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Pion GPD

Definition, constraints and symmetry properties:

Miiller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

m From isospin symmetry, all the information about pion
GPD is encoded in H”, and HY, .
L] .:rl- .:rr L] L
m Further constraint from charge conjugation:

H;+ (X, 3 t) — _Hﬁ—k (—X, 3 f).




Pion GPD

Definition, constraints and symmetry properties:

PDF forward limit
Form factor sum rule

Polynomiality Lorentz invariance
Positivity Positivity of Hilbert space norm

H? is an even function of £ from time-reversal invariance.

H9 is real from hermiticity and time-reversal invariance.

H9 has support x € [—1,+1]. Relativistic Quantum mechanics
Soft pion theorem (pion target) Dinamical CSB

Numerous theoretical constraints on GPDs.

m T[here is no known GPD parameterization relying only on
first principles.

m Modeling becomes a key issue.




Pion GPD

Definition, constraints and symmetry properties:

PDF forward limit
Form factor sum rule

Polynomiality Lorentz invariance
Positivity Positivity of Hilbert space norm

H? is an even function of £ from time-reversal invariance.

H9 is real from hermiticity and time-reversal invariance.

H9 has support x € [—1,+1]. Relativistic Quantum mechanics
Soft pion theorem (pion target) Dinamical CSB

Numerous theoretical constraints on GPDs.

m T[here is no known GPD parameterization relying only on

first principles. Focus here on polynomiality

m Modeling becomes a key issue. and positivity!




Polinomiality

Mixed constraint between Lorentz invariance and discrete symmetries

m Express Mellin moments of GPDs as matrix elements:

+1
/ dxx™HY( x,
J—1

1 — A
- f - +yvm -
Syl < ‘ T(iDT)Mg(0) ‘P > >

m ldentify the Lorentz structure of the matrix element:

linear combination of (PH)™ 1 5 AT  for 0 < k < m+1

m Remember definition of skewness AT = —2£6PT.
m Select even powers to implement time reversal.
m Obtain polynomiality condition:

/ Ax X HI(x, €. Z[zg C7 () +(26)™ e (1) .

1




Double Distributions

A well fitted tool to encode GPD properties

m Define Double Distributions F? and G9 as matrix elements

of twist-2 quark operators:

<P i %) 3(0)y DM ... iD=} g(0) 'P e %>

Hem— k1
ot cypaviem s (LAY

/ dBda a*B™*FI(B, o)
(2

/ dBda a*B™kG(B, @)
(1

[Muller et al., Fortschr.Phys. 42 (1994)101
[Radyshkin, Phys.Rev.D59(1999)014030;Phys.Lett.B499(1999)81




Double Distributions

Relation to Generalized Parton Distributions

m Representation of GPD:
/ dfda d(x— 5 —af) (F‘?(;‘. a,t) +EGY 3, a. t:l)
Jipn

m Support property: x € [—1, +1].
m Discrete symmetries: F9 is a-even and GY9 is a-odd.

m Gauge: any representation (F9, G9) can be recast in one
representation with a single DD f9:

) e / dSda %MI{H{’E’ o, t)d(x — 3 — af)
JEnD |

[Belitsky et al., Phys.Rev.D64 (2001)110062]




Positivity and overlap representation

Relation to Generalized Parton Distributions

m ldentify the matrix element defining a GPD as an inner
product of two different states.

m Apply Cauchy-Schwartz inequality, and identify PDFs at
specific kinematic points, e.g.:

B I|II 1 J{-I-{ x_f.
(HY(x, &, t) E\"Ill—{2q<1— )ﬂ(l_;)
| Q .

m [ his procedures yields infinitely many inequalities stable
under LO evolution.

Pobylitsa, Phys. Rev. D66, 094002 (2002)

m [ he overlap representation guarantees a priori the
fulfillment of positivity constraints.




Positivity and overlap representation

A first-principle connection to Light Front Wave Functions

m Decompose an hadronic state |H; P, \) in a Fock basis:

m Derive an expression for the pion GPD in the DGLAP
region £ < x < 1.

HI(x, &, ) oc ) / [dxdk | ] n6; o6 (x—x;) 1050V (K, K DN (k)

with X, k| (resp. %l;‘l) generically denoting incoming
(resp. outgoing) parton kinematics.

Diehl et al., Nucl. Phys. B596, 33 (2001)

m Similar expression in the ERBL region —& < x < &, but
with overlap of N- and (N 4 2)-bodv | FWF.




