant  leap…

COMET Phase-II
(𝝁𝑵 → 𝒆𝑵 on Al) <10-14

COMET Phase-I
(𝝁𝑵 → 𝒆𝑵 on Al) <10-14

𝐑𝐚𝐭𝐞~
𝟏
𝜦𝟐

𝟐

𝜦
/T

eV

𝜿

For the full COMET experiment  
sensitivity improvement over 
SINDRUM-II is 4 orders of 
magnitude.

MC of background processes 
[especially ‘tails’] may not be good 
enough for optimal design
• Intermediate-scale experiment 

can measure background 
sources and inform design.

• Can still do competitive physics 
with a smaller apparatus

Include in COMET programme:
COMET Phase-I
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The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.

13

SM EFT with dimension-6 operators

(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the
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This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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Off-Pole constraints on 4-fermion operators
(ee)(qq)

[c(3)`q ]1111 [c`q]1111 [c`u]1111 [c`d]1111 [ceq]1111 [ceu]1111 [ced]1111
LEP-2 3.5± 2.2 �42± 28 �21± 14 42± 28 �18± 11 �9.0± 5.7 18± 11
APV 27± 19 1.6± 1.1 3.4± 2.3 3.0± 2.0 �1.6± 1.1 �3.4± 2.3 �3.0± 2.0

QWEAK 7.0± 12 �2.3± 4.0 �3.5± 6.0 �7± 12 2.3± 4.0 3.5± 6.0 7± 12
PVDIS �8± 12 24± 35 38± 48 �77± 96 �77± 96 �12± 17 24± 35

SAMPLE �8± 45 x �17± 90 17± 90 x �17± 90 17± 90
CHARM �80± 180 700± 1800 370± 880 �700± 1800 x x x
LEF 0.38± 0.28 x x x x x x

(µµ)(qq)

[c(3)`q ]2211 [c`q]2211 [c`u]2211 [c`d]2211 [ceq]2211 [ceu]2211 [ced]2211
PDG ⌫µ 20± 15 4± 21 18± 19 �20± 37 x x x
SPS 0± 1000 0± 3000 0± 1500 0± 3000 40± 390 �20± 190 40± 390
LEF �0.4± 1.2 x x x x x x

Table 5: 68% C.L. constraints (in units of 10�3) on helicity-conserving (ee)(qq) and (µµ)(qq)
operators from di↵erent precision experiments. The bounds are derived assuming only one 4-
fermion operator is present at a time, and that the vertex corrections and 4-lepton operators
are absent. For the operators with electrons we display the constraints from the LEP-2 (�qq +
heavy flavor), atomic parity violation (APV) [60], QWEAK [61], PVDIS [63], SAMPLE [64], and
CHARM [49] experiments. For the operators with muons we use the PDG combination of muon-
neutrino low-energy couplings [44], and the SPS muon scattering experiment [65]. One operator
with electrons and one with muons is constrained by the combination of low-energy flavor (LEF)
observables [39]. The best constraint in each case is highlighted in blue, while ‘x’ signals that the
operator is not probed at tree level by that experiment or combination.
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involving the right-handed muons is very poor. However, this is not a pressing problem, given
these directions are very well probed by the LHC.

The LEP-2 constraints on the operators involving the 2nd generation or bottom quarks are
similar as those shown in Table 5. We also give 1-by-1 constraints on the chirality-violating LLQQ
operators from the low-energy flavor observables:

0

BBBB@

[c`equ]1111
[c`edq]1111
[c(3)`equ]1111
[c`equ]2211
[c`edq]2211

1

CCCCA
=

0

BBBB@

(�1.3± 4.9) · 10�7

(1.3± 4.9) · 10�7

(�0.2± 1.6) · 10�3

(0.3± 1.0) · 10�4

(�0.3± 1.0) · 10�4

1

CCCCA
. (4.6)

This exceptional sensitivity arises because these operators violate the approximate symmetries of
the SM, leading potentially to a large enhancement of several decays of low-mass hadrons.13 In
particular, new physics generating the pseudo-scalar (ee)(qq) operator is probed up to ⇤/g⇤ ⇠100
TeV. For consistency with the rest of this work, these individual limits are obtained using V = 1
at order ⇤�2. Working instead with the full non-diagonal CKM matrix the limits are slightly
modified, but more importantly one can set strong 1-by-1 limits in a long list of other operators,
including one diagonal one: [c(3)`equ]2211.

Finally, for the sake of completeness we show the 1-by-1 bound on the W coupling to right-
handed 1st-generation quarks

�gWq1
R = (�3.9± 2.9) · 10�4, (4.7)

which is completely dominated by its contribution to the CKM-unitarity test of Eq. (2.6).

