The Leptonic CP Phases

Shao-Feng Ge

(gesf02@gmail.com)

Max-Planck-Institut für Kernphysik, Heidelberg, Germany

2017-5-19

SFG, Duane A. Dicus, Wayne W. Repko, PLB 702, 220 (2011) [arXiv:1104.0602]
 SFG, Duane A. Dicus, Wayne W. Repko, PRL 108, 041801 (2012) [arXiv:1108.0642]
 Andrew D. Hanlon, SFG, Wayne W. Repko, PLB 729, 185-191 (2014) [arXiv:1308.6522]
 SFG [arXiv:1406.1085]
 Jarah Evslin, SFG, Kaoru Hagiwara, JHEP 1602 (2016) 137 [arXiv:1506.05023]
 SFG, Pedro Pasquini, M. Tortola, J. W. F. Valle, PRD 95 (2017) No.3, 033005 [arXiv:1605.01670]
 SFG, Alexei Smirnov, JHEP 1610 (2016) 138 [arXiv:1607.08513]
 SFG. Manfred Lindner, PRD 95 (2017) No.3, 03303 [arXiv:1605.01618]

Higgs boson for electroweak symmetry breaking & mass.

Chiral symmetry breaking for mass.

The world seems not affected by the tiny neutrino mass!

- $\blacksquare \quad \mathsf{Neutrino} \ \mathsf{mass} \Rightarrow \mathsf{Mixing}$
- **3** Neutrino \Rightarrow possible **CP** violation
- $\blacksquare CP \text{ violation} \Rightarrow Leptogenesis$
- There is something left in the Universe.
- Baryogenesis from quark mixing is not enough.

ν Oscillation Data

(for NH)	-1σ	Best Value	$+1\sigma$
$\Delta m_{\rm s}^2 \equiv \Delta m_{12}^2 (10^{-5} {\rm eV}^2)$	7.33	7.50	7.69
$ \Delta m_a^2 \equiv \Delta m_{13}^2 \ (10^{-3} {\rm eV}^2)$	2.484	2.524	2.563
$\sin^2 { heta_{ m s}} \ ({ heta_{ m s}} \equiv { heta_{ m 12}})$	0.294 (32.81°)	0.306 (33.56 °)	0.318 (34.33°)
$\sin^2 { heta _{a}} \left({ heta _{a}} \equiv { heta _{23}} ight)$	0.4200 (40.4°)	0.441 (41.6 °)	0.468 (43.1°)
$\sin^2 oldsymbol{ heta_r} \left(oldsymbol{ heta_r} \equiv oldsymbol{ heta_{13}} ight)$	0.02091 (8.41°)	0.02166 (<mark>8.46</mark> °)	0.02241 (8.61°)
δ_{D}, δ_{Mi}	?, ??	?, ??	?, ??

Esteban, Gonzalez-Garcia, Maltoni, Martinez-Soler & Schwetz, arXiv:1611.01514

III Two small deviations (1σ level):

 $-3.5^{\circ} < \theta_{a} - 45^{\circ} < 5.8^{\circ}$ $8.4^{\circ} < \theta_{r} < 9.2^{\circ}$

with Best Fit Value: $\theta_a - 45^\circ = -3.9^\circ \& \theta_r = 8.8^\circ$.

Zeroth Order Approximation:

$$heta_{a} pprox 45^{\circ}, \qquad heta_{r} pprox 0^{\circ}.$$

 \Rightarrow CP & μ - τ Symmetric Mass Matrix:

$$\mathcal{M}^{(0)}_{
u}=egin{pmatrix} A & \mathbf{B} & \mathbf{B} \ \mathbf{C} & D \ \mathbf{C} \ \mathbf{C} \end{pmatrix}$$

Mohapatra & Nussinov [hep-ph/9809415], Lam [hep-ph/0104116]

Horizontal Symmetry

Mass Matrix M_{ν} invariant under Transformation: $G_{\nu}^{\mathsf{T}} M_{\nu} G_{\nu} = M_{\nu}$ Diagonalization: $V_{\nu}^{\mathsf{T}} M_{\nu} V_{\nu} = D_{\nu}$