Positivity and overlap representation

Advantages and drawbacks

Then:

m Physical picture.
m Positivity relations are fulfilled by construction.
m Implementation of symmetries of N-body problems.

What is not obvious anymore

What is not obvious to see from the wave function
representation is however the continuity of GPDs at x = £
and the polynomiality condition. In these cases both the
DGLAP and the ERBL regions must cooperate to lead to the
required properties, and this implies nontrivial relations
between the wave functions for the different Fock states
relevant in the two regions. An ad hoc Ansatz for the wave

functions would almost certainly lead to GPDs that violate
the above requirements.

Diehl, Phys. Rept. 388, 41 (2003)




GPDs in the Bethe-Salpeter
and Schwinger-Dyson
approach




GPD In the DSE-BSE approach

Evaluation via the triangle diagram approximation:

P2 [g(0)y (7D ) "q(0) [, P~ ?>

m Compute Mellin moments
of the pion GPD H.




GPD In the DSE-BSE approach

Evaluation via the triangle diagram approximation:

A {_IL m A
q(0)y™ (i D T)™q(0) P—;>

m Compute Mellin moments
of the pion GPD H.

m [riangle diagram approx.




GPD In the DSE-BSE approach

Evaluation via the triangle diagram approximation:
1
Q(P——)n—l—l

A — A
<?T, P + D) ‘a{{J)’;r‘Jr(f D ")"q(0)| 7, P — 2>

m Compute Mellin moments
of the pion GPD H.

m [riangle diagram approx.

m Resum infinitely many
contributions.
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m Compute Mellin moments
of the pion GPD H.
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contributions.




GPD In the DSE-BSE approach

Evaluation via the triangle diagram approximation:

A — A
<7r. P + 5 ‘E;({J)ﬁf-'Jr(f D +)mq(0)‘ T, P — 2>

m Compute Mellin moments
of the pion GPD H.

m [riangle diagram approx.

m Resum infinitely many
contributions.

P+ 5

m Nonperturbative modeling.
m Most GPD properties satisfied by construction.

m Also compute crossed triangle diagram.

Mezrag et al., arXiv:1406.7425 [hep-ph]
and Phys. Lett. B741, 190 (2015)




Algebraic DSE-BSE inspired GPD model

Have to deal with DSEs and BSEs solutions:

m Numerical resolution of gap and Bethe-Salpeter equations

in Euclidean space.
m Analytic continuation to Minkowskian space required.
m lll-posed problem in the sense of Hadamard.

m Parameterize solutions and fit to numerical solution:

Gap Complex-conjugate pole representation:

e

= Z [JK erfm, ik jmji‘

,r_

Bethe-Salpeter Nakanishi representation of amplitude F:

+1
pla, A)
Sl Pli= 1 dA =
T ff' q - / cnf/ +aq P+)\2)




Algebraic DSE-BSE inspired GPD model

Afirst intermediate step before dealing with numerical solutions:
m Expressions for vertices and propagators:
=iy - p+ M Am(p?)
1
s+ M?

. M 2 o 2 4
T, (k, p) iy — M dzpy,(2) [Am(KS,)]

fr
pu(2) R,(1— 22)”

1

with R, a normalization factor and ki, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

m Only two parameters:




Algebraic DSE-BSE inspired GPD model

Afirst intermediate step before dealing with numerical solutions:

m Expressions for vertices and propagators:

S(p) [ — iy - p+ M| Ap(p?)
'&M(S) S—|—1M2
M

I

11
Ca(kp) = sy M [ dzpu(2) [Au(k,)]

fr
pv(2) Ry(1—2%)"
with R, a normalization factor and k;, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

m Only two parameters:

1

m Dimensionful parameter M.




Algebraic DSE-BSE inspired GPD model

Afirst intermediate step before dealing with numerical solutions:
m Expressions for vertices and propagators:
— iy p+ M| Am(p*)
1
s+ M?

. M D1 = 2 v
T, (k, p) s — M dzpy(2) [Am(K:,)]

fr
py(2) R (1 — 2)

1

with R, a normalization factor and ki, = k— p(1 — 2)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Only two parameters:

m Dimensionful parameter M.
m Dimensionless parameter v




Algebraic DSE-BSE inspired GPD model

Afirst intermediate step before dealing with numerical solutions:

m Expressions for vertices and propagators:

=iy - p+ M Am(p®)
1

s+ M?
M

41
i M [ dzp,(2) [Aw()

fr
= R,(1-Z2)

1

with R, a normalization factor and k., = k— p(1 — 2)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Only two parameters:

m Dimensionful parameter M.
m Dimensionless parameter v. Fixed to 1 to recover
asymptotic pion DA.




