BSM Theory Overview

Giacomo Cacciapaglia IPNL

Dissecting the LHC results 20-21 April, 2017

The ideal world:

I need to write a paper tonight!

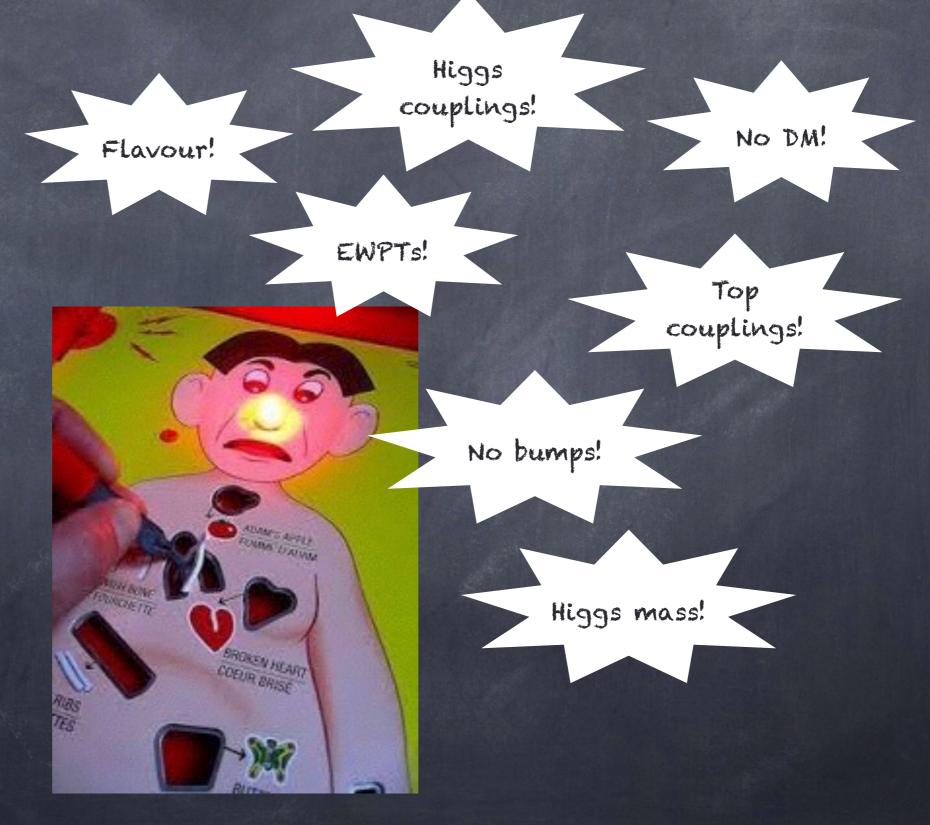
Alas! My model is ruled out!

The wise experimentalist

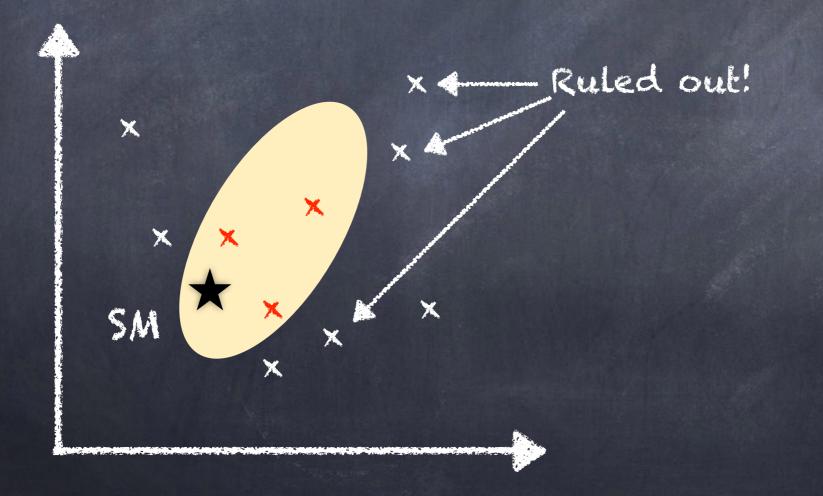
Theorists

The real world:

struggling to put together a model in the midst of "buzzers"!



Models can be ruled out, but cannot be proven right!



Models can be ruled out, but cannot be proven right!

Class A:

Parameter space connected to the SM prediction

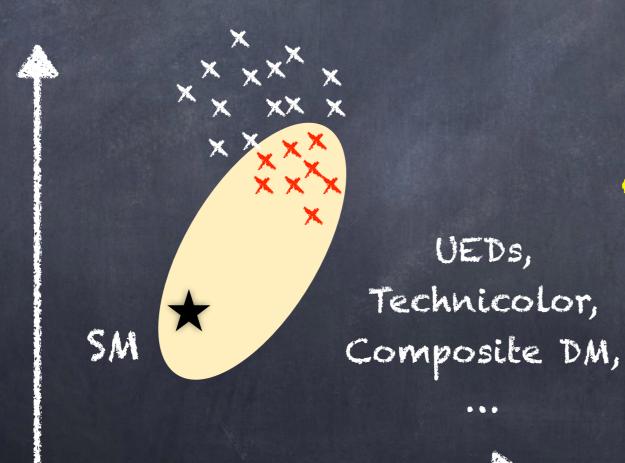
MSSM, Composite (pNGB) Higgs,

SM

Cannot be ruled out!

a Models can be ruled out, but cannot be proven right!

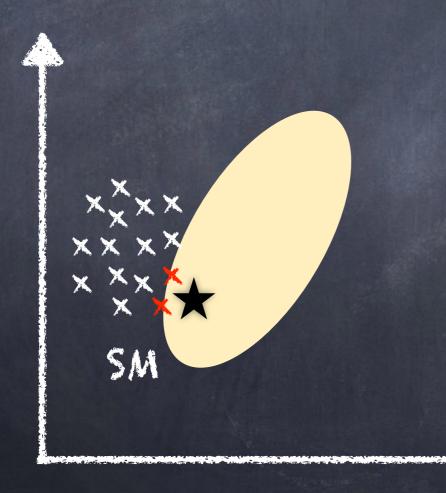
UEDS,



Class B: Parameter space disconnected from SM prediction Technicolor,

> Can be ruled out!

Models can be ruled out, but cannot be proven right!



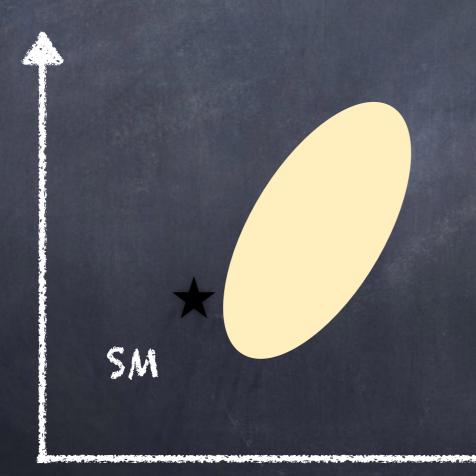
Grey zone:

Fine tuning?

Personal taste?

How close to the decoupling limit?

Models can be ruled out, but cannot
 be proven right!

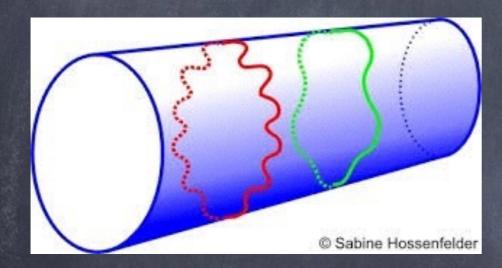


The SM itself can be excluded!

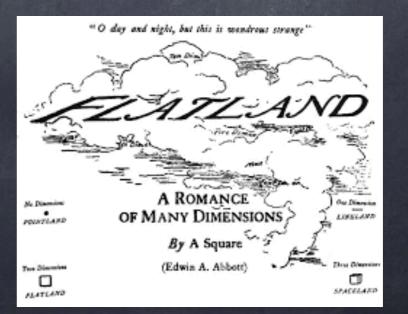
BSM dream:

Are we there yet? No...

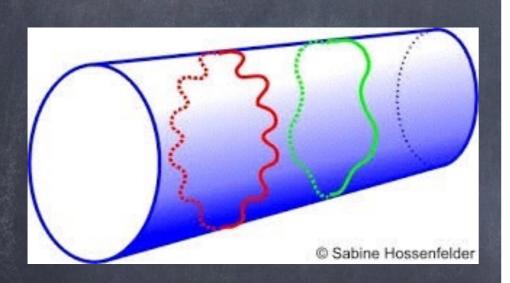
Model of Dark Matter based on extra dimensions!



