DE LA RECHERCHE À L'INDUSTRIE

The PARTONS framework

Nucleon and resonance structure | Hervé MOUTARDE

May $31^{\rm st}$, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

www.cea.fr

Motivations.

3D imaging of nucleon's partonic content but also...

PARTONS

Introduction

Framework

Design Architecture

Examples

Features

Ergonomics EIC Fits

Modeling

Releases

First release Future releases Remarks

Conclusion

- Correlation of the longitudinal momentum and the transverse position of a parton in the nucleon.
 - Insights on:
 - **Spin** structure,
 - **Energy-momentum** structure.
- Probabilistic interpretation of Fourier transform of GPD(x, ξ = 0, t) in transverse plane.

H. Moutarde Nucleon and resonance structure 2 / 38

Exclusive processes of current interest (1/2). Factorization and universality.

PARTONS

Introduction

Framework

- Design Architecture
- Examples

Features

- Ergonomics
- EIC
- Fits
- Modeling

Releases

- First release
- Future releases
- Remarks

Conclusion

イロト イポト イヨト イヨト

Releases

First release

Future releases

Remarks

Conclusion

イロト イポト イヨト イヨト

Nucleon and resonance structure

Nucleon and resonance structure

Nucleon and resonance structure

Remarks

Conclusion

Nonperturbative

factorization

X +

D

Exclusive processes of present interest (2/2). Factorization and universality.

PARTONS

Introduction

Framework

Design Architecture

Examples

Features

Ergonomics EIC Fits Modeling

Releases

First release Future releases Remarks

Conclusion

Bjorken regime : large Q^2 and fixed $xB \simeq 2\xi/(1+\xi)$

- Partonic interpretation relies on **factorization theorems**.
- All-order proofs for DVCS, TCS and some DVMP.
- GPDs depend on a (arbitrary) factorization scale μ_F .
 - **Consistency** requires the study of **different channels**.

■ GPDs enter DVCS through **Compton Form Factors** :

$$\mathcal{F}(\xi, t, Q^2) = \int_{-1}^{1} dx C\left(x, \xi, \alpha_{\mathcal{S}}(\mu_F), \frac{Q}{\mu_F}\right) F(x, \xi, t, \mu_F)$$

for a given GPD F.

• CFF \mathcal{F} is a **complex function**.

 < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < ○</td>

 H. Moutarde
 Nucleon and resonance structure
 4 / 38

PARTONS

Framework

Design Architecture Examples

Features

Ergonomics FIC Fits Modeling

Releases

First release Euture releases Remarks

Conclusion

-

 $\langle \Box \rangle$

H. Moutarde

Nucleon and resonance structure

Imaging the nucleon. How? Extracting GPDs is not enough...Need to extrapolate!

PARTONS

Introduction

Framework

Design Architecture

Examples

Features

Ergonomics EIC Fits

Modeling

Releases

First release Future releases Remarks

Conclusion

1 Extract $H(x, \xi, t, \mu_F^{ref})$ from experimental data.

- **Extrapolate** to vanishing skewness $H(x, 0, t, \mu_F^{ref})$.
- **3** Extrapolate $H(x, 0, t, \mu_F^{\text{ref}})$ up to infinite *t* and down to vanishing *t*.
- **Compute** 2D Fourier transform in transverse plane:

$$H(x, b_{\perp}) = \int_{0}^{+\infty} \frac{\mathrm{d}|\Delta_{\perp}|}{2\pi} |\Delta_{\perp}| J_0(|b_{\perp}||\Delta_{\perp}|) H(x, 0, -\Delta_{\perp}^2)$$

- 5 Propagate uncertainties.
- 6 **Control** extrapolations with an accuracy matching that of experimental data with **sound** GPD models.

H. Moutarde Nucleon and resonance structure 6 / 38

Anatomy of the nucleon. A computing framework for the high precision era.