Results for the pion GPD

Verification of the theoretical constraints:

m Analytic expression in the DGLAP region.

3(—2(x—1)* (22 —5e? + ::1) log(1 — x))
20 {£2 — 1)~

u . 48
H;;:L[X..{;.f]} = T

4]

’ <+4‘E (15 (x + 3) + (19x + 29)€% + B(x(x(x + 11) + 21) + 3)¢?) tanh~ ({x_u’

x—E=

20 (£2 — 1)°
3 (F(x(2(x — )x+ 15) — 30) — 15(2x(x + 5) + 5)&4) log (x* — £2)

+ i y
20 (€2 —1)*

3 (—5x(x(x(x +2) + 36) + 18)£? — 15¢°) log (x* — £?)
20 (t‘* . }_:Iif-

4

: (E{X — 1 (‘:23;‘ + 58)E% + (x(x(x + 67) + 112) + 6)£% + x(x((5 — 2x)x + 15) + &

& 20 (_{.;j _ 1]:1

3 ((l.'}i:lefx— o)+ fﬂlé.f-'-i + 10x(3x(x 4+ 5) + l”&:d) log (l B EJ))
o0 (3 — 1)

3 (2x(5x(x + 2) — 6) + 156% — 562 + 3) log (1 — £2) }
_|_

+

20 (£2 — 1)°




Results for the pion GPD

\erification of the theoretical constraints:

m Analytic expression in the DGLAP region.
m Similar expression in the ERBL region.

m Explicit check of support property and polynomiality
with correct powers of £.

m Also direct verification using Mellin moments of H.

Valence HY(x, &, t) as a function of x and ¢ at vanishing t.

1 i 1
as oo a5

Mezrag et al., arXiv:1406.7425 [hep-ph]




Results for the pion GPD

The form factor and the dimensionful parameter:

m Pion form factor obtained from isovector GPD:

+1
/ dx H=Y (x, €, t) = 2F,(t)

1

m Single dimensionful parameter M ~ 400 MeV.

1IIII|I\II‘IIIIlIIIIlIIIIlI\II

— RL Model (M=0.40 GeV)|

= Huber et al. (2008) ]
-~ RL Model (M=0.35 GeV)| -
-~ RL Model (M=0.45 GeV)|

0.8

0.6

0.4

02

0IIJl|I\JlJIIIl]IIJlJIIIl]I\Il_
0 0.5 1 1.5 2 2.5

-t [GeV7]

C. Mezrag et al., Phys. Lett. B190 (2015) 741




Results for the pion GPD

The parton distribution function:
m Pion PDF obtained from forward limit of GPD:
q(x) = DL 0)

m Use LO DGLAP equation and compare to PDF extraction.
Aicher et al., Phys. Rev. Lett. 105, 252003 (2010)

| -« Model (M=0.400G2Y)

-+ Aicher et al. (Q=0.63 GeV)

-+ Ajcher et al. (Q=0.40 GeV)| 17
<= Adcher et al. (Q=042 GeV)

Mellin moment

B e’ T

RSB Eor s e PP ¢

; 0 15
n (moment order)

b - . R Sl T
% ¥R -

\ —— g o
“'I_\ 1 1 | 1 I 1 | 1 u

h 5 5
.\ ‘\\“ T
s .
~ T

. T S G e il o ] s e
4
'
1 I o |

Mezrag et al., arXiv:1406.7425 [hep-ph]
m Find model initial scale u ~ 400 MeV.




Results for the pion GPD

\erification of the theoretical constraints:

m Analytic expression in the DGLAP region.
m Similar expression in the ERBL region.

m Explicit check of support property and polynomiality
with correct powers of £.

m Also direct verification using Mellin moments of H.

Valence HY(x, &, t) as a function of x and ¢ at vanishing t.