4.4 All out

We now combine all the experimental observables summarized in Table 4. These provide simul-
taneous constraints on 60 combinations of Wilson coe�cients of dimension-6 operators in the SM
EFT Lagrangian (21 vertex corrections �g, 25 LLQQ and 14 LLLL 4-fermion operators) and on

13More specifically they violate the approximate flavor symmetry of the SM U(3)` ⇥ U(1)e that suppresses the
decay ⇡ ! `⌫` by a factor m2

`/⇤
2
QCD. Thus, their bounds benefit from this large ⇤QCD/m` chiral enhancement.

This does not apply however to the tensor operator c(3)`equ, whose contribution to this specific decay is zero by simple
Lorentz invariance considerations.

19

AA, Gonzalez-Alonso, Mimouni
to appear

Constraints on c v^2/𝚲^2 in units of 10^-3

Friday, April 21, 17



Off-Pole constraints on 4-lepton observables
Full correlation matrix 
also calculated

Typical constraints for 
vertex corrections are 
at 0.1% level, although 
some directions in 
parameter space less 
constrained

Typical constraints for 
4-fermion  operators 
are at 1% level, 
though again some 
less constrained 
directions

Chirality violating 
2L2Q operators more 
stringently constrained

the Ṽud SM parameter. Marginalizing over Ṽud we find the following constraints
0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�gWe
L

�gWµ
L

�gW ⌧
L

�gZe
L

�gZµ
L

�gZ⌧
L

�gZe
R

�gZµ
R

�gZ⌧
R

�gZu
L

�gZc
L

�gZt
L

�gZu
R

�gZc
R

�gZd
L

�gZs
L

�gZb
L

�gZd
R

�gZs
R

�gZb
R

�gWq1
R

[c``]1111
[c`e]1111
[cee]1111
[c``]1221
[c``]1122
[c`e]1122
[c`e]2211
[cee]1122
[c``]1331
[c``]1133
[c`e]1133
[c`e]3311
[cee]1133
[c``]2332

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�1.00± 0.64
�1.36± 0.59
1.95± 0.79

�0.023± 0.028
0.01± 0.12

0.018± 0.059
�0.033± 0.027

0.00± 0.14
0.042± 0.062

�0.8± 3.1
�0.15± 0.36
�0.3± 3.8
1.4± 5.1

�0.35± 0.53
�0.9± 4.4
0.9± 2.8

0.33± 0.17
3± 16

3.4± 4.9
2.30± 0.88
�1.3± 1.7
1.01± 0.38

�0.22± 0.22
0.20± 0.38
�4.8± 1.6
1.5± 2.1
1.5± 2.2

�1.4± 2.2
3.4± 2.6
1.5± 1.3

0± 11
�2.3± 7.2
1.7± 7.2
�1± 12
3.0± 2.3

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⇥ 10�2,

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

[c(3)`q ]1111
[ĉeq]1111
[ĉ`u]1111
[ĉ`d]1111
[ĉeu]1111
[ĉed]1111
[ĉ(3)`q ]1122
[c`u]1122
[ĉ`d]1122
[ceq]1122
[ceu]1122
[ĉed]1122
[ĉ(3)`q ]1133
[c`d]1133
[ceq]1133
[ced]1133
[c(3)`q ]2211
[c`q]2211
[c`u]2211
[c`d]2211
[ĉeq]2211
[c`equ]1111
[c`edq]1111
[c(3)`equ]1111
[ĉ`equ]2211

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�2.2± 3.2
110± 180
�5± 11
�5± 23
�1± 12
�4± 21
�61± 32
2.4± 8.0

�310± 130
�21± 28
�87± 46
270± 140
�8.6± 8.0
�1.4± 10
�3.2± 5.1
18± 20

�1.2± 3.9
1.3± 7.6
15± 12
25± 34
4± 41

�0.14± 0.13
�0.14± 0.13
�0.02± 0.16
�0.05± 0.29

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

⇥ 10�2.

(4.8)
The correlation matrix is given in Eq. (??). The complete Gaussian likelihood for the Wilson
coe�cients of dimension-6 operators can be reproduced from Eq. (4.8) and the correlation matrix.12

This likelihood is relevant to constrain the masses and coupling of any model beyond the SM whose
leading e↵ects at or below the weak scale can be approximated by tree-level contributions of vertex
corrections and LLQQ and LLLL operators in the SM EFT.