PARTONS

Introduction

Framework

Design

Architecture

Examples

Features

Ergonomics EIC

Fits

Modeling

Releases

First release

Remarks

Conclusion

- 1 The PARTONS framework.
- 2 Features and performances.

3 Releases.

The PARTONS framework

PARtonic Tomography Of Nucleon Software

Computing chain design. Differential studies: physical models and numerical methods.

PARTONS

Introduction

Framework

Design

Architecture Examples

Features

Ergonomics EIC Fits Modeling

Releases

First release Future releases Remarks

Conclusion

Experimental data and phenomenology

Computation of amplitudes

principles and

fundamental parameters

First

Small distance contributions

Full processes

Large distance contributions

H. Moutarde

Nucleon and resonance structure

・ 何 ト ・ ヨ ト ・ ヨ ト

FIC

Fits

Computing chain design.

Differential studies: physical models and numerical methods.

Differential studies: physical models and numerical methods.

Introduction

Framework

Design

Architecture

Examples

Features

Ergonomics FIC Fits Modeling

Releases

First release Euture releases Remarks

Conclusion

Experimental

data and

First principles and fundamental parameters

・ 同 ト ・ ヨ ト ・ ヨ ト Nucleon and resonance structure

Differential studies: physical models and numerical methods.

Introduction

Framework

Design

Architecture Examples

Features

Ergonomics FIC Fits Modeling

Releases

First release Euture releases Remarks

Conclusion

Computation of amplitudes

Experimental

data and

Many observables. Kinematic reach.

H. Moutarde

Nucleon and resonance structure

Differential studies: physical models and numerical methods.

PARTONS

Introduction

Framework

Design

Architecture Examples

Features

Ergonomics FIC Fits Modeling

Releases

First release Euture releases Remarks

Conclusion

Experimental data and phenomenology Need for modularity Computation

of amplitudes

First principles and fundamental parameters

- Many observables.
 - Kinematic reach.

Perturbative approximations.

Physical models.

Fits.

- Numerical methods.
- Accuracy and speed.

- E - N

9 / 38

H. Moutarde

< A 1 Nucleon and resonance structure

Differential studies: physical models and numerical methods.

9 / 38

PARTONS

Introduction

Framework

Design

Architecture Examples

Features

Ergonomics EIC Fits Modeling

Releases

First release Future releases Remarks

Conclusion

Experimental data and phenomenology Need for modularity Computation

of amplitudes

First principles and fundamental parameters

 Many observables.

Kinematic reach.

Perturbative approximations.

Physical models.

Fits.

- Numerical methods.
- Accuracy and speed.

H. Moutarde

Differential studies: physical models and numerical methods.

PARTONS

Introduction

Framework

Design

Architecture Examples

Features

Ergonomics EIC Fits Modeling

Releases

First release Future releases Remarks

Conclusion

Experimental data and phenomenology Need for modularity

Computation of amplitudes

First principles and fundamental parameters

 Many observables.

Kinematic reach.

- Perturbative approximations.
- Physical models.

Fits.

< A 1

Nucleon and resonance structure

- Numerical methods.
- Accuracy and speed.

- E - N

9 / 38

H. Moutarde

Differential studies: physical models and numerical methods.

PARTONS

Introduction

Framework

Design

Architecture Examples

Features

Ergonomics EIC Fits Modeling

Releases

First release Future releases Remarks

Conclusion

Experimental data and phenomenology Need for modularity Computation

of amplitudes

First principles and fundamental parameters

 Many observables.

Kinematic reach.

- Perturbative approximations.
- Physical models.

Fits.

- Numerical methods.
- Accuracy and speed.

H. Moutarde

Differential studies: physical models and numerical methods.

PARTONS

Introduction

Framework

Design

Architecture Examples

Features

Ergonomics FIC Fits Modeling

Releases

First release Euture releases Remarks

Conclusion

Experimental data and phenomenology Need for modularity

Computation of amplitudes

First principles and fundamental parameters

Many observables. Kinematic reach.