—4l5

1o

- as

L L L | | 4 4 L i 4an
as oo -05 10

Mezrag et al., arXiv:1406.7425 [hep-ph]




Results for the pion GPD

The two-body problem:

@ The PDF appears not to

be symmetric around

-
=

0.4 0.6 L8 1
X

(%) = my | (] -2(x — 4)x — 15] + 30) In(x) + (22" +3)
x(x - 1)* In(1 - x) + x[x(x[2x - 5] - 15) - 3](x - )] ,




Results for the pion GPD

The two-body problem:

o The PDF appears not to

be symmetric around

|
xX=—.
2

o Part of the gluons
contribution is neglected
in the triangle diagram

04 08 03 ! approach.

X

gi(x)=n, [fcx[—z(x —4)x — 15] + 30) In(x) + (22* + 3)
x(x — 1)* In(1 - x) + x[x(x[2x — 5] - 15) - 3](x - 1)] ;

Flx) = 1 [f—(z.a:([x -3]x+5)—15)In(x) - (2x’ +4x+9)
x(x - 1)’ In(1 = x) = x(2x = 1)([x - 1]x - 9)(x - 1_]] . (13)




Results for the pion GPD

The two-body problem:

Triangle contribution

@ The PDF appears not to

be symmetric around

L
vl

Additional contribution Part of the glUOﬂS
contribution is neglected
in the triangle diagram

B g W8 approach.

G"E(-I) - % [r‘{'x[h -5]+ 15) ]11(1} +(x[2x+ 1] + ]2) Adding thiS Contribution
- allows us to recover a

symmetric PDF
[L. Chang et al.,

Phys.Lett.B737(2014)2329].

x(1 - 2" In(1 - x) + 2x(6 - [1 - x]x)(1 - 1)] .




Results for the pion GPD

The off-forward (non-skewed) GPD:

The

d* k

2(P-n)™ L (x™¥ = treep )

(k-n)™ 74il (m{k —P)+(1—n) (k — %) P — 3)

S(k — %] iy-n S(k + %]

T_il ((1 — 1) (k + %) +n(k—P),P+ %) 5(k —P),

C. Mezrag et al., Phys. Lett. B190 (2015) 741




Results for the pion GPD

The off-forward (non-skewed) GPD:

The full model:

d* k

Z{P . n)m+1 {xm}u = 1irecrp (21‘]‘)4

(hnﬁrﬂh(ﬂk—P}Hl—ﬂ(k—%J,P—EJ

S(k — %] iy-n S(k + %]

T_il ((1 — 1) (k + %) +n(k—P),P+ %) 5(k —P),

d*k

2P m™ M = trero [ s

(k-n)"74il & (ﬁ{k—P]—l—(
A g - / AN _ AN
Stk— )= 5 Ta | (L=m) (k+ = | +n0lk=P), P+ — ) S(k = P)
oK \ \ __;_.' 2

C. Mezrag et al., Phys. Lett. B190 (2015) 741




Results for the pion GPD

The off-forward (non-skewed) GPD:

"~ d*k
2(P-n)™H M = treep | Gy (k-n)"1pil 5 (?}{k —P)+(1 —n) (
A g - [, . AN .
\ S{k — 3 JT_ T M |I Il — 1 :I |I k + . _.'I + 7 ': ik

FBC(B,a,t), GEC(B,a,t)

k ““-H-‘-‘_-___-_-‘-‘-

S

dex ( FEC{,S,&, t) +& GEC(,S, o, t) ) d(x — B — af)

1-|5]

—1+|8]

C. Mezrag et al., Phys. Lett. B190 (2015) 741



Results for the pion GPD

The off-forward (non-skewed) GPD:

"~ d*k
2(P-n)™H M = treep | Gy (k-n)"1pil 5 (?}{k —P)+(1 —n) (
A g - [, . A .
\ S{k — 3 JT_ T M |I Il — 1 :I |I k + . _.:I + 7 ': ik

FBC(B,a,t), GEC(B,a,t)

S

. - -
HBC(.:r:,.E,t} = /1 ds fl . dex ( FEC{,S,&, t) +& Gﬂc(ﬂ,a, t) ) d(x — B — af)
—1 .

\~ —1+|8]

S HEC(x,0,0)= [ da FBC(x,a,0) = a5c(x)

—1+|x|

k ““-H-‘-‘_-___-_-‘-‘-

1—|x|

C. Mezrag et al., Phys. Lett. B190 (2015) 741



Results for the pion GPD

The off-forward (non-skewed) GPD:

The pion GPD

¥ , (
H(x,0,00N(t)Cr(x, t)F(t) . F(Brarst) = — L
(1+ 721 =B+ )1 — B+ o))

x  (Fs(B,a)+t[---])

N(t) /_1] dx H(x,0,0)Cx(x, ).