12The likelihood is also available as a supplemental material attached to this paper or on request from the authors.
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The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the
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This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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Accuracy of LHC Higgs measurements is inferior, compared e.g. to 
that of LEP-1 Z-pole observables, so for generic new physics 
scenarios they will not provide the strongest constraints 

However, the value of Higgs observables is that they give access to 
some completely unexplored directions in the parameter space of 
SM EFT

One can concisely characterize these unconstrained directions that 
should be explored at the LHC

There do exist (not fine-tuned) new physics scenarios where only 
the operators along these particular directions are generated with 
sizable coefficients  in the low-energy effective theory  
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Higgs Basis - parameters
EFT parameters along EWPT unconstrained directions  

affecting LHC Higgs observables at leading order

Higgs couplings to 
gauge bosons

Higgs couplings to
fermions

Higgs couplings to
itself

The dipole-type contact interactions of the Higgs boson are parametrized as:

Ldipole = � h

4v2

2

4gs
X

f2u,d

pmfimfj

v
f̄L,i�µ⌫T

a[dhGf ]ijfR,jG
a
µ⌫ + e

X

f2u,d,e

pmfimfj

v
f̄L,i�µ⌫ [dhAf ]ijfR,jAµ⌫

+
p
g2 + g02

X

f2u,d,e

pmfimfj

v
f̄L,i�µ⌫ [dhZf ]ijfR,jZµ⌫

+
p
2g

p
muimuj

v
d̄L,i�µ⌫ [dhWu]ijuR,jW

�
µ⌫ +

p
2g

pmdimdj

v
ūL,i�µ⌫ [dhWd]ijdR,jW

+
µ⌫

+
p
2g

p
meimej

v
⌫̄L,i�µ⌫ [dhWe]ijeR,jW

+
µ⌫

�
+ h.c.,

(3.22)

where dhAf , , dhZf , and dhWf are general complex 3 ⇥ 3 matrices. The coe�cients are simply
related to the corresponding dipole interactions in Eq. (3.10):

dhV f = dV f . (3.23)

Dimension-6 operators can also induce single Higgs couplings to more than 2 gauge bosons,
but we do not display them here.

Higgs boson self-couplings and double Higgs couplings

The cubic Higgs boson self-coupling and couplings of two Higgs boson fields to matter play a role
in the EFT description of double Higgs production [31, 32]. The cubic Higgs boson self-coupling
is parametrized as

Lh,self = �(�+ ��3)vh
3. (3.24)

The relation between the cubic Higgs coupling correction and the Wilson coe�cients in the SILH
basis is given by

��3 = �

✓
c̄6 � 3

2
c̄H � 1

2
[c̄0H`]22

◆
. (3.25)

In accordance with the condition #4, the 2-derivative Higgs boson self-couplings have been traded
for other equivalent interactions and do not occur in the mass eigenstate Lagrangian. Self-
interactions terms with 4, 5, and 6 Higgs boson fields may also arise from dimension-6 operators,
but we do not display them here.

The interactions between two Higgs bosons and two other SM fields are parametrized as
follows:

Lhh = h2
⇣
1 + 2�c(2)z

⌘ g2 + g02

4
ZµZµ + h2

⇣
1 + 2�c(2)w

⌘ g2

2
W+

µ W�
µ � h2

2v2

X

f ;ij

p
mfimfj

h
f̄i,R[y

(2)
f ]ijfj,L + h.c.

i
.

+
h2

8v2

⇣
c(2)gg g

2
sG

a
µ⌫G

a
µ⌫ + 2c(2)wwg

2W+
µ⌫W

�
µ⌫ + c(2)zz (g

2 + g02)Zµ⌫Zµ⌫ + 2c(2)z� gg
0Zµ⌫Aµ⌫ + c(2)�� e

2Aµ⌫Aµ⌫

⌘

+
h2

8v2

⇣
c̃(2)gg g

2
sG

a
µ⌫G̃

a
µ⌫ + 2c̃(2)wwg

2W+
µ⌫W̃

�
µ⌫ + c̃(2)zz (g

2 + g02)Zµ⌫Z̃µ⌫ + 2c̃(2)z� gg
0Zµ⌫Ãµ⌫ + c̃(2)�� e

2Aµ⌫Ãµ⌫

⌘

� h2

2v2

⇣
g2c(2)w2(W

+
µ @⌫W

�
⌫µ +W�

µ @⌫W
+
⌫µ) + g2c(2)z2Zµ@⌫Z⌫µ + gg0c(2)�2Zµ@⌫A⌫µ

⌘
. (3.26)
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LHC Higgs signal strength so far
Not using any input 
from differential 
distributions here

Run-1 results
from ATLAS+CMS

1606.02266
Run-2 results

scavenged from
various conf-notes

Channel Production Run-1 ATLAS Run-2 CMS Run-2

�� ggh 1.10+0.23
�0.22 0.62+0.30

�0.29 [106] 0.77+0.25
�0.23 [107]

VBF 1.3+0.5
�0.5 2.25+0.75

�0.75 [106] 1.61+0.90
�0.80 [107]