Rephasing:

$$\mathbf{D}_{\boldsymbol{\nu}} = \mathbf{d}_{\boldsymbol{\nu}}^{\mathsf{T}} \mathbf{D}_{\boldsymbol{\nu}} \mathbf{d}_{\boldsymbol{\nu}}$$

with $\mathbf{d}_{\mathbf{\nu}}^2 = \mathbf{I}_3 \quad \Rightarrow \quad \mathbf{d}_{\mathbf{\nu}} = \mathsf{diag}(\pm, \pm, \pm).$ In Together

$$\mathbf{M}_{\nu} = \mathbf{G}_{\nu}^{\mathsf{T}} \mathbf{M}_{\nu} \mathbf{G}_{\nu} = \mathbf{G}_{\nu}^{\mathsf{T}} \mathbf{V}_{\nu}^{*} \mathbf{D}_{\nu} \mathbf{V}_{\nu}^{\dagger} \mathbf{G}_{\nu}$$

$$= \mathbf{V}_{\nu}^{*} \mathbf{D}_{\nu} \mathbf{V}_{\nu}^{\dagger} = \mathbf{V}_{\nu}^{*} \mathbf{d}_{\nu}^{\mathsf{T}} \mathbf{D}_{\nu} \mathbf{d}_{\nu} \mathbf{V}_{\nu}^{\dagger}$$

$$\blacksquare \text{ Consequence: } \mathsf{V}_{\nu}^{\dagger}\mathsf{G}_{\nu} = \mathsf{d}_{\nu}\mathsf{V}_{\nu}^{\dagger} \Leftrightarrow \boxed{\mathsf{G}_{\nu} = \mathsf{V}_{\nu}\mathsf{d}_{\nu}\mathsf{V}_{\nu}^{\dagger}}$$

I For Leptons: $F_{\ell} = V_{\ell} d_{\ell} V_{\ell}^{\dagger}$ with $d_{\ell} = \text{diag}(e^{i\beta_1}, e^{i\beta_2}, e^{i\beta_3})$.

Two Nontrivial Independent possibilities of d_{ν} :

$$\mathbf{d}_{
u}^{(1)} = ext{diag}(-1,1,1), \quad \mathbf{d}_{
u}^{(2)} = ext{diag}(1,-1,1), \quad \mathbf{d}_{
u}^{(3)} = -d_{
u}^{(1)}d_{
u}^{(2)}$$

III θ_{s} parameterized in terms of **k**: $\left| \tan \theta_{s} = \sqrt{2}/k \right|$

$$V_{\nu}(k) = \begin{pmatrix} \frac{k}{\sqrt{2}+k^2} & \frac{\sqrt{2}}{\sqrt{2}+k^2} & 0\\ \frac{1}{\sqrt{2}+k^2} & \frac{1}{\sqrt{2}(2+k^2)} & \frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}+k^2} & \frac{k}{\sqrt{2}(2+k^2)} & \frac{1}{\sqrt{2}} \end{pmatrix} \qquad \begin{array}{c} \mathbf{k} = \mathbf{2} & \boldsymbol{\theta}_{\mathbf{s}} = \mathbf{35.3^{\circ}} \ [\mathsf{TBM}] \\ \mathbf{k} = \frac{3}{\sqrt{2}} & \boldsymbol{\theta}_{\mathbf{s}} = \mathbf{33.7^{\circ}} \\ \mathbf{k} = \sqrt{\mathbf{6}} & \boldsymbol{\theta}_{\mathbf{s}} = \mathbf{30.0^{\circ}} \end{array}$$

 $\mathbb{I} \quad \mathbf{Two Independent} \quad Symmetry \ Transformations \ \mathbf{G_i} = \mathbf{V}_{\nu} \mathbf{d}_{\nu}^{(i)} \mathbf{V}_{\nu}^{\dagger}$ $G_1 = \frac{1}{2+k^2} \begin{pmatrix} 2-k^2 & 2k & 2k \\ k^2 & -2 \\ k^2 \end{pmatrix}, \qquad G_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $\mathbb{I} \quad \mathbb{Z}_2^{\mathbf{S}}(\times \mathbb{Z}_2^{\mathbf{S}}) \times \mathbb{Z}_2^{\mu\tau} \equiv \mathcal{G} = \{\mathbf{E}, \mathbf{G_1}, \mathbf{G_2} (\equiv G_1 G_3), \mathbf{G_3}\}$