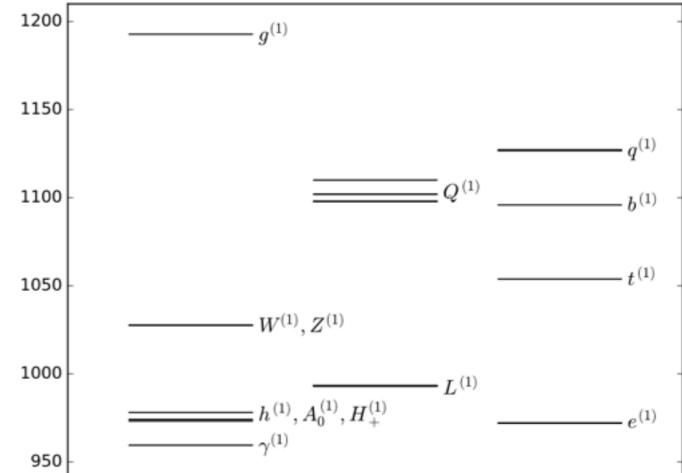
XD fields -> tower of KK states frequencies -> KK masses geometry -> KK parities



Model of Dark Matter based on extra dimensions!

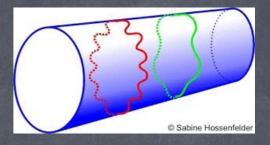


Mass splitting crucially depends on the "cut-off" of the theory.



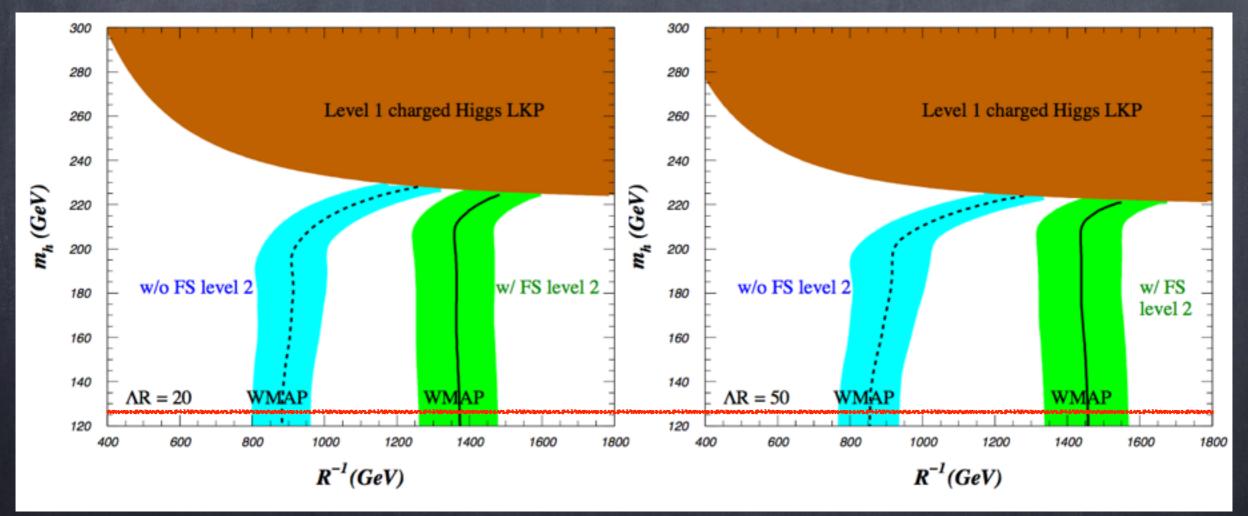
1702.00410

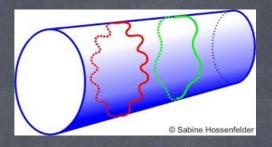
FIG. 1. Loop corrected KK mass spectrum in MUED for R^{-1} =960 GeV, ΛR =30 and m_h =125 GeV.



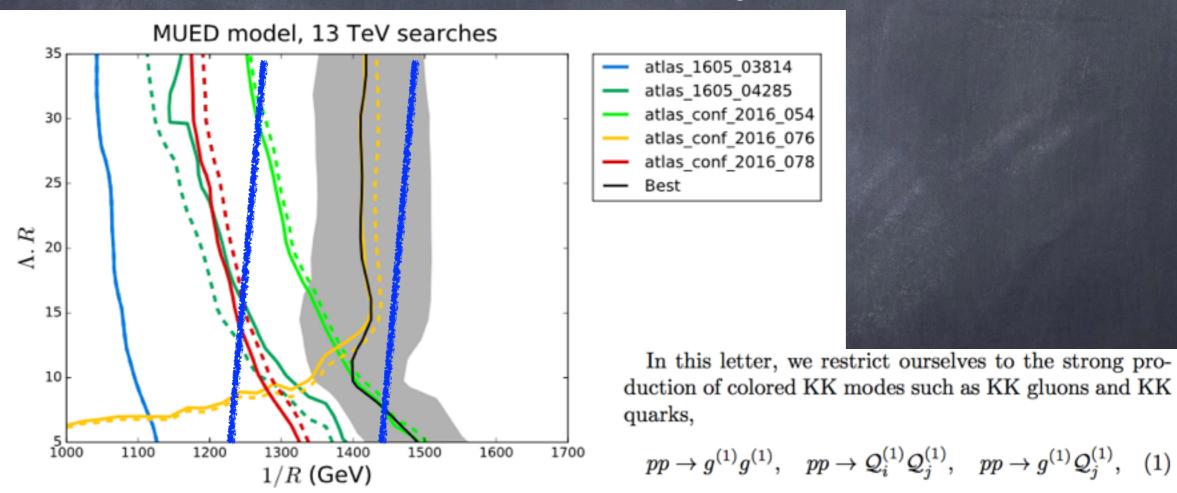
Model of Dark Matter based on extra dimensions!

1012.2577





Model of Dark Matter based on extra dimensions!

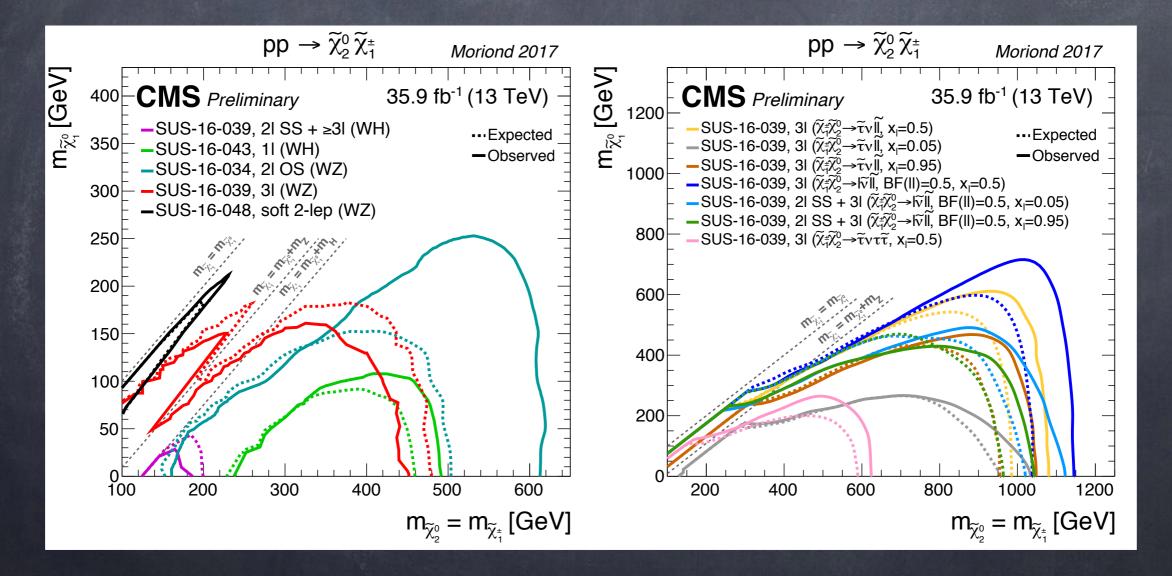


1702.00410

On the verge of exclusion!

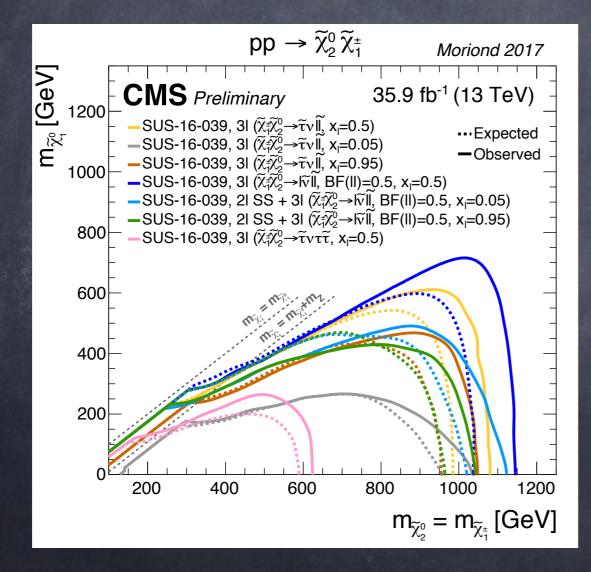
CLass A: MSSM

Moriond bounds on EW-inos



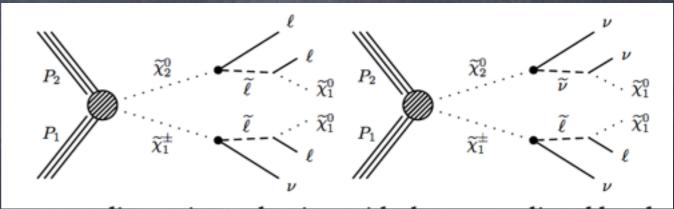
CLass A: MSSM

Moriond bounds on EW-inos



The bounds are impressive, however...

those are for simplified Models!