Wh 0.5+1.3
�1.2 - -

Zh 0.5+3.0
�2.5 - -

V h - 0.30+1.21
�1.12 [106] -

tt̄h 2.2+1.6
�1.3 �0.22+1.26

�0.99 [106] 1.9+1.5
�1.2 [107]

Z� incl. 1.4+3.3
�3.2 - -

ZZ⇤ ggh 1.13+0.34
�0.31 1.34+0.39

�0.33 [106] 0.96+0.40
�0.33 [108]

VBF 0.1+1.1
�0.6 3.8+2.8

�2.2 [106] 0.67+1.61
�0.67 [108]

cats. - - 1.05+0.19
�0.17 [?]

WW ⇤ ggh 0.84+0.17
�0.17 - -

VBF 1.2+0.4
�0.4 1.7+1.1

�0.9 [109] -
Wh 1.6+1.2

�1.0 3.2+4.4
�4.2 [109] -

Zh 5.9+2.6
�2.2 - -

tt̄h 5.0+1.8
�1.7 - -

incl. - - 0.3± 0.5 [110]

⌧+⌧� ggh 1.0+0.6
�0.6 - -

VBF 1.3+0.4
�0.4 - -

Wh �1.4+1.4
�1.4 - -

Zh 2.2+2.2
�1.8 - -

tt̄h �1.9+3.7
�3.3 - 0.72+0.62

�0.53 [?]

bb̄ VBF - �3.9+2.8
�2.9 [111] �3.7+2.4

�2.5 [112]
Wh 1.0+0.5

�0.5 - -
Zh 0.4+0.4

�0.4 - -
V h - 0.21+0.51

�0.50 [113] -
tt̄h 1.15+0.99

�0.94 2.1+1.0
�0.9 [114] �0.19+0.80

�0.81 [115]

µ+µ� incl. 0.1+2.5
�2.5 �0.1+1.5

�1.5 [?] -

multi-` cats. - 2.5+1.3
�1.1 [117] 1.5+0.5

�0.5 [?]

Table 4.1: The Higgs signal strength in various channels measured at the LHC.

the h ! �� decay process where a part of the one-loop EFT corrections is included.

Unless noted otherwise, the expressions refer to the inclusive production and decay

rates.

Consider the Higgs boson produced at the LHC via the process X, and subse-

quently decaying to the final state Y . The LHC collaborations typically quote the

64
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multilepton results 

•  Both results compatible with SM within about 1σ. 
•  Signi"cance wrt μ(ttH) = 0 hypothesis: 

–  ATLAS:  2.2 σ (expected for SM ttH: 1.0 σ ) 
–  CMS:  3.3 σ (expected for SM ttH: 2.5 σ ) 

Moriond EWK, 2017 G. Petrucciani (CERN) 21 
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Moriond EWK, 2017 G. Petrucciani (CERN) 22 

ATLAS Run 2 CMS Run 2 

bb 2.1 +1.0 −0.2 +0.8 
−0.9 −0.8 

multilep 2.5 +1.3 1.5 +0.5 
−1.1 −0.5 

γγ −0.3 +1.2 1.9 +1.5 
−1.0 −1.2 

4ℓ 0.0 +1.2* 
−0.0* 

comb. 1.8 
+0.7 
−0.7 

Run1 comb. 2.3 +1.2 
−1.0 JHEP 08(2016) 045 

PAS HIG 
16-038 

PAS HIG 
17-004 

(35.9 fb−1) 

PAS HIG 
16-020 

PAS HIG 
16-041 

(35.9 fb−1) 

* 

(*)  −2ΔlnL = 1 interval  
with μ ≥ 0 constraint  ATLAS-CONF-2016-068 

tth status

Slide from G. Petrucciani’s talk in Moriond’17

AA’s naive combination
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In SM EFT with D=6 operators, new “anomalous”contributions to TGCs arise

Effects of dimension-6 operators 
on triple gauge couplings (TGCs)

In SM, cubic (and quartic) gauge interactions completely fixed, once gauge couplings known

�g1,z = � g2L + g2Y
4(g2L � g2Y )

✓
4
gY
gL

cHWB + cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

◆
,

�� =
gL
gY

cHWB,

�z = � g2L + g2Y
4(g2L � g2Y )

✓
8

gLgY
g2L + g2Y

cHWB + cHD + 2[c(3)H`]11 + 2[c(3)H`]22 � [c``]1221

◆
,

�z = �� = �3

2
gLcW ,

̃� =
gL
gY

cHW̃B, ̃z = �gY
gL

cHW̃B,

�̃z = �̃� = �3

2
gLcW̃ .