Full Symmetries:

$\mathcal{H}\equiv\mathcal{G} imes\mathcal{F}$	${\cal G}$	${\cal F}$
S_4	$\mathbb{Z}_2^s imes \mathbb{Z}_2^{\mu au}$	$\mathbb{Z}_3 \equiv \{I, F, F^2\}$
$\{G_1, G_3, F\}$	$G_1(G_2), G_3$	${\it F}\equiv {\sf diag}\;(1,\omega,\omega^2)$

Bottom-Up ↑ ↓ Top-Down

See also Smirnov et. al., 1204.0445, 1212.2149, 1510.00344

Residual Symmetries:

$$egin{aligned} & m{
u}_{\mathbf{i}}\colon & \mathcal{G}\equiv\mathbb{Z}_{2}^{s}(\overline{\mathbb{Z}}_{2}^{s}) imes\mathbb{Z}_{2}^{\mu au} & ext{for} & d_{
u}^{i}= ext{diag}\;(\pm1,\pm1,\pm1) \ & m{\ell}_{\mathbf{i}}\colon & \mathcal{F}\in U(1) imes U(1) & ext{for} & d_{\ell}^{i}= ext{diag}\;(e^{ieta_{1}},e^{ieta_{2}},e^{ieta_{3}}) \end{aligned}$$

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

Residual Symmetry as Effective Theory

Full symmetry HAS TO be Broken!

Fermion needs to acquire mass.

IN Non-trivial mixing $ig V_{
m PMNS} = V_\ell^\dagger V_
u$

- If mixing is TRUELY determined by symmetry, it has to be residual symmetry
 - 🛛 VEVs
 - 💵 Yukawa couplings
- Residual Symmetry as Custodial Symmetry
 - Gauge symmetry has to be broken. Otherwise, no mixing.
 - Weak mixing angle is a function of gauge couplings, which cannot be dictated by gauge symmetry (and VEV).
 - Weak mixing angle is related to the physical observables, the gauge boson masses, by custodial symmetry.

Example Zee-A₄ Model

Lepton's Representation:

$$egin{pmatrix} e_L\ \mu_L\ au_L\ au_L\ au_L\ au_L\ au_R\ au\ au^{\prime\prime}, & \mu_R\sim 1^{\prime\prime}, & \left(egin{pmatrix} arphi_1\ arphi_2\ arphi_3\ arphi^{\prime\prime} \end{pmatrix}\sim \mathbf{3}\,.$$

A₄ invariant Lagrangian:

$$\begin{aligned} \mathcal{L}_{\ell} &= \mathbf{y}_{1} \overline{e}_{R} (\mathbf{1} \varphi_{1}^{\dagger} e_{L} + \mathbf{1} \varphi_{2}^{\dagger} \tau_{L} + \mathbf{1} \varphi_{3}^{\dagger} \tau_{L}) \\ &+ \mathbf{y}_{2} \overline{\mu}_{R} (\boldsymbol{\omega} \varphi_{1}^{\dagger} e_{L} + \mathbf{1} \varphi_{2}^{\dagger} \tau_{L} + \boldsymbol{\omega}^{2} \varphi_{3}^{\dagger} \tau_{L}) \\ &+ \mathbf{y}_{3} \overline{\tau}_{R} (\boldsymbol{\omega}^{2} \varphi_{1}^{\dagger} e_{L} + \mathbf{1} \varphi_{2}^{\dagger} \tau_{L} + \boldsymbol{\omega} \varphi_{3}^{\dagger} \tau_{L}) \,. \end{aligned}$$