- Perturbative approximations.
 - Physical models.

Fits.

- Numerical methods.
- Accuracy and speed.

- E - N

9 / 38

H. Moutarde

< 6 k Nucleon and resonance structure

Towards the first release.

Currently: tests, benchmarking, documentation, tutorials.

PARTONS

3 stages:

- Introduction
- Framework
- Design
- Architecture
- Examples

Features

- Ergonomics FIC
- Fits
- Modeling

Releases

- First release Euture releases Remarks
- Conclusion

- - Design.
 - Integration and validation.
 - Benchmarking and production.
- Flexible software architecture.
 - B. Berthou et al., PARTONS: a computing platform for the phenomenology of Generalized Parton Distributions arXiv:1512.06174, to appear in Eur. Phys. J. C.
- 1 new physical development = 1 new module.
- Aggregate knowledge and know-how:
 - Models .
 - Measurements
 - Numerical techniques
 - Validation
- What can be automated will be automated

H. Moutarde | Nucleon and resonance structure

Modularity.

Inheritance, standardized inputs and outputs.

11 / 38

PARTONS

Conclusion

- Steps of logic sequence in parent class.
- Model description and related mathematical methods in daughter class.

H. Moutarde Nucleon and resonance structure

Flexibility.

Example: implementation of new coefficient functions.

PARTONS

- DVMP GPD at $\mu \neq \mu_F^{\text{ref}}$ Evolution GPD at μ_{F}^{ref}
- A DVCS coefficient function module generically outputs a complex number when provided $(\xi, t, Q^2, \mu_F^2, \mu_P^2)$.
- ConvolCoeffFunctionModule.h virtual std::complex<double> compute(double xi, double t, double Q2, double MuF2, **double** MuR2, GPDType::Type gpdType) = 0;
- This module can be anything: Constant CFFs for local fits. CFFs for massless guarks. CFFs for heavy quarks. CFFs with TMC. イロト 不得 トイヨト イヨト H. Moutarde Nucleon and resonance structure 12 / 38

Design

EIC

Fits

Modeling

Remarks

Modularity and layer structure. Modifying one layer does not affect the other layers.

H. Moutarde Nucleon and resonance structure

Modularity and automation. Parse XML file, compute and store result in database.

PARTONS

H. Moutarde | Nucleon and resonance structure | 14 / 38

イロト イポト イヨト イヨト

Automation and nonregression. Mnemosyne, the PARTONS project database server.

PARTONS

Introduction

- Framework
- Design
- Architecture
- Examples

Features

- Ergonomics EIC
- Fits
- Modeling

Releases

- First release Future releases Remarks
- Conclusion

- Keep track of validated results.
- Systematic nonregression tests.
- Help preparing new releases.
- Store experimental data.
- Store grids of new models.
- Post processing?
- Time consuming fits?

Handling experimental data. Using the power of SQL for data selections (1/2).

PARTONS	 All fixed-target DVCS data collected at Jefferson Lab are stored in the database used for fits.
Framework Design Architecture Examples	 No data about TCS or DVMP so far. Including all existing DVCS data sets in a database is a matter of hours.
Features Ergonomics EIC Fits Modeling	 Data selection from SQL requests for fits. insert_CLAS_asymmetries.sql
Releases First release Future releases Remarks Conclusion	 Kinematics INSERT INTO observable_kinematic (bin_id, xB, t, Q2, E, phi) VALUES(0, 0.19400, -0.11000, 1.68000, 5.93200, 25.00000); SET @last_observable_kinematic_id = LAST_INSERT_ID(); Value and uncertainties INSERT INTO observable_result (observable_name, observable_value, stat_error_lb, stat_error_ub, syst_error_lb, syst_error_ub, total_error, observable_kinematic_id) VALUES('Alu', 0.37000, 0.23000, 0.23000, 0.01000, 0.01000, 0.01000, @last_observable_kinematic_id);

Handling experimental data. Using the power of SQL for data selections (2/2).