 Production sensitive to the details of the model;

Decays assumed @ 100%!

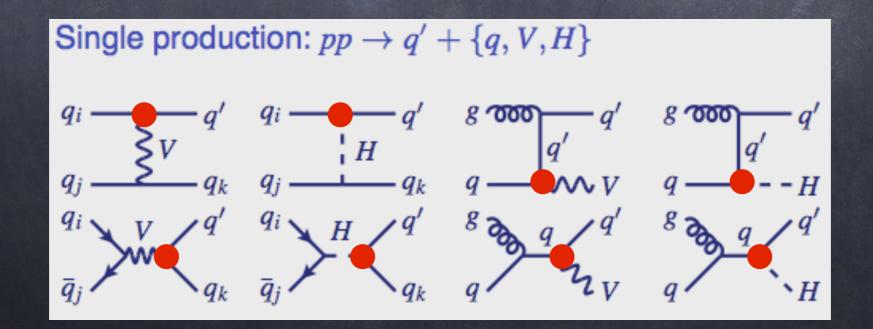
Beware of Simplified Models!

- Simplified models are designed for simplifying exp. analyses!
- Bound on S.M.s cannot be used to give general conclusions on models!

VLQs are non-chiral quarks that mix to the
 SM ones via Higgs couplings!

	u W	u Z	u H	dW	dZ	dH
T(2/3)		У	У	Y		
B(-1/3)	У				У	У
X(5/3)	У					
Y(-4/3)				У		

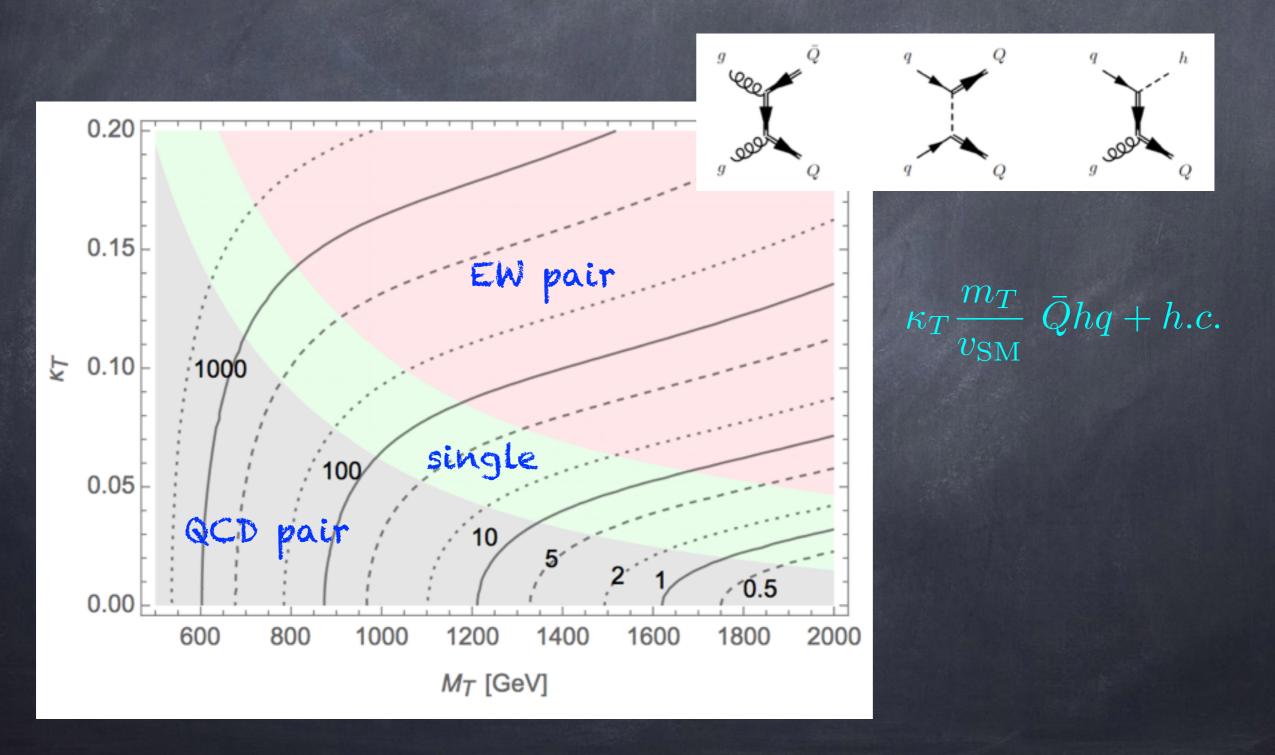
- · BRs depend on the model.
- QCD pair-production is model-independent!
- Single production is not:



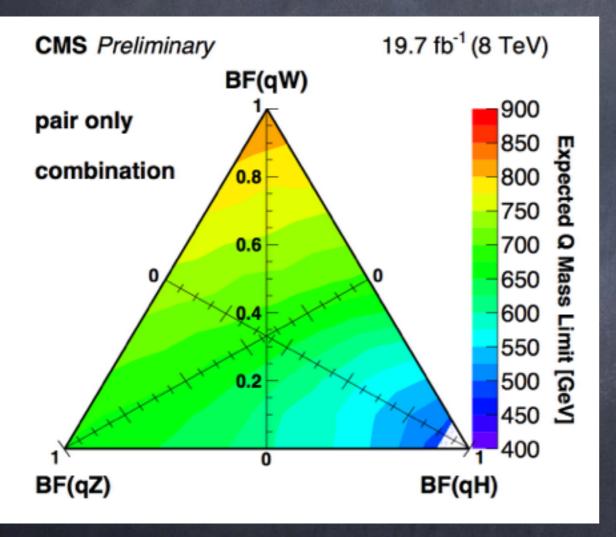
 $-\hat{\kappa}_T \ H \ \bar{T}_R u_L + \frac{g}{2\cos\theta_W} \tilde{\kappa}_T \ Z_\mu \ \bar{T}_L \gamma^\mu u_L + \frac{g}{\sqrt{2}} \kappa_T \ W^+_\mu \ \bar{T}_L \gamma^\mu d_L$

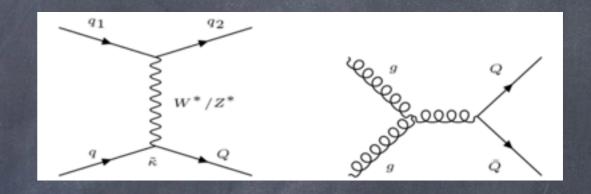
Couplings can be expressed in terms of the BRs, plus an overall coupling strength! BRs and Single Productions are correlated!

- · BRs depend on the model.
- QCD pair-production is model-independent!
- Single production is not:
- EW pair production may be important!



CMS-PAS-B2G-12-016

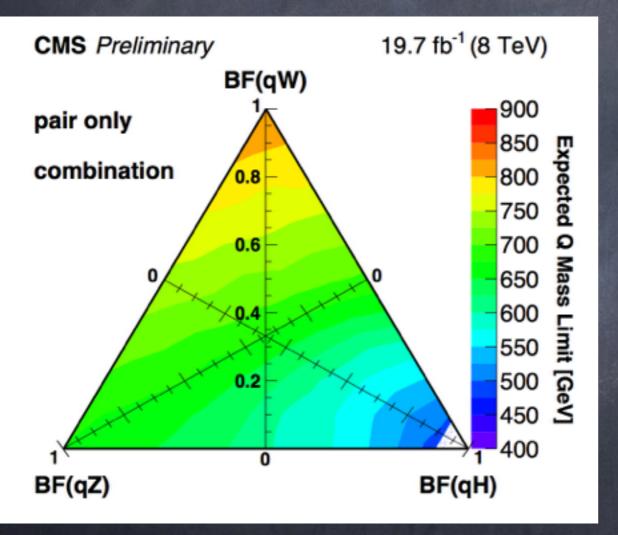


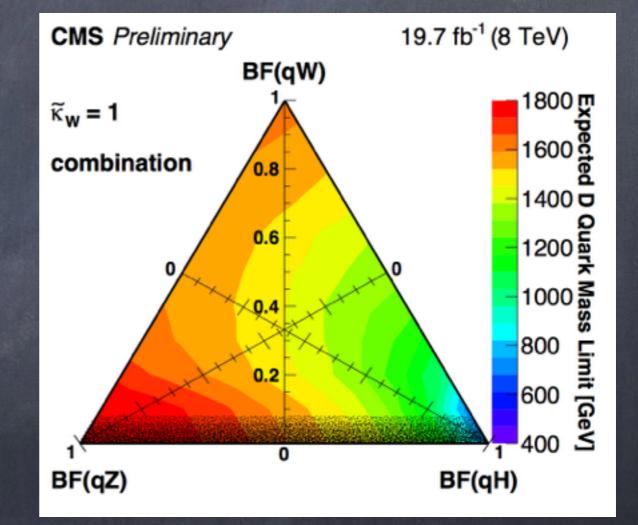


Full coverage of BR combinations.