C. Mezrag et al., Phys. Lett. B190 (2015) 741



Results for the pion GPD

The off-forward (non-skewed) GPD:

The pion GPD

H9(x,0, t)

/ A

C

H(x,0,t) = H(x,0,0)N(t)Cr(x,t)Fx(t),  F(B,a,t) =

3
1 = N(t]fl dx H(x,0,0) Cx(x,t) . (1 +ar(1-A0 _’8))

x  Fs(B,a)
Simplified analytical model: \

C. Mezrag et al., Phys. Lett. B190 (2015) 741




C. Mezrag et al., Phys. Lett. B190 (2015) 741
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3D plot of GPD at ( =2 GeV (DGLAP running; x > £)
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C. Mezrag et al., Phys. Lett. B190 (2015) 741




Results for the pion GPD

The off-forward (non-skewed) GPD:

a8 = [ COLA Lao(IBLIA L DAH(x,0,-42)

2m

Impact parameter space GPD at ( = 0.4 GeV
M = 0.4 GeV

C. Mezrag et al., Phys. Lett. B190 (2015) 741



Results for the pion GPD

The off-forward (non-skewed) GPD:

al 1Bl) = [ S LA L o(IBLIA L)H(x,0,-A3)

Impact parameter space GPD at ( = 2 GeV
M = 0.4 GeV

-

B
The peak of probie?\tg

diminished and

C. Mezrag et al., Phys. Lett. B190 (2015) 741



Results for the pion GPD

The off-forward (non-skewed) GPD:

a8 = [ COLA L o(IBLIIA L )H(x,0,~A2)

2m

1 1 oo o0
(BoP) = [ ax (BLtaOR) = [ o [ dBLIBLP [T dAAK(BLIA)F(A?)

Impact parameter space GPD

e = \/3/2(|EL|2) = 0.674 fm <= r, = 0.672(8) fm [PRD86(2012)010001]

Q
(o)

©
N

b/ (fm~2)

o

025 050 0.75
¢ =2GeV; (=04 GeV; ( —0.4GeV [c[xt)=1]. X

C. Mezrag et al., Phys. Lett. B190 (2015) 741



In the overlap
pproach

c.f. Cedric's hadronic tourte!!!



The overlap approach

First step: Pion Light Cone Wave Functions

Hs P AY= f [dxIn[d®k L Jx W 4(2) [N, B, k1 -k
o N

_—
e

N-partons LCWF for the hadron H

a2 A 7
Let's consider the two-body pion LCWF: E/[d-"]“[d kilw|Wy p(2)” = 1.

d2Kk e \
- T LT kL) [

(2m)° "'-,-"Il{l—_r}\ /
by, (x.k MJTU7—R ]lﬂl' ek, Py = 5" (k) y(k, P) S (kr).

EJHT{JL kJ_]'dIL{I —x. k)

W

4 BS wave function

dk™
2P (kT K =[
pile K1) 5

S. Brodsky and G. Lepage, PRD 22,(1980)




The overlap approach

First step: Pion Light Cone Wave Functions

L .| BS wave function
Trly Ty P~
: ~
/nr{k 5}: S Y—ka) xik, P) S k),

o

dk

r

m Expressions for vertices and propagators: . |
— Keeping so contact with the

Sp) = [—iy p+ MlAM(pQ) previous “covariant” approach”

1 based on DSE and BSE.
e = e

k, p) ; hrrMMQ” /H dzp,(2) [AM(kz )]V
L ) v
)

(2 = R(1-2)

with R, a normalization factor and ki, = k— p(1 — z) /2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

Fiv+1) M»tlgvpg,
;

(v +2) 2 1

v+ 2) k3 + M2

Wex. k) =—




The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

. _ Uee ke TED MPTAR,
Helicity-0 two-body pion LCWF: | ¥1:(x. k1) = — == i+ Mz]u+l'1

GPD in the overlap approach:
Hox e =v2> > / [di T (42K T [dF I [d7K LT W

NoNTAB
dz iPTz™ ' / ' gt <
J e sl (o

m

N
—ZJI & VT+E 2. D84 / In DGLAP kinematics: t<x<1
p=p£" i

xf[d.f],-.,-[n:l ki Jwd(x — 5)Wy 4 (AW p(2)

= [[[Lf]g[dzﬁl]ga{x — % In the pion 2-body case
* t xC
+ Helicity-1 component / 1t / 1+C

2
rev+2 M4V R,)TRV(1L — )VEV(1 —
= (2v + ; dudv u"v"é6 (1 — u — v) ( ) ( *) ';J{r] ) .
v+ 2)-, ( (1—x)2 —{—M‘Z)

IHUI—'}—




The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,
.