�g =
cG
g3s

, �̃g =
cG̃
g3s

. (2.43)

[dGf ]IJ = �2
p
2

vp
mfImfJ

[c†fG]IJ ,

dAf = �2
p
2

vp
mfImfJ

⇣
⌘f [c

†
fW ]IJ + [c†fB]IJ

⌘
,

dZf = � 2
p
2

g2L + g2Y

vp
mfImfJ

⇣
g2L⌘f [c

†
fW ]IJ � g2Y [c

†
fB]IJ

⌘
,

dWf = �2
p
2

vp
mfImfJ

[c†fW ]IJ , (2.44)

where ⌘u = +1, ⌘d,e = �1.

Finally, I will also need 4-fermion couplings. I write them here in the abbreviated

form

L4f =
X

[cff 0 ]IJKL[Off 0 ]IJKL, (2.45)

where the sum goes over all the 4-fermion operators in Table 2.4 and over flavor in-

dices. I will skip the trivial exercise of re-writing these operators in terms of fermionic

mass eigenstates. What is less trivial is which combinations of flavor indices should

be included in the sum, so as to satisfy the baryon and lepton number conservation

and avoid redundant operators related by Fierz transformations. As an example, in

Table 2.5 I write down explicitly all 4-lepton operators together with their flavor in-

27

Relations between anomalous TGCs and Wilson coefficients in Warsaw basis
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Therefore constraints on δg1z and δκγ imply constraints on  Higgs couplings to 
electroweak gauge bosons, and vice-versa   

In fact, TGCs probe directions in EFT parameter space that are weakly constrained by 
Higgs searches. Therefore, important to combine Higgs and TGC data! 

That is possible provided both aTGCs and Higgs couplings are constrained in a general  
consistent, multi-dimensional fit, and the correlation matrix is given! 

TGC - Higgs Synergy

Linearly realized SU(3)xSU(2)xU(1) local symmetry in Lagrangian with operators up 
to D=6 implies that aTGC and Higgs couplings to EW gauge bosons are related:

HiggsTGC
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Combinations of EFT parameters constrained by precision tests much better 
than at O(10%) are not relevant at the LHC, given current precision

Assuming MFV, one can identify 16 combinations of EFT parameters that are 
weakly or not at all constrained by precision tests, and which affect LHC 
Higgs observables at leading order. These correspond to 16 Higgs basis 
parameters in previous slide. 

Higgs signal strength observables at  O(1/Λ^2) are only sensitive to CP-even 
parameters (CP-odd ones enter only quadratically and are ignored - one 
needs to study differential distributions to access those at O(1/Λ^2) ). 

Currently not much experimental sensitivity to modifications of Higgs cubic 
self-interactions, thus parameter δλ3  cannot be reasonably constrained

Thus, assuming MFV couplings to fermions, only 9 EFT parameters affect 
Higgs signal strength measured at LHC

D=6 EFT parameters probed by LHC Higgs searches

Di Vita et al
1704.01953

Friday, April 21, 17

http://arxiv.org/abs/arXiv:1704.01953
http://arxiv.org/abs/arXiv:1704.01953


• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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Production

For the relevant partonic processes of Higgs production at the LHC, the cross section relative
to the SM one depends on the effective theory parameters as follows:

• Gluon fusion (ggh), gg → h:
σggh

σSM
ggh

"
∣∣∣∣1 +

ĉgg
cSMgg

∣∣∣∣
2

, (4.2)

where

ĉgg " cgg +
1

12π2

[
δyuAf

(
m2

h

4m2
t

)
+ δydAf

(
m2

h

4m2
b

)]
,

cSMgg "
1

12π2

[
Af

(
m2

h

4m2
t

)
+ Af

(
m2

h

4m2
b

)]
,

Af(τ) ≡
3

2τ 2
[(τ − 1)f(τ) + τ ] ,

f(τ) ≡

{
arcsin2√τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
]2

τ > 1
. (4.3)

As discussed in Ref. [88], in this case it is appropriate to calculate cSMgg at the leading order
in QCD because then the large k-factors, approximately common for cgg and δyu, cancel in
the ratio.7 Numerically,

ĉgg " cgg + (8.7δyu − (0.3− 0.3i)δyd)× 10−3, cSMgg " (8.4 + 0.3i)× 10−3, (4.4)

σggh

σSM
ggh

" 1 + 237cgg + 2.06δyu − 0.06δyd. (4.5)

• Vector boson fusion (VBF), qq → hqq:

σV BF

σSM
V BF

" 1 + 1.49δcw + 0.51δcz −




1.08
1.11
1.23



 cw! − 0.10cww −




0.35
0.35
0.40



 cz!