Bounds are very sensitive to the BRs, ranging from less then 400 GeV to 800 GeV.

CMS-PAS-B2G-12-016





pp -> Q jet added in.

CMS-PAS-B2G-12-016

- strategy allows fill coverage.
- Small improvements needed (fix overall coupling instead of kappa_W)
- QCD@NLO, other single channels, EW pair
 can be easily included.
- Are we really complete and fool-proof?

Exotic decay channels may be present:

E.g., non-minimal composite Higgs models.

@ Long-lived (i.e. MET)

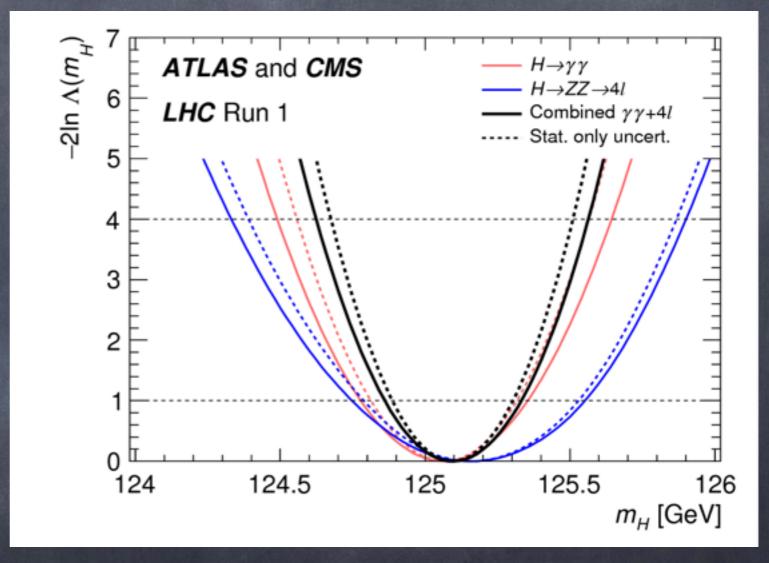
Decay to pair of gauge
 bosons (WZW anomaly)

Decay into di-top

Theory: what have we learnt so far?

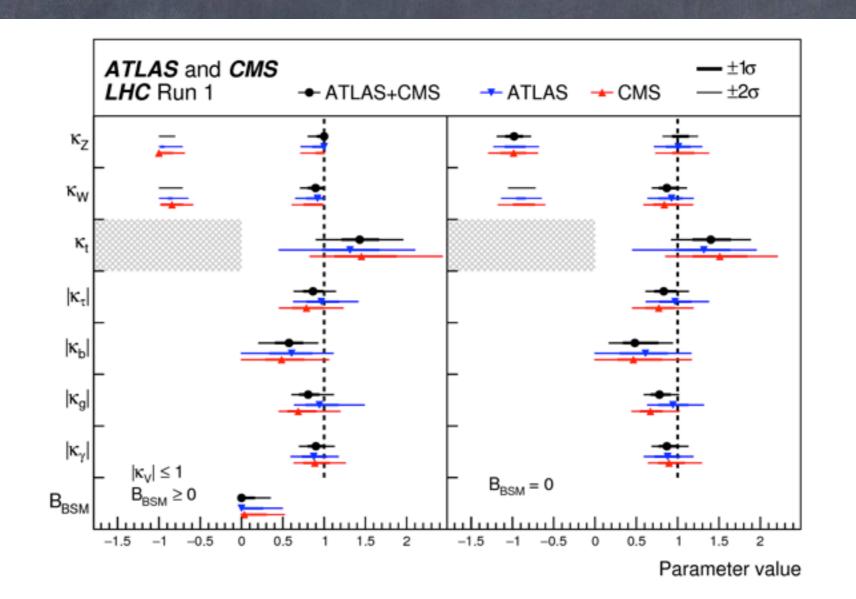
- There is a Higgs: what do we really know about it?
- @ Do we still need BSM physics?
- How can we rule out our favourite model(s)?

 The mass has been precisely measured!

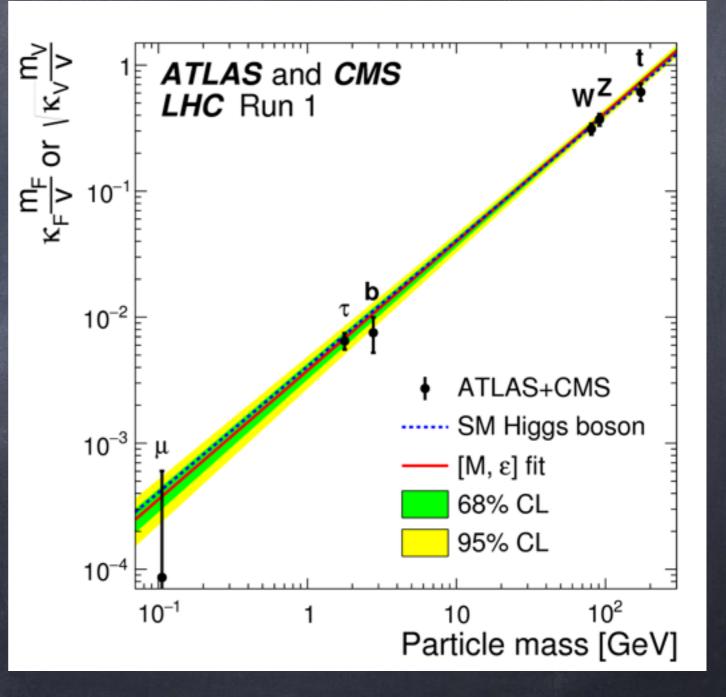


 $125.09 \pm 0.21(\text{stat}) \pm 0.11(\text{syst})$

 The mass has been precisely measured! The couplings follow the
 SM expectations:



- The mass has been precisely measured!
- The couplings follow the
 SM expectations: being
 proportional to mass.



0

0

0

0

The mass has been precisely						
measured!	Decay channel	ATLAS+CMS	ATLAS	CMS		
	$\mu^{\gamma\gamma}$	$1.14 {}^{+0.19}_{-0.18}$	$1.14 \ ^{+0.27}_{-0.25}$	$1.11 \substack{+0.25 \\ -0.23}$		
The couplings follow the		$\begin{pmatrix} +0.18\\ -0.17 \end{pmatrix}$	$\begin{pmatrix} +0.26 \\ -0.24 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.21 \end{pmatrix}$		
SM expectations: being	μ^{ZZ}	$1.29 \ ^{+0.26}_{-0.23}$	$1.52 \ ^{+0.40}_{-0.34}$	$1.04 \ ^{+0.32}_{-0.26}$		
proportional to mass.		$\begin{pmatrix} +0.23 \\ -0.20 \end{pmatrix}$	$\begin{pmatrix} +0.32 \\ -0.27 \end{pmatrix}$	$\begin{pmatrix} +0.30\\ -0.25 \end{pmatrix}$		
	μ^{WW}	$1.09 {}^{+0.18}_{-0.16}$	$1.22 \substack{+0.23 \\ -0.21}$	$0.90 \ ^{+0.23}_{-0.21}$		
The uncertainties are still		$\begin{pmatrix} +0.16 \\ -0.15 \end{pmatrix}$	$\begin{pmatrix} +0.21 \\ -0.20 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.20 \end{pmatrix}$		
Large!	$\mu^{\tau\tau}$	$1.11 \substack{+0.24 \\ -0.22}$	$1.41 \ ^{+0.40}_{-0.36}$	$0.88 {}^{+0.30}_{-0.28}$		
		$\begin{pmatrix} +0.24 \\ -0.22 \end{pmatrix}$	$\begin{pmatrix} +0.37\\ -0.33 \end{pmatrix}$	$\begin{pmatrix} +0.31\\ -0.29 \end{pmatrix}$		
Coupling measurements are	μ^{bb}	$0.70 \ ^{+0.29}_{-0.27}$	$0.62 \ ^{+0.37}_{-0.37}$	$0.81 \ ^{+0.45}_{-0.43}$		
always subject to model		$\begin{pmatrix} +0.29 \\ -0.28 \end{pmatrix}$	$\begin{pmatrix} +0.39\\ -0.37 \end{pmatrix}$	$\begin{pmatrix} +0.45\\ -0.43 \end{pmatrix}$		
assumptions!!!	$\mu^{\mu\mu}$	$0.1 {}^{+2.5}_{-2.5}$	$-0.6 \ ^{+3.6}_{-3.6}$	$0.9 {}^{+3.6}_{-3.5}$		
		$\begin{pmatrix} +2.4\\ -2.3 \end{pmatrix}$	$\begin{pmatrix} +3.6\\ -3.6 \end{pmatrix}$	$\begin{pmatrix} +3.3\\ -3.2 \end{pmatrix}$		

Run I

Theoretical Modelling, i.e. the Standard Model Higgs

$$\mathcal{L}_{\text{Higgs}} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) (+\mu^2) \phi^{\dagger}\phi - \lambda \ (\phi^{\dagger}\phi)^2$$

"wrong sign"

It well <u>describes</u> the symmetry breaking, but no dynamical insight!