I 2 Tl =S

v+ 2 [k3 + M2

Helicity-0 two-body pion LCWF: | ¥titx. ki) =—

GPD in the overlap approach:

2y +2 IM?4Y R V(L — )R —
Haeny = LOHD [ s (= ) R0 — R

2 +1
I'(v+2)? (“wl x)? +Mzi\

E<x<xl1

X—§ X+E
1-§ 1+
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,

— X
I 27 w2 vt
v+ 2 [k3 + M2

Helicity-0 two-body pion LCWF: | ¥ti(x. ki) =

GPD in the overlap approach:
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Encoding the
correlations of
+ i kinematical variables

15

PDF:
H(x,0,0)=q(x)=30x*(1—x)

Compares numerically S
very well with the results
obtained from the Triangle
diagram!!!




The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,
I 27 w2 vt
v+ 2 [k3 + M2

Helicity-0 two-body pion LCWF: | ¥ti(x. ki) =

GPD in the overlap approach:
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Within this simple approach, we got an analytical expression for
the pion form factor:

t 402 3
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,
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I 27 w2 vt
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Helicity-0 two-body pion LCWF: | ¥ti(x. ki) =

GPD in the overlap approach:
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Within this simple approach, we got an analytical expression for
the pion form factor:
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,
.

I 2 Tl =S

v+ 2 [k3 + M2

Helicity-0 two-body pion LCWF: | ¥titx. ki) =—

GPD in the overlap approach:
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F.(t)= 24 correlations of
21 M* kinematical variables

Within this simple approach, we got an analytical expression for
the pion form factor:
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,
.

I 2 Tl =S

W2 [k + M2

Helicity-0 two-body pion LCWF: | ¥tilx. k1) = -
GPD in the overlap approach:

=
1 1—2: ﬂm"ﬂnh\/ur:g D<x<i
4 1+z [z SXS
1 T ||| T T ||| [T [T | [T T | [T T T | [T [T

- - Overlap (M=0.32 GeV)
— RL Model (M=0.40 GeV)
« Huber et al. (2008)
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21(ry)

o
=

F (0

Very good agreement with
the pion form factor
experimental data.when no fit
is needed!!!
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,

— X
I 27 w2 vt
v+ 2 [k3 + M2

Helicity-0 two-body pion LCWF: | ¥tilx. k1) =
GPD in the overlap approach:
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Helicity-0 two-body pion LCWEF:

GPD in the overlap approach:
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Helicity-0 two-body pion LCWEF:

GPD in the overlap approach:

e (x. ki) =
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I 2 2 v+1
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0

1 1-—2z

arctanh

RL-inspired model:

H(x,0,t) = H(x,0,0)N rjfw(x.t}F),(t],
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5 |

Simplified analytical model
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fv+1) M¥tlgvg,
I 2 2 v+1
(v + 1) [kJ_ + ME]

Helicity-0 two-body pion LCWEF:

GPD in the overlap approach:

ot (1-x)?
T OAMZ 1 —
RL-inspired model: AM? 1-¢%

e

H(x,0,t) = H(x,0,0)N{t)Cx(x, t)FAt). Eé‘ﬁifl{ﬂgrf?if

4 N(t) f‘ dx H(x,0,0) Ca(x,t) kinematical variables
—1 The common ingredient to both

approaches is the BSE amplitude, which

fixes the way the kinematical variables

correlate to each other.

Simplified analytical model

. Both approaches are near

:) consistent when the previous
spurious correlations are

properly removed!!!