−0.04czz − 0.10cγ! − 0.02czγ
→ 1 + 2δcz − 2.25cz! − 0.83czz + 0.30czγ + 0.12cγγ. (4.6)

The numbers in the columns multiplying cw! and cz! refer to the LHC collision energy of√
s =7, 8, and 13 TeV; for other parameters the dependence is weaker. The expression

after the arrow arises due to replacing the dependent couplings by the independent ones in
Eq. (3.2). Each LHC Higgs analysis uses somewhat different cuts to isolate the VBF signal,
and the relative cross section slightly depends on these cuts. The result in Eq. (4) has been
computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
accuracy by this procedure. One can compare Eq. (4.5) to NLO QCD results in Ref. [89], where the coefficient in
front of δyd is found to be −0.06 for

√
s = 8 TeV, and −0.05 for

√
s = 14 TeV.
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ĉgg " cgg +
1

12π2

[
δyuAf

(
m2

h

4m2
t

)
+ δydAf

(
m2

h

4m2
b

)]
,

cSMgg "
1

12π2

[
Af

(
m2

h

4m2
t

)
+ Af

(
m2

h

4m2
b

)]
,

Af(τ) ≡
3

2τ 2
[(τ − 1)f(τ) + τ ] ,

f(τ) ≡

{
arcsin2√τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
]2

τ > 1
. (4.3)

As discussed in Ref. [88], in this case it is appropriate to calculate cSMgg at the leading order
in QCD because then the large k-factors, approximately common for cgg and δyu, cancel in
the ratio.7 Numerically,

ĉgg " cgg + (8.7δyu − (0.3− 0.3i)δyd)× 10−3, cSMgg " (8.4 + 0.3i)× 10−3, (4.4)
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ggh
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The numbers in the columns multiplying cw! and cz! refer to the LHC collision energy of√
s =7, 8, and 13 TeV; for other parameters the dependence is weaker. The expression

after the arrow arises due to replacing the dependent couplings by the independent ones in
Eq. (3.2). Each LHC Higgs analysis uses somewhat different cuts to isolate the VBF signal,
and the relative cross section slightly depends on these cuts. The result in Eq. (4) has been
computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
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• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)

12
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8
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Corrections to Higgs production from dimension-6 operators
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Corrections to Higgs decays from dimension-6 operators

• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




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
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 cz! +




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 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48


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8.24


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
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3.47


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


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0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)

12

while ĉgg and cSMgg are defined in Eq. (4.3). Note that contributions to Γγγ and Γzγ arising
due to corrections to the SM Higgs couplings to the W bosons and fermions are not included
in Eq. (4.11), unlike in Eq. (4.3). The reason is that, for these processes, corrections from
D = 6 operators are included at the tree level only. If these particular one-loop corrections
were included, one should also consistently include all one-loop corrections to this process
arising at the D = 6 level, some of which are divergent and require renormalization. The net
result would be to redefine ĉγγ = cren.γγ − 0.11δcw + 0.02δyu + . . . , and ĉzγ = cren.zγ − 0.06δcw +
0.003δyt + . . . . Here ”ren.” stands for “renormalized” and the dots stand for a dependence
on other Lagrangian parameters (cww, cw!, and corrections to triple gauge couplings). A
full next-to-leading order computation of these processes have not been yet attempted in the
literature.

• h → 4f . The decay process h → 2"2ν (where " here stands for charged leptons) proceeds via
intermediate W bosons. The relative width is given by

Γ2"2ν

ΓSM
2"2ν

# 1 + 2δcw + 0.46cw! − 0.15cww

→ 1 + 2δcz + 0.67cz! + 0.05czz − 0.17czγ − 0.05cγγ. (4.12)

In the SM, the decay process h → 4" proceeds at the tree-level via intermediate Z bosons. In
the presence D = 6 operators, intermediate photon contributions may also arise at the tree
level. If that is the case, the decay width diverges due to the photon pole. Below I quote
the relative width Γ̄(h → 4") regulated by imposing the cut m"" > 12 GeV on the invariant
mass of same-flavor lepton pairs:

Γ̄4"

Γ̄SM
4"

# 1 + 2δcz +

(
0.41
0.39

)
cz! −

(
0.15
0.14

)
czz +

(
0.07
0.05

)
czγ −

(
0.02
0.02

)
cγ! +

(
< 0.01
0.03

)
cγγ

→ 1 + 2δcz +

(
0.35
0.32

)
cz! −

(
0.19
0.19

)
czz +

(
0.09
0.08

)
czγ +

(
0.01
0.02

)
cγγ . (4.13)

The numbers in the columns correspond to the 2e2µ and 4e/µ final states, respectively.
The difference between these two is numerically irrelevant in the total width, but may be
important for differential distributions, especially regarding the cγγ dependence [91]. The
dependence on the m"" cut is weak; very similar numbers are obtained if m"" > 4 GeV is
imposed instead.