 $\phi = e^{i\pi^i \tau^i} \cdot \begin{pmatrix} 0 \\ v + \frac{h}{\sqrt{2}} \end{pmatrix}$

Pauli matrices

 $v = \frac{\mu}{\sqrt{2\lambda}} \sim 246 \text{ GeV}$

 $au^i = rac{\sigma^i}{2}$

What do we know about H? $\mathcal{L}_{\text{Higgs}} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) + \mu^{2} \phi^{\dagger}\phi - \lambda (\phi^{\dagger}\phi)^{2}$

Custodial symmetry as a lucky accident:

$$\phi = \begin{pmatrix} \varphi_u \\ \varphi_d \end{pmatrix} \qquad \tilde{\phi} = (i\sigma^2) \cdot \phi^* = \begin{pmatrix} \varphi_d^* \\ -\varphi_u^* \end{pmatrix}$$

Both transform as doublets of SU(2) [pseudo-real irrep]

We can rewrite the Lagrangian as:

 $\Phi \to U_L \cdot \Phi \cdot U_R^{\dagger}$

 $\left[\Phi = \left(\tilde{\phi} \phi \right) = \left(\begin{array}{cc} \varphi_d^* & \varphi_u \\ -\varphi_u^* & \varphi_d \end{array} \right) \qquad \qquad \mathcal{L}_{\text{Higgs}} = \frac{1}{2} \text{Tr} \left[(D_\mu \Phi)^\dagger (D^\mu \Phi) \right] + \frac{\mu^2}{2} \text{Tr} \left[\Phi^\dagger \Phi \right] + \dots$

uncovers a "hidden" invariance under a global $SU(2)L \times SU(2)R$ broken to SU(2)D by the VEV

Non-linear description:

 $\Sigma = e^{i\pi^{i}\tau^{i}} \cdot \begin{pmatrix} 0 \\ v \end{pmatrix} \qquad \qquad \mathcal{L}_{NL} = f(h) \ (D_{\mu}\Sigma)^{\dagger} (D^{\mu}\Sigma) - V(h)$

Goldstones transform as a triplet of SU(2)D.

 The coupling of h to gauge bosons ARE proportional to the mass (but not determined).

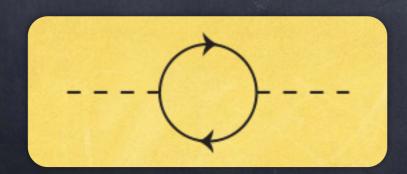
However: trilinear h coupling is not determined!

Do we still need BSM?



We have a pretty good idea of the mechanism

But, we don't know how to protect it:



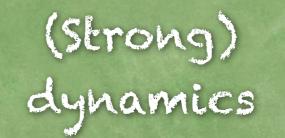
 $\delta m_h^2 \sim \frac{g^2}{16\pi^2} M_{\rm NPh}^2$

Do we still need BSM?

Facl:

we have been working on the same ideas for the last 30-40 years!

Supersymmetry

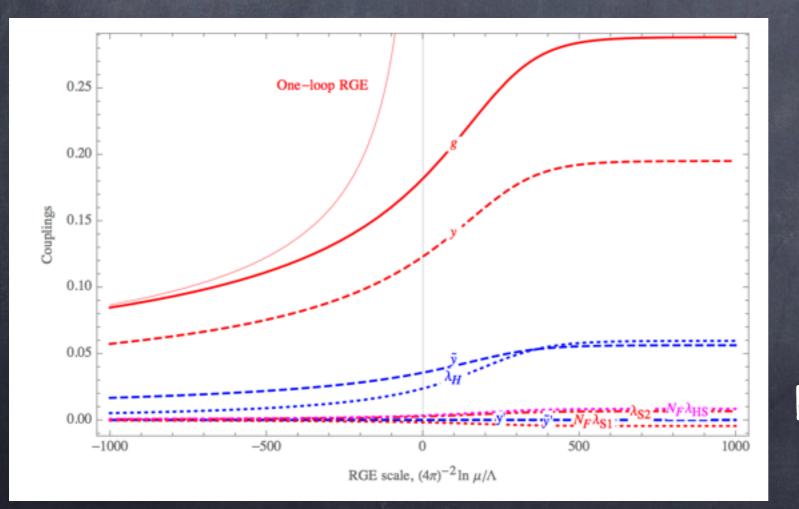


Do we still need BSM? No judgement: I'm playing devil's advocate! Recent New Ideas:

- Scale invariance: only true at <u>classical level</u>.
- Relaxion: <u>classical field evolution imposed</u>
 (tautologic fault!)
- Warped extra dimensions: <u>exponentiation</u> of large scale hierarchies.
- Asymptotic Safe theories: still under study (see
 1701.01453) <u>no realistic example</u>!

Do we still need BSM?

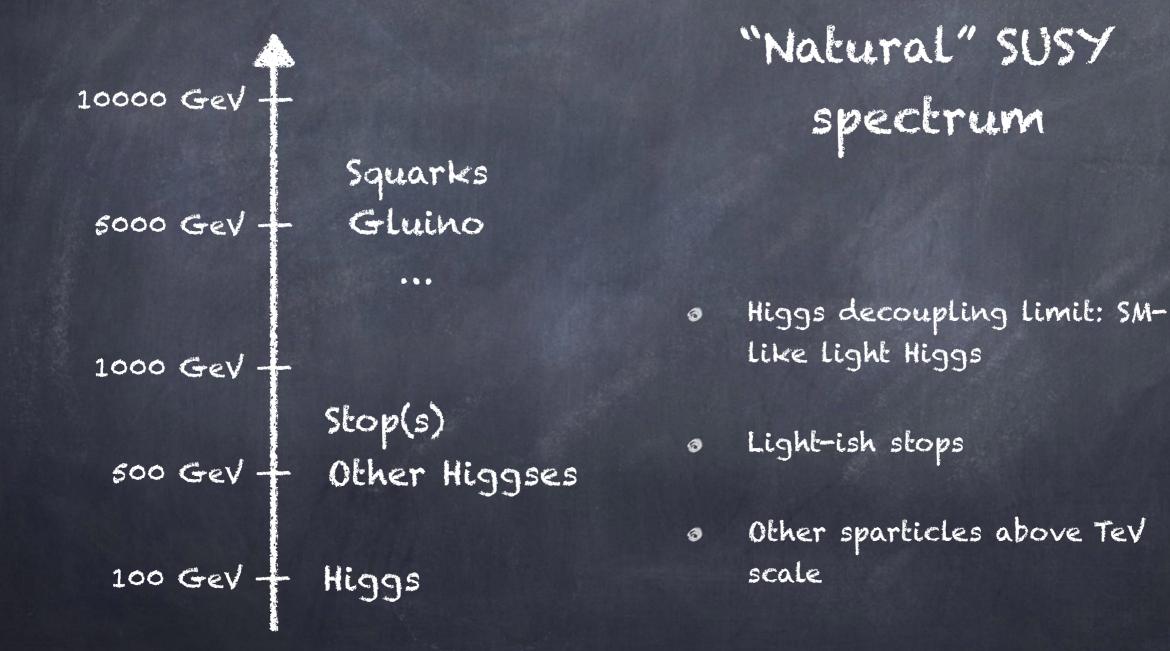
Asymptotic Safe theories: still under study (see
 1701.01453)