Mass term with $\langle \varphi_i \rangle = v_i$:

$$\mathcal{L}_{\ell} = \begin{pmatrix} \overline{\mathbf{e}}_{R} & \overline{\mu}_{R} & \overline{\tau}_{R} \end{pmatrix} \begin{pmatrix} \mathbf{y}_{1} & & \\ & \mathbf{y}_{2} & \\ & & \mathbf{y}_{3} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \\ & \boldsymbol{\omega} & \mathbf{1} & \boldsymbol{\omega}^{2} \\ & & \boldsymbol{\omega}^{2} & \mathbf{1} & \boldsymbol{\omega} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} & & \\ & \mathbf{v}_{2} & \\ & & \mathbf{v}_{3} \end{pmatrix} \begin{pmatrix} \mathbf{e}_{L} \\ & \mu_{L} \\ & \tau_{L} \end{pmatrix}$$
$$\overset{\mathbf{v}_{1}}{\underset{\mathbf{y}_{1} = \mathbf{y}_{2} = \mathbf{v}_{3} = \mathbf{v}} \Rightarrow \mathcal{U}_{\ell,R} = \mathcal{I}, \ \mathbf{U}_{\ell,L}(\boldsymbol{\omega}), \ m_{\ell,i} = \mathbf{y}_{i}\mathbf{v}.$$
$$\mathbf{y}_{1} = \mathbf{y}_{2} = \mathbf{y}_{3} = \mathbf{y} \Rightarrow \mathcal{U}_{\ell,L} = \mathcal{I}, \ \mathbf{U}_{\ell,R}(\boldsymbol{\omega}), \ m_{\ell,i} = \mathbf{y}\mathbf{v}_{i}.$$

Prediction of Large $\delta_{\rm D}$ by $\mathbb{Z}_2^{\rm s}$ and $\mathbb{Z}_2^{\rm s}$

Dirac CP Phase Measurement

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France The Leptonic CP Phases

CP Measurement @ Accelerator Exps

ΝΟνΑ

DUNE, T2KII/T2HK/T2KK/T2KO, MOMENT/ADS-CI, Super-PINGU

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France The Leptonic CP Phases

The Dirac CP Phase δ_D @ Accelerator Exp

To leading order in $\alpha = \frac{\delta M_{21}^2}{|\delta M_{31}^2|} \sim 3\%$, the oscillation probability relevant to measuring $\delta_D \ O \ T2(H)K$,

$$\begin{aligned} P_{\substack{\nu\mu\to\nu_e\\\overline{\nu}\mu\to\overline{\nu}_e}} &\approx 4 s_a^2 c_r^2 s_r^2 \sin^2 \phi_{31} \\ &- 8 c_a s_a c_r^2 s_r c_s s_s \sin \phi_{21} \sin \phi_{31} \left[\cos \delta_D \cos \phi_{31} \pm \sin \delta_D \sin \phi_{31} \right] \end{aligned}$$

for
$$u$$
 & $\overline{
u}$, respectively. $[\phi_{ij} \equiv rac{\delta m_{ij}^2 L}{4 E_{
u}}]$

III $\nu_{\mu} \rightarrow \nu_{\mu}$ Exps measure $\sin^2(2\theta_a)$ precisely, but not $\sin^2 \theta_a$.

$$\begin{split} & \blacksquare \text{ Run both } \nu \& \overline{\nu} \text{ modes } @ \text{ first peak } [\phi_{31} = \frac{\pi}{2}, \phi_{21} = \alpha \frac{\pi}{2}], \\ & P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}} + P_{\nu_{\mu} \to \nu_{e}} = 2 \mathbf{s}_{\mathsf{a}}^{2} c_{r}^{2} s_{r}^{2}, \\ & P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}} - P_{\nu_{\mu} \to \nu_{e}} = \alpha \pi \sin(2\theta_{s}) \sin(2\theta_{r}) \sin(2\theta_{a}) \cos \theta_{r} \sin \delta_{\mathsf{D}}. \end{split}$$

The Dirac CP Phase δ_D @ Accelerator Exp

Accelerator experiment, such as **T2(H)K**, uses off-axis beam to compare $\nu_e \& \overline{\nu}_e$ appearance @ the oscillation maximum.

Disadvantages:

Efficiency:

Proton accelerators produce ν more efficiently than $\overline{\nu} (\sigma_{\nu} > \sigma_{\overline{\nu}})$.

The $\overline{\nu}$ mode needs more beam time $[\mathbf{T}_{\overline{\nu}} : \mathbf{T}_{\nu} = \mathbf{2} : \mathbf{1}].$

 \blacksquare Undercut statistics \Rightarrow Difficult to reduce the uncertainty.