PARTONS

Introduction	The database can be used for fits too!
Framework Design Architecture Examples	In fact, observable layer has been designed for fits: all observables correspond to the same kind of object from a software point of view.
Features Ergonomics	fit_scenario.xml
EIC Fits Modeling Releases First release Future releases Remarks Conclusion	<pre>1 2 <!-- 3th step : write your custom SQL query to select your observables--> 3 <task method="selectObservables" service="FitsService"> 4</task></pre>

H. Moutarde | Nucleon and resonance structure | 17 / 38

イロト イポト イヨト イヨト

GPD computing made simple. Each line of code corresponds to a physical hypothesis.

Introduction	2 #include <src partons.h=""></src>
Framework Design Architecture	 // Retrieve GPD service GPDService* pGPDService = Partons::getInstance()->getServiceObjectRegistry ()->getGPDService():
Features (Ergonomics : EIC : Modeling & Releases [1] Future releases 11 Future releases 12 Conclusion 11 11 12 14 14 14 14	<pre>// Load GPD module with the BaseModuleFactory // GPDModule* pGK11Model = Partons::getInstance()->getModuleObjectFactory ()->newGPDModule(GK11Model::classId); // Create a GPDKinematic(x, xi, t, MuF, MuR) to compute GPDKinematic gpdKinematic(0.1, 0.00050025, -0.3, 8., 8.); // Compute data and store results GPDResult gpdResult = pGPDService-> computeGPDModelRestrictedByGPDType(gpdKinematic, pGK11Model, GPDType::ALL); // Print results std :: cout << gpdResult.toString() << std::endl; delete pGK11Model; pGK11Model = 0;</pre>

H. Moutarde | Nucleon and resonance structure | 18 / 38

GPD computing automated. Each line of code corresponds to a physical hypothesis.

PARTONS		computeOneGPD.xml				
	1	xml version="1.0" encoding="UTF-8" standalone="yes" ?				
Introduction	2	<pre><scenario date="" description="Example_:computation_of_one_GPD</pre></td></tr><tr><td>miloduction</td><td></td><td><math>_model_{\sqcup}(GK11)_{\sqcup}without_{\sqcup}evolution" id="01"></scenario></pre>				
Framework	3	</math Select type of computation $>$				
Design	4	<task service="GPDService" method="computeGPDModel">				
Examples	5	</math Specify kinematic $>$				
Features	6	<kinematics type="GPDKinematic"></kinematics>				
Ergonomics	7	<param name="x" value="0.1"/>				
EIC	8	<param name="xi" value="0.00050025"/>				
Fits	9	<param name="t" value="-0.3"/>				
Modeling	10	<pre><param name="MuF2" value="8"/></pre>				
Releases	11	<pre><param name="MuR2" value="8"/></pre>				
First release	12					
Future releases Remarks	13	</math Select GPD model and set parameters $>$				
Conclusion	14	<computation_configuration></computation_configuration>				
Conclusion	15	<module type="GPDModule"></module>				
	16	<param name="className" value="GK11Model" $/>$				
	17					
	18					
	19					
	20					

GPD computing automated. Each line of code corresponds to a physical hypothesis.

PARTONS		computeOneGPD.xml					
	1 2	<pre><?xml version="1.0" encoding="UTF-8" stand <scenario id="01" date="" description="Exam</pre></pre>	$H^{\mu} = 0.822557$				
Introduction Framework Design	3	<pre>umodel_(GK11)_uwithout_evolution"> <!-- Select type of computation--> <task <="" method="computation" pre="" service="GPDService"></task></pre>	$H^{u(+)} = 0.165636$ $H^{u(-)} = 1.47948$				
Examples	5	Specify kinematic					
Features Ergonomics EIC Fits Modeling Releases First releases Remarks Conclusion	6 7 8 9 10 11 12 13 14 15 16	<pre><kinematics type="GPDKinematic"> <pre></pre></kinematics></pre>	$H^{d} = 0.421431$ $H^{d(+)} = 0.0805182$ $H^{d(-)} = 0.762344$ $H^{s} = 0.00883408$ $H^{s(+)} = 0.0176682$ $H^{s(-)} = 0$				
	17 18 19 20	 	$H^{g} = 0.385611$ and <i>E</i> , <i>H</i> , <i>E</i> ,				