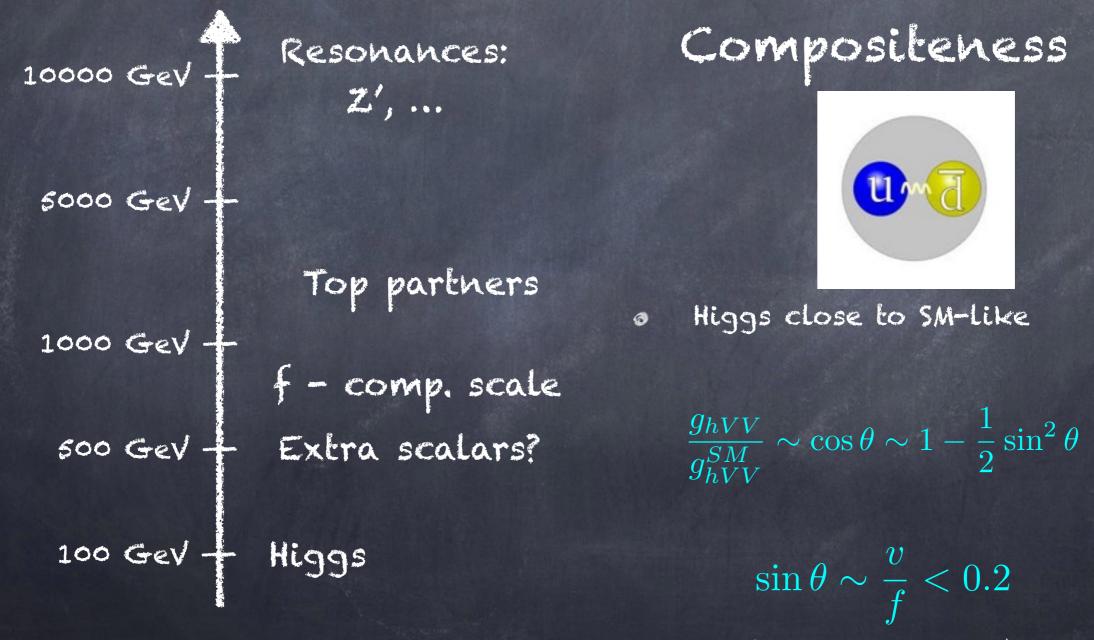
Interacting UV fixed point!

Claim that scalar masses can be natural, i.e. quantum corrections proportional to the mass itself!

How can we rule out our favourite model(s)?



How can we rule out our favourite model(s)?



(EW precision)

1501.03818, ... 100,000 TeV $\Lambda_{\mathrm{flavour}}$ Light flavours near-conformal dynamics $\Lambda \sim 4\pi f$ Vectors + top mixing f

Condensation scale + top partners (extra pions)

 $v_{\rm SM} \sim f \sin \theta$ 100 GeV EWSB

10 Tev

1 TeV

the flavou

1501.03818, ...

New Physics most likely to show-up in flavour?

1 Tev

100,000 TeV

 Λ_{fl}

100 GeV $v_{\rm SM} \sim f \sin heta$

cona on scale (extra sions)

EWSB

+ top partners

+ cop muling

A fermionic theory of top partners $\mathcal{G}_{\mathrm{TC}}$: rep R rep R' 1312.5330, 1604.06467 Q χ $T' = QQ\chi$ or $Q\chi\chi$ SM: EW colour + hypercharge global : $\langle QQ \rangle \neq 0$ a) $\langle \chi \chi \rangle \neq 0$ coloured pNGBs di-boson PNGB Higgs b) $\langle \chi \chi \rangle = 0$ DM?

light top partners from t Hooft anomaly conditions?

Global symmetries

More precisely, the global symmetries are: $SU(N_Q) imes SU(N_\chi) imes U(1)_Q imes U(1)_\chi$

WZW term:

$$\mathcal{L} \supset rac{g_i^2}{32\pi^2} rac{\kappa_i}{f_a} \; a \; \epsilon^{\mu
ulphaeta} G^i_{\mu
u} G^i_{lphaeta} \; ,$$

Coefficients depend on the underlying dynamics!

$$G = A, W, Z, g !!!$$

1512.04508

Anomalous $U(1) \rightarrow heavy \eta'$

Orthogonal U(1) -> pNGB a

Decays and production only via WZW anomaly.

Model zoology

			_					
$G_{ m HC}$	ψ	x	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name	
Real Real $SU(5)/SO(5) \times SU(6)/SO(6)$								
$SO(N_{\rm HC})$	$5 imes \mathbf{S}_2$	$6 imes \mathbf{F}$	$N_{\rm HC} \geq 55$	$\frac{5(N_{\rm HC}+2)}{6}$	1/3	/		
$SO(N_{ m HC})$	$5 imes \mathbf{Ad}$	$6 imes \mathbf{F}$	$N_{ m HC} \geq 15$	$\frac{5(N_{\rm HC}-2)}{6}$	1/3	/		
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$6 imes {f Spin}$	$N_{\rm HC}=7,9$	$\frac{5}{6}, \frac{5}{12}$	1/3	$N_{\rm HC}=7,9$	M1, M2	
$SO(N_{ m HC})$	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC}=7,9$	$\frac{5}{6}, \frac{5}{3}$	2/3	$N_{\rm HC}=7,9$	M3, M4	
Real Pseudo-Real $SU(5)/SO(5) \times SU(6)/Sp(6)$								
$Sp(2N_{\rm HC})$	$5 imes \mathbf{Ad}$	$6 imes \mathbf{F}$	$2N_{\rm HC} \geq 12$	$\frac{5(N_{\rm HC}+1)}{3}$	1/3	/		
$Sp(2N_{\rm HC})$	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$2N_{\rm HC} \geq 4$	$\frac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{\rm HC}=4$	M5	
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{ m HC} = 11, 13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	/		
Real Complex $SU(5)/SO(5) \times SU(3)^2/SU(3)$								
$SU(N_{ m HC})$	$5 imes \mathbf{A}_2$	$3\times ({\bf F},\overline{{\bf F}})$	$N_{ m HC}=4$	$\frac{5}{3}$	1/3	$N_{ m HC}=4$	M6	
$SO(N_{ m HC})$	$5 imes {f F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{ m HC}=10,14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{ m HC}=10$	M7	
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	SO(6)	-		
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{ m HC}=4$	M8	
$SO(N_{ m HC})$	$4\times \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{ m HC} = 11$	M9	
Complex Real $SU(4)^2/SU(4) \times SU(6)/SO(6)$								
$SO(N_{\rm HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$N_{ m HC} = 10$	<u>8</u> 3	2/3	$N_{ m HC} = 10$	M10	
$SU(N_{ m HC})$	$4\times ({\bf F},\overline{{\bf F}})$	$6 imes \mathbf{A}_2$	$N_{ m HC}=4$	$\frac{2}{3}$	2/3	$N_{ m HC}=4$	M11	
	Complex	Complex	$SU(4)^{2}/SU(4)$	\times SU(3) ²	2/SU(3)			
$SU(N_{ m HC})$	$4\times ({\bf F},\overline{{\bf F}})$	$3 imes ({f A}_2, \overline{f A}_2)$	$N_{\rm HC} \geq 5$	$\frac{4}{3(N_{\rm HC}-2)}$	2/3	$N_{ m HC}=5$	M12	
$SU(N_{ m HC})$	$4\times ({\bf F},\overline{{\bf F}})$	$3 imes ({f S}_2, \overline{f S}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	/		
$SU(N_{\rm HC})$	$4\times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3\times ({\bf F},\overline{{\bf F}})$	$N_{ m HC}=5$	4	2/3	/		

1604.06467

$G_{ m HC}$	ψ	x	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name		
	Pseudo-Real Real $SU(4)/Sp(4) \times SU(6)/SO(6)$								
$Sp(2N_{ m HC})$	$4 imes {f F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{ m HC}=4$	M8		
$SO(N_{ m HC})$	$4 imes {f Spin}$	$6 imes {f F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{ m HC} = 11$	M9		
Defines $\tan \zeta$ Theory confines! $T' = \psi \psi \chi$									
Note: there is enough baryons to give mass to									

the top (and bottom) only!