Degeneracy:

I Only sin $\delta_{\mathbf{D}}$ appears in $P_{\nu_{\mu} \to \nu_{e}} \& P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}$.

EXAMPLE Cannot distinguish $\delta_{\rm D}$ from $\pi - \delta_{\rm D}$.

CP Uncertainty
$$\frac{\partial P_{\mu e}}{\partial \delta_D} \propto \cos \delta_D \Rightarrow \Delta(\delta_D) \propto 1/\cos \delta_D$$
.

Solution:

Measure $\overline{\nu}$ mode with μ^+ decay **Q** rest (μ DAR)

μ DAR $\bar{\nu}$ Oscillation Experiments

A cyclotron produces 800 MeV proton beam @ fixed target. Produce π^{\pm} which stops &

 $\blacksquare \pi^-$ is absorbed,

$$\blacksquare \pi^+$$
 decays $@$ rest: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$.

In μ^+ stops & decays @ rest: $\mu^+ \rightarrow \mathbf{e}^+ + \overline{\nu}_{\mu} + \nu_{\mathbf{e}}$.

III $\overline{\nu}_{\mu}$ travel in all directions, oscillating as they go. III A detector measures the $\overline{\nu}_{e}$ from $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillation.

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France The Leptonic CP Phases

Accelerator + μ DAR Experiments

Combining $\nu_{\mu} \rightarrow \nu_{e}$ @ accelerator [narrow peak @ 550 MeV] & $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ @ μ DAR [wide peak ~ 45 MeV] solves the 2 problems:

Efficiency:

- IN $\overline{\nu}$ @ high intensity, μ DAR is plentiful enough.
- Accelerator Exps can devote all run time to the ν mode. With same run time, the statistical uncertainty drops by $\sqrt{3}$.

Degeneracy: (decomposition in propagation basis [1309.3176])

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

New Proposals

 $\mathbf{1} \ \mu \mathsf{DAR} \ \mathsf{source} + \mathbf{2} \ \mathsf{detectors}$

Advantages:

- Full (100%) duty factor!
- **Lower** intensity: \sim **9mA** [\sim **4**× lower than DAE δ ALUS]
- Not far beyond the current state-of-art technology of cyclotron
 [2.2mA @ Paul Scherrer Institute]
- MUCH cheaper & technically easier.
 - Only one cyclotron.
 - Lower intensity.

Disadvantage?

- A second detector!
 - **IVENTIFY and TWO Scintillators** (μ **DARTS**) [1401.3977]
 - Tokai 'N Toyama to(2) Kamioka (TNT2K) [1506.05023]

TNT2K

$\blacksquare T2(H)K + \mu SK + \mu HK$

III μ DAR is also useful for material, medicine industries in Toyama

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France The Leptonic CP Phases

Event Shape @ TNT2K

Evslin, Ge & Hagiwara [1506.05023]

Simulated by NuPro, http://nupro.hepforge.org/

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

$\delta_{\rm D}$ Precision @ TNT2K

Simulated by NuPro, http://nupro.hepforge.org/

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

Majorana CP Phase Measurement

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France The Leptonic CP Phases

Preference of NH \Rightarrow **Non-Observation of** $0\nu 2\beta$ **?**

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

Any chance of obtaining some information?

with

$$\vec{L_1} \equiv m_1 U_{e1}^2 = m_1 c_r^2 c_s^2 e^{i\delta_{M1}} , \\ \vec{L_2} \equiv m_2 U_{e2}^2 = \sqrt{m_1^2 + \Delta m_s^2} c_r^2 s_s^2 , \\ \vec{L_3} \equiv m_3 U_{e3}^2 = \sqrt{m_1^2 + \Delta m_a^2} s_r^2 e^{i\delta_{M3}}$$

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

Determine 2 Majorana Phases Simultaneously

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

Uncertainties from Oscillation Parameters

Uncertainties from Oscillation Parameters

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

Uncertainties from Oscillation Parameters

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

Majorana Pyramid

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France

Prey of Leptonic CP Phases

Thank You!

Shao-Feng Ge (MPIK); LPC @ Clermond-Ferrand, France The Leptonic CP Phases