Observable computing automated. Each line of code corresponds to a physical hypothesis.

		computeManyKinematicsOneModel.xml				
PARTONS	1	$<$ scenario date="2016-10-18" description="Use_kinematics_list">				
	2	<task <="" method="</td></tr><tr><td>Introduction</td><td></td><td>computeManyKinematicOneModel" service="ObservableService" td=""></task>				
Framework	3	<pre><kinematics type="ObservableKinematic"></kinematics></pre>				
Design	4	$<$ param name="file" value="observable_kinematics.dat" $/>$				
Architecture	5					
Examples	6	<computation_configuration></computation_configuration>				
Features	7	<module type="Observable"></module>				
Ergonomics	8	<param name="className" value="Alu"/>				
EIC	9					
Modeling	10	<module type="DVCSModule"></module>				
Releases	11	<param name="className" value="BMJ2012Model" $/>$				
First release	12	<param name="beam_energy" value="1066"/>				
Future releases	13					
Remarks	14	<pre><module type="DVCSConvolCoeffFunctionModule"></module></pre>				
Conclusion	15	<param name="className" value="DVCSCFFModel"/>				
	16	<param name="qcd_order_type" value="LO"/>				
	17					
	18	<module type="GPDModule"></module>				
	19	<param name="className" value="GK11Model"/>				
	20					
	21					
		H. Moutarde Nucleon and resonance structure 20 / 38				

Features and performances

<□▶ <⊡▶ < 글▶ <

≣ ▶

Systematic studies made easy. A faster and safer way to GPD phenomenology.

PARTONS

Automation allows ...:

- to run numerous computations with various physical assumptions,
- to run **nonregression** tests.
- to perform **fits** with various models.
 - physicists to focus on physics!

Without PARTONS

With PARTONS

Introduction Framework

Design

Architecture

Examples

Features

Ergonomics EIC Fits Modeling

Releases

First release Future releases Remarks

Conclusion

GPD computations made fast.

Improved performances thanks to clever architecture design.

PARTONS

Introduction

Framework

- Design Architecture
- Examples

Features

Ergonomics FIC Fits Modeling

Releases

First release Euture releases Remarks

Conclusion

GPD computations with or without threads

#general 12 members Company-wide annound
also I still have to "clean" if Bryan BERTHOU 1502 GRAND AND AND AND AND AND AND AND AND AND
 In my own computer with: kinematics -> 500 results/ i i Cádric 16.33 Very good! I will have plen So your 500 results per sec ,t, Q*2) per second, is that or is it that you can compute Hi Cédric! With 2+1 threa E and Et foru, d, s and g on

Systematic studies made fast (1/2). What can be done from scratch in about 1 hour.

From D. Sokhan's talk, EIC User Group Meeting, ANL, 2016 PARTONS Luca Colaneri. **DVCS** beam-spin asymmetries at EIC Nabil Chouika Introduction (PARTONS) – GK11 Framework VGG 0.24 $Q^2 = 16 \text{ GeV}^2$ $x_B = 0.01$ 0.16 $E_e E_p = 500 \text{ GeV}^2$ Design Architecture 0.08 Examples -0.08 Features -0 16 -0.24 Ergonomics $Q^2 = 8 \text{ GeV}^2 \ x_B = 0.005$ 0.24 FIC PRELIMINARY 0.16 Fits 0.08 Modeling ALU 0 Releases -0.08 -0.16 First release 0.24 Euture releases 0.24 $O^2 = 4 \text{ GeV}^2$ $x_B = 0.003$ Remarks 0.16 0.08 Conclusion -0.08 See next talk on -0.16 PARTONS by C. Mezrag -0.24 0 40 80 120 160 200 160 200 240 280 320 360 200 $\phi(^{\circ})$ $\phi(^{\circ})$ $\phi(^{\circ})$ $-t = 0.1 \text{ GeV}^2$ $-t = 0.25 \text{ GeV}^2$ $-t = 1 \text{ GeV}^2$