The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,
I 27 w2 vt
v+ 2 [k3 + M2

Helicity-0 two-body pion LCWF: | ¥tilx. k1) =
GPD in the overlap approach:
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3-d GPD plot
C=0.51 GeV




The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions
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Helicity-0 two-body pion LCWF: | ¥titx. ki) =—

GPD in the overlap approach:
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3-d GPD plot
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,
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v+ 2 [k3 + M2

Helicity-0 two-body pion LCWF: | ¥ti(x. ki) =

GPD in the overlap approach:
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,
I 27 w2 vt
v+ 2 [k3 + M2

Helicity-0 two-body pion LCWF: | ¥ti(x. ki) =

GPD in the overlap approach:
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Helicity-0 two-body pion LCWEF:
GPD in the overlap approach:
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions
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Helicity-0 two-body pion LCWF: | ¥ti(x. ki) =

GPD in the overlap approach:
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions
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Helicity-0 two-body pion LCWF: | ¥tilx. k1) = -
GPD in the overlap approach:
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The overlap approach
Second step: DGLAP GPD from Light Front Wave Functions

Fiv+1) M Hlgvg,
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I 2 Tl =S
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Helicity-0 two-body pion LCWF: | ¥tilx. k1) = -
GPD in the overlap approach:

(1 —x)%(x? — £7) 1 3
(1 —£2)2 (1+2)2 | 4

Hix.&. 1) =| 30

ot (1—x)®
T AM? 1-¢2

Encoding the
correlations of
kinematical variables

In the full DGLAP region (parity in
the skewness provides us with the
information in  —1<x<-g<0 )




The overlap approach
Third step: beyond DGLAP via Radon transform

Definitions and properies of the Radon transform:

\

For s> 0 and ¢ € [0, 27]:
dfda 5, a)d(s— 3 cos p—av sin @)

and:

Rfl—s, ¢) = Rf(s, ¢ £ )

/ \ Relation to GPDs:
5
= and & = tan¢

COS

Relation between GPD and DD in Belistky et al. gauge

= Rigmks(s, @)




The overlap approach

Radon transform: polinomiality and Ludwig-Helgason condition

m | he Mellin moments of a Radon transform are
homogeneous polynomials in w = (sin ¢, cos ¢)
m | he converse is also true:

Theorem (Hertle, 1983)
Let g(s.w) an even compactly-supported distribution. Then g
Is itself the Radon transform of a compactly-supported

distribution if and only if the Ludwig-Helgason consistency
condition hold:

(i) gis C° inw,

(i) | dss™g(s,w) is a homogeneous polynomial of degree m for all
integer m = ().

m Double Distributions and the Radon transform are the
natural solution of the polynomiality condition.




The overlap approach
Radon transform: from GPD DGLAP to the the whole GPD domain

DGLAP and ERBL regions
(x,£) € DGLAP < |5 = |sing| .
(x,£) € ERBL <« |s <|sin¢]|.
B Cach point
(3, a) with
80

contributes

ﬁf — E{}'{'— ﬂ

N\ f= (- 9)/(1— ) to both
; DGLAP and
| ERBL regions.

O (x+ /(1 +8) m Expressed in
| support
theorem.

B = (x+)/(1+£)




The overlap approach
Radon transform: from GPD DGLAP to the the whole GPD domain

The GPD is the Radon transform of the following DD in the Pobylitsa gauge:

&) = @[in]ﬂr—j —@

+ (14=z) ¥ f(B.a)é(x— 53— af)dida.

> = {18 +]a| <1, 8>0
Q< = {18 +|a| < 1, 3 <0}




The overlap approach
Radon transform: from GPD DGLAP to the whole GPD domalin

The GPD is the Radon transform of the following DD in the Pobylitsa gauge:

+ (1+z) Lﬁf{}iw] r— 3 —af)dida. @ {(fl+Jol <1, 30
O = {18 +|a| < 1, 8 <0}

DGLAP GPD
Inverse Radon transform

=z
=2 - 1 3. 11-2 arctanhy / 3——
‘ (1—£2)2 (T+z)2[4 4 1+2 \/ z

1+ =z

M=

120 (4 (3a? — 382 + 24 — 1)

(f{nf_j!'gl_llz] B _1}1-

tlat—2a2 32430452 4451 }j

fl3.at)=

For this particular simple algebraic model, the Pobylitsa DD can be analytically obtained!!




The overlap approach
Radon transform: from GPD DGLAP to the whole GPD domalin

The GPD is the Radon transform of the following DD in the Pobylitsa gauge:

H(z,f) = @ (G,a)d(xr—0—a

_l_ 5 i N | \ .
F (1+ ) A . g ) LR > = {3 +lal<1, G0
O = {|f| +|a| <1, 3 <0}

\
\
\

| Radon transform

120 (4(3a% - 352 + 25 - 1) t(at 2025451 —4di+4ﬂ"—l}j

M=

< flat)=

(f{nz_j!'gl_llz] B _1}1-

60(1 - 1) (2 - o)

= — i YT E Ahh 1 “-EI
V=4 Htle = 1P 4P He (2 - 2?))