Example of predictions: di-boson resonances

1610,06591

	Pseudo-Real	Real	$SU(4)/Sp(4) \times SU(6)/SO(6)$				
$Sp(2N_{ m HC})$	$4 imes {f F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \leq 36$ $rac{1}{3(N_{ m HC})}$	2/3	$2N_{ m HC}=4$	M8	
$SO(N_{ m HC})$	$4 imes {f Spin}$	$6 imes {f F}$	$N_{ m HC} = 11, 13$ $rac{8}{3}, rac{1}{3}$	$\frac{16}{3}$ 2/3	$N_{ m HC}=11$	M9	

The EFT is the same! Numerical value of couplings:

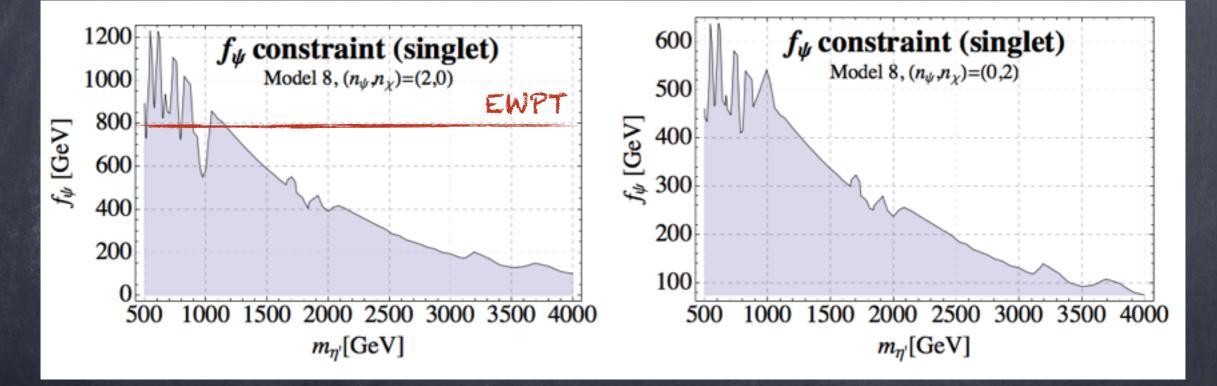
Model		κ_g	$\frac{\kappa_W}{\kappa_g}$	$rac{\kappa_B}{\kappa_g}$	$rac{C_t}{\kappa_g}$ (2,0)	$rac{C_t}{\kappa_g}$ $(0,2)$	$ an\zeta$
M 8	a	-0.77(-0.39)	-1.2(-2.5)	1.5(0.17)	-1.2(-2.5)	0.40(0.40)	
	η'	1.9(2.0)	0.20(0.096)	2.9(2.8)	0.20(0.0.96)	0.40(0.40)	-0.41
	π_8	7.1	0	1.3	0	0.40	
M9	a	-4.3(-2.7)	-0.55(-2.4)	2.1(0.26)	-0.068(-0.30)	0.18(0.18)	
	η'	1.3(3.6)	5.8(1.3)	8.5(4.0)	0.73(0.16)	0.18(0.18)	-3.26
	π_8	16.	0	1.3	0	0.18	

Assuming $f_a = f_{\psi} = \overline{f_{\chi}}$

Model M8

1610,06591

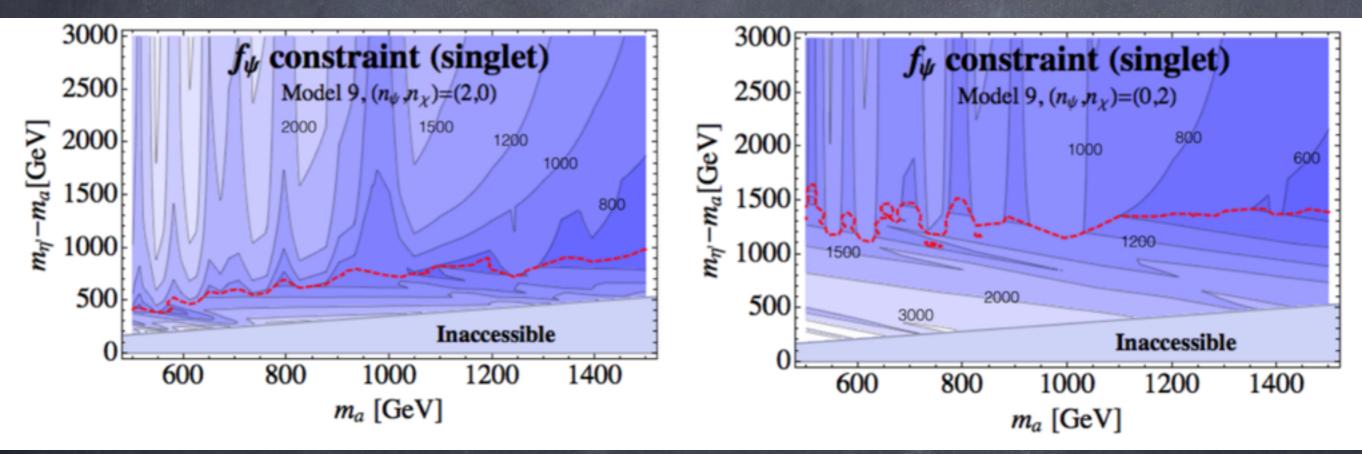
"a" too light for the LHC!



For light masses: bounds competitive with EW precision! Larger top couplings: reduced diboson rates due to tt BR.

Model M9

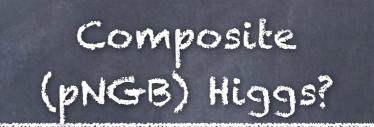
1610.06591



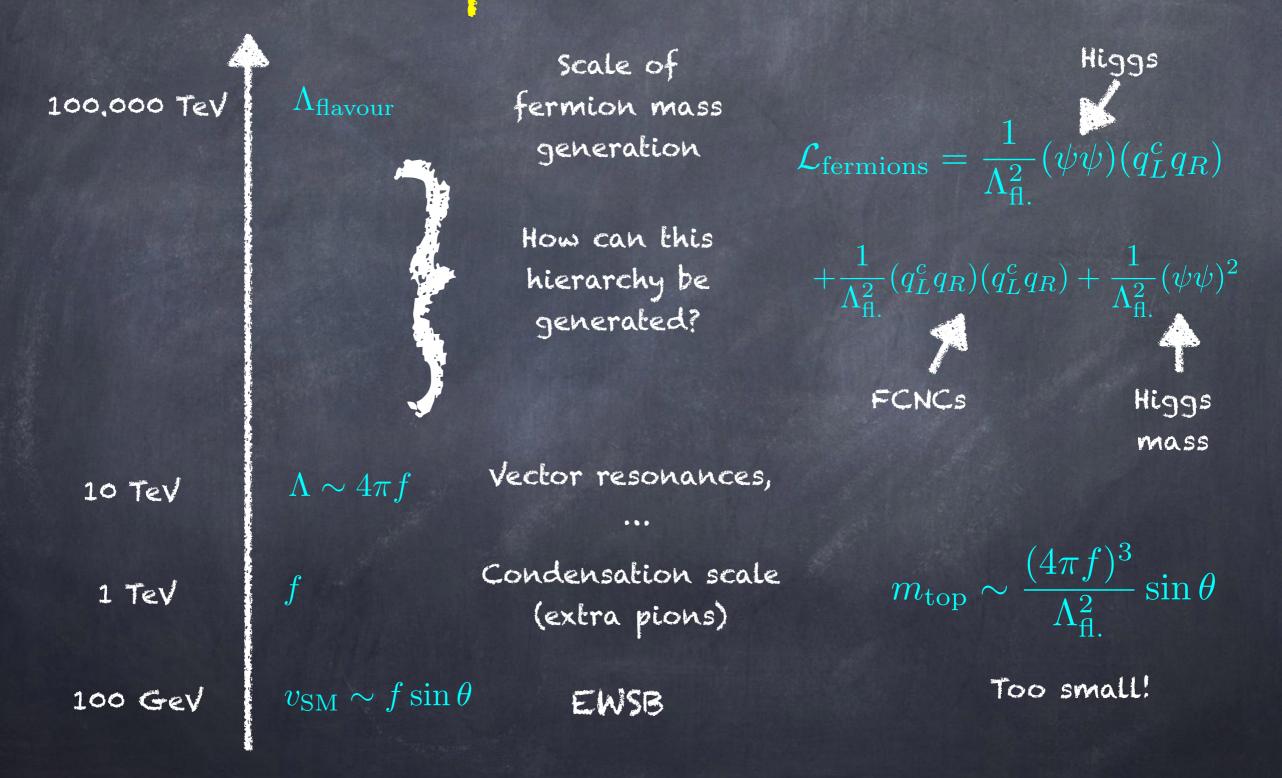
Above red line, bound driven by "a"!

Bounds stronger than EW precision in most of the parameter space!

Let's bet: which model will be ruled out first?