H. Moutarde | Nucleon and resonance structure | 24 / 38

Systematic studies made fast (2/2). EIC observables computed with different pQCD assumptions.

PARTONS

Design

EIC Fits

Remarks

(Preliminary) $A_{ m LU}(90^\circ)$ at LO with Goloskokov-Kroll model Introduction AluMap LO t -0.05 AluMap LO t -0.15 AluMap LO t -0.25 Framework 00¹001 1.6 1.4 1.2 0.012 Architecture 1.2 Examples 0.000 0.8 0.8 Features o.eE 0.4E 0.4E 0.4E Ergonomics 0.2 92 AluMap LO t -0.35 AluMap LO 1 -0.45 AluMap LO t -0.55 Modeling Releases First release Euture releases 0.8 0.8 0.4E 0.4 Conclusion 0.2 Colaneri et al., Work in progress

GPD or CFF fits (1/4). Local fit of CFFs.

PARTONS

First local fit of pseudo DVCS data, Sep. 26th, 2016

Introduction

Ers	m	e \A	or	k.
		ev		n

Design Architecture

Examples

Features

Ergonomics EIC

Fits

Modeling

Releases

First release Future releases Remarks

Conclusion

	Mattermost
@herve PARTONS	partons_fits v 7 🎍 Search @
artons_fits	Mon, Sep 26, 2016
artons_tests	pawel 3:16 PM
ntrons_v0 artons_visualization dom-inverse nort_distance wm Square ello rtual_machine b TE GROUPS + tidab Ewille T MESSAGES T MESSAGES ryyan	FCN=1.001280=11 FROM MIGRAD STATUS=CONVERGED 44 CALLS 45 TOTAL EDM=2.00186e-11 STRATEGY=1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 fit_CFF_H.Re 6.67247e-02 1.34241e-00 2.99231e-05 -7.02262e-07 2 fit_CFF_E.Re -3.94780e-00 fixed 1.80608e-05 1.71071e-04 3 fit_CFF_E.TR -1.64116e-01 fixed 6 fit_CFF_E.TR 1.93952e+01 fixed 6 fit_CFF_E.TR 2.59031-04 fixed 1 6 fit_CFF_E.TR 7.9952e+01 fixed 8 fit_CFF_E.TR J.90952e+01 fixed 6 fit_CFF_E.TR J.9952e+01 fixed 7.951c-03 J.5125e+00 Fixed J.8008e+00 fixed 2 1.804s+00 7.951c-03 J.351e+00 J.8008e+00 J.8008e+00 J.8008e+00 PARAMETER CORRELATION COFFICIENTS J.80
cub ca houika	The true values of fit_CFF_H_Re and fit_CFF_H_Im are 0.06672466940113253 and 12.423114181138908
awel	Write a morrage
opora	write a message
	Help

GPD or CFF fits (2/4). Global fit of CFFs using a analytic parameterization.