(("‘*{r “U(ER- Y+ 30 - da? -6l - T + 2 (¢ - 1) )
A0 (C2 (€2 - B¢ +4) + (5 - 6¢)a® + (3 +6¢ - 8) 2> + (667 -9 4+ 4) ) GPD in the ERBL region

16((¢" -3+2 8+ 03¢ -5+ iﬂ) VA -1 +0)

no
(=€) =T
§

possible a covariant extension
from DGLAP (overlap) GPD to
.' , )) the ERBL region!!!

) The Radon transform makes

2(2{ = 1)+l —17) (47 +e (¢ —:1}]Ilanh'] (

2(2(¢ - 1) +elz—1P) (42 +1(¢* - %)) tanh™" ({;- ”\"II e a




The overlap approach
Radon transform: from GPD DGLAP to the whole GPD domalin

Some results for t=0 of the the GPD both reconstructed numerically and obtained
analytically:

4.5

— z=0.0 num - = r=0.2theo z=0.6 num =058 theo
40H -- z=0.0theo =04 num z=10.6 theo — z=1.0 num
— z=0.2 num r=10 4 theo =10, 8 num -=- z=1.0theo




The overlap approach
Radon transform: from GPD DGLAP to the whole GPD domalin

Other (more phenomenologically inspired) example of LCWFs:

DGLAP overlap GPD

'

Hix. { t) =

48 M (1- x)(x? — %) tanh™! (

M (Fa 4 E_ x4 160M 2 E2— 1)z —1)(£2{z—2)+x)+(E2—1)t2(z—1)2

B2z FE—T)Hz—1]

JEAMA (63 & — 26a)” + 16M2 (€2 — 1) t(x — 1) (=22 + 20 + x) + (2 — 1)7 82z — 1)?

i (rki:l =

Qv’ﬁﬁv’fl — )T

DGLAP overlap GPD

k_"

l

Hz &t =

X

240 M2z — 1) (22 — £2)3°
(1-¢%)

tanh ! ( W BEM (83 4H6 28] L1602 [£2 - 1)i{x—1)(£2(x—2) 4 )+ (£2-1)" 12 [z —1)2

BT =2 F x| F e — 1z —1]

)

VB4 (€3 + € — 262)% + 16M2 (€2 — 1)tz — 1) (—262 + &2x + ) + (€2 — 1)7 2z — 1)2




The overlap approach
Radon transform: from GPD DGLAP to the whole GPD domalin

Other (more phenomenologically inspired) example of LCWFs:

DGLAP overlap GPD

i (rki:] =

Q@ﬁv' (1—x)z

k_"

a2
arctanh - 1

Hyi(x,0.t) pcLar = q(x)

DGLAP overlap GPD




The overlap approach
Radon transform: from GPD DGLAP to the whole GPD domalin

No analytical results in those cases, but a numerical reconstruction is possible
(although, from a mathematically rigorous point of view, the problem is ill-posed)

GPD numerically reconstructed:

3.3

- g=(.0 r=10.4
— z=0.2




The overlap approach
Radon transform: from GPD DGLAP to the whole GPD domalin

No analytical results in those cases, but a numerical reconstruction is possible
(although, from a mathematically rigorous point of view, the problem is ill-posed)

GPD numerically reconstructed:
4.5

— x=0.0 r=10.4
40H — ==0.2




Conclusions:

Just made a few modest steps in a very long way!!!

Nonperturbative computation of GPDs, DDs,
LFWFs,...from Dyson-Schwinger equations.

Explicit check of several theoretical constraints, including
polynomiality, support property and soft pion theorem.

Systematic procedure to construct GPD models from any
"reasonable” Ansatz of LFWFs.

Characterization of the existence and uniqueness of the
extension from the DGLAP to the ERBL region.




Conclusions:

Just made a few modest steps in a very long way!!!

Nonperturbative computation of GPDs, DDs,
LFWFs,...from Dyson-Schwinger equations.

Explicit check of several theoretical constraints, including
polynomiality, support property and soft pion theorem.

Systematic procedure to construct GPD models from any
"reasonable” Ansatz of LFWFs.

Characterization of the existence and uniqueness of the
extension from the DGLAP to the ERBL region.

...much work in progress and to do!!!

Thank you.
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