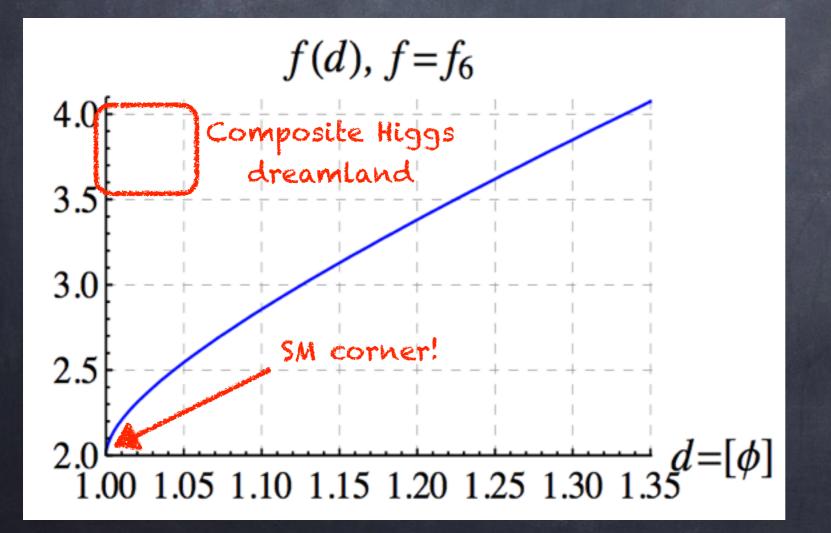
(please, add your model)



scale of 100.000 TeV $(\psi\psi) \to \mathcal{O}_H$ Λ_{flavour} fermion mass generation $\dim[\mathcal{O}_H] = d_H$ Intermediate conformal effective Yukawa: region $\frac{1}{\Lambda_{a}^{d-1}} \mathcal{O}_{H} q_{L}^{c} q_{R}$ Vector resonances, $\Lambda \sim 4\pi f$ 10 TeV $m_{\rm top} \sim \left(\frac{4\pi f}{\Lambda_{\rm fl}}\right)^{d-1} 4\pi f \sin \theta$... Condensation scale f1 TeV (extra pions) $v_{\rm SM} \sim f \sin \theta$ 100 GeV EWSB $d \sim 1.$

A no-go theorem?

Bounds on the dimensions of scalar operators can be extracted using bootstrap techniques!



Rattazzi, Rychkov, Tonni, Vichi 0807.0004

 $\phi \equiv \mathcal{O}_H$

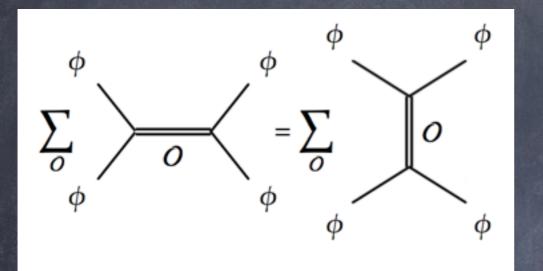
 $d[\phi^2]_{\min} < f(d)$

Higgs mass operator!

$$\Delta m_H^2 \sim \left(\frac{4\pi f}{\Lambda_{\rm fl.}}\right)^{d-4} f^2$$

A no-go theorem?

Q: does the bound apply to the Higgs?



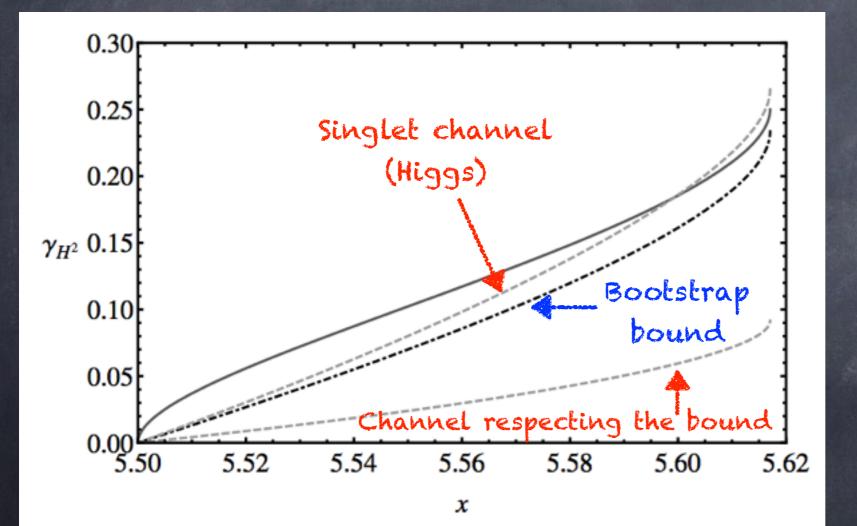
 $(\psi^i\psi^j) = \phi^{ij}$

The scalar operator has flavour indices: many by-linear ops appear!

The bound applies to the one with lowest dimension!

A no-go theorem? No...

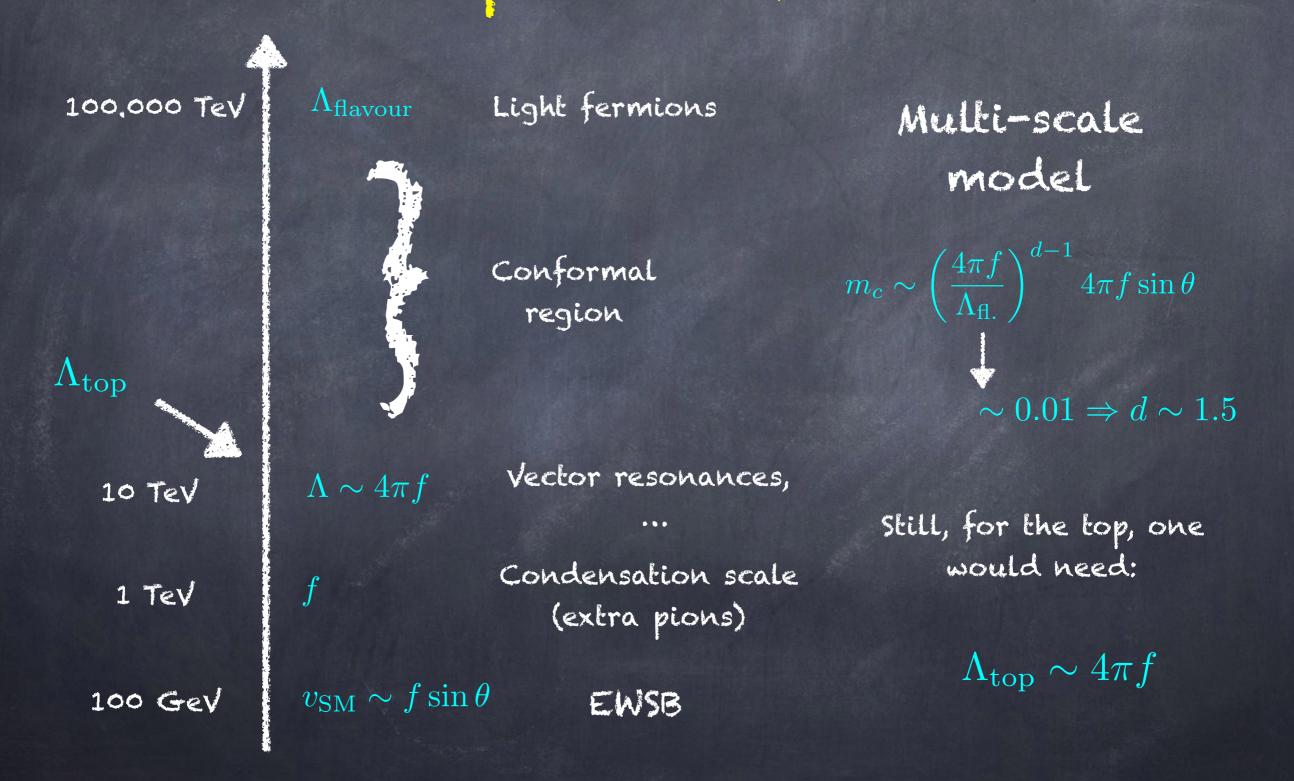
Q: does the bound apply to the Higgs?



Antipin, Mølgaard, Sannino 1406.6166

Gauge-Yukawa theory with weakly-coupled fixed point.

Dimensions are calculable (but small...)



The partial compositeness paradigm

Kaplan Nucl. Phys. B365 (1991) 259

we assume:

 $d_H > 1$ $d_{H^2} > 4$

 $\frac{1}{\Lambda_{\rm q}^{d-1}} \mathcal{O}_H q_L^c q_R \qquad \Delta m_H^2 \sim \left(\frac{4\pi f}{\Lambda_{\rm q}}\right)^{d-4} f^2 \qquad \text{Both irrelevant if}$

Let's postulate the existence of fermionic operators:

 $\frac{1}{\Lambda_{\rm fl.}^{d_F-5/2}} (\tilde{y}_L \ q_L \mathcal{F}_L + \tilde{y}_R \ q_R \mathcal{F}_R)$

This dimension is not related to the Higgs!

 $f(y_L \; q_L Q_L + y_R \; q_R Q_R)$ with $y_{L/R} f \sim \left(rac{4\pi f}{\Lambda_{
m f}}
ight)^{d_F-5/2} 4\pi f$

The partial compositeness paradigm

 $f(y_L \ q_L Q_L + y_R \ q_R Q_R)$

$$m_q \sim \frac{y_L y_R f^2}{M_Q^2} f \sin \theta$$

 $M_Q \sim f \Rightarrow y_L, y_R \sim 1$

Top can cancel top loop, PUVC $M_Q \sim 4\pi f \Rightarrow y_L, y_R \sim 4\pi$