Given the partial widths, the branching fractions can be computed as BrY = ΓY /Γ(h → all),
where the total decay width is given by

Γ(h → all)

Γ(h → all)
#

Γbb

ΓSM
bb

BrSMbb +
Γcc

ΓSM
cc

BrSMcc +
Γττ

ΓSM
ττ

BrSMττ +
ΓWW ∗

ΓSM
WW ∗

BrSMWW ∗ +
ΓZZ∗

ΓSM
ZZ∗

BrSMZZ∗ +
Γgg

ΓSM
gg

BrSMgg . (4.14)

Note that, in line with the basic assumption of no new light particles, there is no additional
contributions to the Higgs width other than from the SM decay channels. In particular, the
invisible Higgs width is absent in this EFT framework (except for the small SM contribution
arising via h → ZZ∗ → 4ν).
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h h

Decays to 2 fermions

Decays to 4 fermions

Decays to 2 gauge bosons

 2e2μ
4e(  ) 

via the corrections to the Yukawa couplings in Eq. (2.35) :

�cc

�SM
cc

' 1 + 2�yu,
�bb

�SM
bb

' 1 + 2�yd,
�⌧⌧

�SM
⌧⌧

' 1 + 2�ye, (4.14)

where I abbreviate �(h ! Y ) ⌘ �Y .

• h ! VV. In the SM, the Higgs boson decays into on-shell gauge bosons: gluon

pairs gg, photon pairs ��, and Z� occur only at the one-loop level. In the

presence of D = 6 operators these decays are corrected already at the tree

level by the 2-derivative contact interactions of the Higgs boson with two vector

bosons in Eq. (2.35). The relative decay widths are given by

�V V

�SM
V V

'
����1 +

ĉvv
cSMvv

����
2

, vv 2 {gg, ��, z�}, (4.15)

where

ĉ�� ⇡ c�� � 0.11�cz + 0.02�yu, cSM�� ' �8.3⇥ 10�2,

ĉz� ⇡ cz� � 0.06�cz + 0.003�yu, cSMz� ' �5.9⇥ 10�2, (4.16)

while ĉgg and cSMgg are defined in Eq. (4.8). Note that the expressions for the

decay widths include both tree-level D=6 contributions proportional to cvv, as

well as one-loop D=6 contributions proportional to �cv and �yf . The latter are

finite, as they amount to a simple rescaling of the SM W boson and fermion

couplings to the Higgs. At the same order in the EFT expansion, there exist

other contributions proportional to cvv and cv⇤, which are infinite [127,128] and

require renormalization.6 An EFT fit to Higgs observables consistently includ-

6 It would be formally more consistent to omit the 1-loop suppressed D=6 contributions to ĉ��
proportional to �cz and �yf , given that other contributions at the same order are not taken into
account. However, in the current form it is much easier to connect my results to the (wide) class of
BSM models where �cz and �yf are generated in the e↵ective theory at the tree level, while cvv and
cv⇤ are not.
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Global constraints on Higgs coupling in SM EFT
Combined constraints from LHC Higgs and electroweak precision constraints

Overall SM is  very good (too good?) fit, no evidence or even hint of D=6 operators

Some tension in global fit due to deficit in the bb decay, but mostly gone after Moriond

Decrease in bb needs to be compensated by negative contributions to Higgs-gluon 
couplings, to avoid overshooting γγ, WW, and ZZ channels

Correlation 
matrix

available

parameters beyond those in Eq. (4.4). Generically, their contribution should be

suppressed by another factor of v2/⇤2 compared to the D=6 ones, and therefore

they should be subleading if ⇤ � v. However, since the experimental precision

of the LHC Higgs measurements is currently moderate, O(10%) at best, they

only probe D = 6 operators with ⇤ . few hundred GeV. For such a low ⇤

it is not a priori obvious that the D=8 operators are subleading. One way to

estimate their e↵ect is to include in the analysis corrections to Higgs and WW

observables that are quadratic in the Wilson coe�cients of D=6 operators, as

they are also of O(⇤�4). If the constraints are severely a↵ected by including

the quadratic contributions, that would signal a potential sensitivity to D=8

operators 8. In fact, the TGC constraints from LEP-2 or the Higgs constraints

from the LHC Run1 alone are completely changed after including the quadratic

terms [31, 33]. However, I find that the combined data are only moderately

sensitive. If all O(⇤�4) and higher-order e↵ects of D=6 operators are kept in

the EFT expressions for Higgs and TGC observables, then I get the following

constraints: 0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�cz

czz

cz⇤

c��

cz�

cgg

�yu

�yd

�ye

�z

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�0.07± 0.09

0.11± 0.29

�0.06± 0.13

0.0024± 0.0071

�0.019± 0.060

�0.0017± 0.0009

�0.02± 0.13

�0.40± 0.19

�0.18± 0.14

�0.058± 0.043

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (4.22)