PARTONS

Introduction

Framework

- Design Architecture
- Examples

Features

- Ergonomics FIC
- Fits
- Modeling

Releases

- First release Euture releases Remarks
- Conclusion

RESULTS

 Kinematic cuts 	Q ² > 1.5 GeV ²	(where we can rely on LO approximation)
	-t / Q ² < 0.25	(where we can rely on GPD factorization)

- x² / ndf 3272.6 / (3433 - 7) ≈ 0.96
- Free parameters a_{Hsea}, a_{Ĥval}, a_{Ĥsea}, C_{sub}, a_{sub}, N_E, N_E
- x² / ndf per data set

[1] Phys. Rev. C 92, 055202 (2015) [2] Phys. Rev. Lett. 115, 212003 (2015) [3] Phys. Rev. D 91, 052014 (2015)

Experiment	Reference	Observables	N points all	N points selected		chi2 / ndf
Hall A	[1] KINX2	σUU	120	120	135.0	1.19
Hall A	[1] KINX2	ΔσLU	120	120	98.9	0.88
Hall A	[1] KINX3	σUU	108	108	274.8	2.72
Hall A	[1] KINX3	ΔσLU	108	108	107.3	1.06
CLAS	[2]	σUU	1933	1333	1089.2	0.82
CLAS	[2]	ΔσLU	1933	1333	1171.9	0.88
CLAS	[3]	AUL, ALU, ALL	498	305	338.1	1.13
Pawel Sznajder DIS 2017					12	
H. Moutarde Nucleon and resonance structure						re 27/3

H. Moutarde

GPD or CFF fits (3/4). Global fit of CFFs using neural networks.

PARTONS

Introduction

Framework

- Design
- Architecture
- Examples

Features

- Ergonomics EIC
- Fits
- Modeling

Releases

- First release Future releases Remarks
- Conclusion

Neural network global fit of CLAS asymmetries, May 31^{st} , 2017

NEURAL NETWORK

Paweł Sznajder

- $\hfill \label{eq:our verse}$ Our very first attempt to use NN technique \rightarrow proof of feasibility
- Genetic algorithm (GA) to learn NN
- NN and GA libraries by PARTONS group
- Very simple design of NN
- CLAS asymmetry data only
- x² / ndf = 273.9 / (305 68) ≈ 1.16

Nucleon and Resonance Structure Workshop 2017

GPD or CFF fits (4/4). From local to global fits in 8 months!

PARTONS

Introduction

Framework

Design

Architecture

Examples

Features

Ergonomics

EIC

Modeling

Releases

First release Future releases Remarks

Conclusion

- PARTONS architecture allows focusing on parameterization and fitting engine.
- The same machinery is used for local and global fits.
- **Fast** and **constant** progress since the first fits.

See Pawel Sznajder's talk today!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FIC Fits

Covariant and positive GPD models. First systematic procedure to build models satisfying all constraints.

PARTONS 2.4 1.6 Introduction 0.8 0.0 Framework Design -0.8 Architecture -0.5 Examples -1.6 -2.4 Features -1.0 Ergonomics Analytic result Modeling Releases First release Euture releases Remarks Conclusion GPD

Numerical result

Algebraic Dyson Schwinger LFWF

Chouika et al. Work in progress

H. Moutarde

1.0

(ロト (得) (手) (手) Nucleon and resonance structure

PARTONS

Covariant and positive GPD models. First systematic procedure to build models satisfying all constraints.

(Preliminary) AdS/QCD LFWF

-0.50

30 / 38

Introduction Framework Design Architecture H(x, ξ) Examples Features Ergonomics FIC Fits -3 Modeling -1.00 Releases First release Chouika et al., Work in progress Euture releases Remarks

See José Rodríguez-Quintero's talk today!

イロト イポト イモト イモト

Nucleon and resonance structure

Conclusion

Numerics under control for **smooth** LEWEs

0.00

x

Situation with Regge behavior currently studied.

0.50

1.00

Towards consistent modeling and fit of GPDs and TMDs? Wigner functions?

H. Moutarde

Releases

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

First release content. DVCS channel only.

PARTONS

Introduction	GPD modules	CFF modules
Framework	GK	LO
Design Architecture	VGG	NLO
Features	 Vinnikov (evolution) 	NLO Noritzsch
Ergonomics	MPSSW13 (NLO study)	
Modeling	MMS13 (DD study)	Evolution modules
Releases		Vinnikov (LO)
Future releases Remarks	DVCS modules	
Conclusion	■ VGG	$lpha_{ m s}$ modules
	BMJ	4-loop perturbation
		constant value
	H. Moutard	・ロト・合ト・ミト・ヨト ヨー のへで de Nucleon and resonance structure 32 / 38

Open-source release.