8Keeping the quadratic terms while neglecting D=8 operators can be justified for certain classes
of UV completions of the EFT [72,88].
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More Higgs signal strength results coming. Especially WW and bb 
measurements should have important impact on the fits  

ATLAS + CMS combination with correlations 

Additional constraints from Higgs differential distributions that should help 
disentangle different tensor structures of Higgs coupling to VV and access CP 
violating operators 

Constraints from high-energy tails of differential distributions where higher 
energy of the LHC trumps its inferior accuracy 

What’s in store
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LHC vs low-energy

(ee)(qq)
[c(3)`q ]1111 [c`q]1111 [c`u]1111 [c`d]1111 [ceq]1111 [ceu]1111 [ced]1111

LE 0.45± 0.28 1.6± 1.0 2.8± 2.1 3.6± 2.0 �1.8± 1.1 �4.0± 2.0 �2.7± 2.0
ATLAS (

p
s  1.5 TeV) �0.65+0.60

�0.67 2.3+1.9
�2.2 2.6+2.3

�2.6 �1.4+2.9
�2.8 1.3+1.7

�1.9 1.5+2.4
�1.4 �2.7+3.2

�2.8

ATLAS (
p
s  1 TeV) �0.78+0.81

�0.89 3.2± 3.4 3.8± 4.1 �1.9± 4.2 1.9± 2.8 1.7+9.1
�1.8 �3.8± 4.7

(µµ)(qq)
[c(3)`q ]2211 [c`q]2211 [c`u]2211 [c`d]2211 [ceq]2211 [ceu]2211 [ced]2211

LE �0.2± 1.2 4± 21 18± 19 �20± 37 40± 390 �20± 190 40± 390
ATLAS (

p
s  1.5 TeV) �1.35+0.56

�0.63 1.8± 1.1 2.0± 1.3 �1.0± 1.6 1.02± 0.99 2.8+1.7
�1.3 �2.0± 1.8

ATLAS (
p
s  1 TeV) �0.72+0.76

�0.83 3.2± 3.4 3.8± 4.1 �1.9± 4.2 1.9± 2.7 1.6+2.4
�1.7 �3.8± 4.7

CV
[c`equ]1111 [c`edq]1111 [c(3)`equ]1111 [c`equ]2211 [c`edq]2211 [c(3)`equ]2211

LE �0.00013± 0.00049 0.00013± 0.00049 �0.2± 1.6 0.03± 0.10 �0.03± 0.10 x
ATLAS (

p
s  1.5 TeV) 0± 1.7 0± 2.3 0± 0.8 0± 0.98 0± 1.3 0± 0.45

ATLAS (
p
s  1 TeV) 0± 2.6 0± 3.3 0± 1.2 0± 2.5 0± 3.2 0± 1.2

Table 6: Comparison of low-energy and LHC constraints (in units of 10�3) on chirality-conserving
(ee)(qq) and (µµ)(qq) and chirality-violating (CV) operators. The 68% CL bounds are derived
assuming only one 4-fermion operator is present at a time, and that the vertex corrections and
[c``]1221 are absent. The low-energy constraints combine all experimental input summarized in
Table 4. The ATLAS constraints use the m`+`� 2 [1-1.5] TeV bin of the measurement of the
di↵erential e+e� and µ+µ� cross sections at the 8 TeV LHC [77]. ‘x’ signals that the operator is
not probed at tree level by that (combination of) experiment(s).
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One-by-one constraints of LLQQ operators in units of 0.1% 
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 Several theoretical frameworks to describe possible deformations of Higgs 
coupling from SM predictions, among which SM EFT is preferred by most 
theorists

Accuracy of LHC Higgs measurements is rather unimpressive as only 
dimension-6 operators suppressed by scales smaller than ∼1 TeV can be 
probed. Still, for strongly coupled UV completions this gives access to new 
physics at ∼10 TeV, beyond the direct reach of the LHC

The importance of Higgs observables is that they constraint certain linear 
combinations of dimension-6 operators that cannot be accessed by any other 
means 

One should stress the importance of global fits, where all (unconstrained) 
dimension-6 operators are assumed to be present, as only these lead to 
model-independent and convention-independent constraints that can be 
applied to a large class of BSM scenarios

Current theory-level analyses meaningfully probe 9 of these linear 
combinations. No serious hints for the presence of any of these operators 
exist in the latest data, with previous hints driven by tth and h->bb going 
away

Take Away
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