Soon publicly available on CEA GitLab server.

PARTONS

Introduction

	Fra	me	work
--	-----	----	------

Design Architecture

Examples

Features

Ergonomics EIC

Fits

FILS

Modeling

Releases

First release

Future releases Remarks

Conclusion

		drf-gitlab.cea.fr		Č		0	
Webmail CEA L'Irfu, Institus de l'Univers L	L'intranet de l'Irfu L'intrane	t du SPhN herve moutard	PROPHET - Trac	vianavigo O	verleaf http://agen	ia la formatio	n >>
😑 🖊 partons / core		T	his group Search		+ #	n o	👮 -
	Group Issues 0	Merge Requests 0	Members Set	ttings			
Home Activity							
		@core .					
		🌲 Global 👻					
Projects Subgroups		F	Iter by name	Las	t updated	Vew P	roject
Partons Partons project a							
Partons-example Running version of PARTONS with examples (C++ code and XML computing scenarios)							
partons-exe Executable version of PARTONS							
NumA++: numerical analysis C++ routines							
elementary-utils Utility softwares (logger, parser, thr	reads, string and file ma	anipulation)					۵
			4 🗆	► < A		< 3)	. 3

H. Moutarde

Nucleon and resonance structure | 33 / 38

Future releases.

A lot remains to be integrated...Contributors welcome!

PARTONS

Introduction	Channel modules	Hadron structure modules
Framework	DVMP	DAs
Design Architecture Examples	TCS	DDs
Features	• ???	Form factors
Ergonomics EIC Fits		PDFs
Modeling	Other modules	LFWFs
Releases First release Future releases	 Mellin moments (EM tensor lattice QCD) 	■ ???
Remarks	■ ???	Nonperturbative QCD modules
		 Gap equation solver 222
	H. Mouta	・ロト・クト・ミト・モート ヨークへで arde Nucleon and resonance structure 34 / 38

A common framework for GPD studies? From a software development to a physics production phase.

35 / 38

PARTONS

ntrod	uction
muou	uction
	accion

Framework

- Design Architecture
- Examples

Features

- Ergonomics EIC Fits
- Modeling

Releases

- First release
- Remarks

Conclusion

- Still room for improvement in first version but framework should become available to a wide community of users.
- User feedback much welcome! However the PARTONS team will not provide support for major modifications like *e.g.* translation into Java.
- It took years to design, write and validate PARTONS in C++. Time to produce physics with it; starting another software project would be much premature.
- PARTONS team will take responsibility only for main branch.
- Please make any new module available to the whole community through the main PARTONS branch.

H. Moutarde Nucleon and resonance structure

Conclusion

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Conclusions and prospects. Towards a unifying framework for GPD studies.

PARTONS

Introduction

- Framework
- Design Architecture
- Examples

Features

- Ergonomics EIC
- Fits
- Modeling

Releases

- First release Future releases Remarks
- Conclusion

- A lot has been achieved in the last few years!
- Initiated as an experimentalist companion, grown as a multidisciplinary project attracting theorists to the field.
- Challenging constraints expected from Jefferson Lab, COMPASS and EIC.
- Development of the PARTONS framework for phenomenology and theory purposes.
- Fitting engine ready for global and local fits. Original global CFF fits recently achieved, meeting initial aim!
- Forthcoming open-source release of PARTONS.

Commissariat à l'énergie atomique et aux énergies alternatives DRF Centre de Saclay | 91191 Gif-sur-Yvette Cedex Infai T, +330(16 00 67 38 | F, +330(16 00 67 58 4 SPNN

Etablissement public à caractère industriel et commercial R.C.S. Paris B 775 685 01

####