

Constraining first moments of GPDs: Nucleon Form Factors measurements at high Q² with Super BigBite Spectrometer in Hall A at Jefferson Lab 12 GeV

Eric Fuchey University of Connecticut

Nucleon and Resonance Structure with Hard Exclusive Processes Orsay, May 29-31, 2017

UCONN

Overview

Nucleon structure with (space-like) Form Factors:

- Theory and experimental status;
- Form factors and spin puzzle: connection with GPDs.

Nucleon Form Factors with Super BigBite Spectrometer (SBS):

- Super BigBite Spectrometer apparatus in Hall A at Jefferson Lab 12 GeV;
- SBS experimental program: Nucleon Form Factors at high Q²;
- Impact of the Form Factor measurements from SBS.

Summary

UCONN Nucleon Structure with (space-like) Form Factors

* No data beyond 10 GeV² for G_{E}^{p} , G_{M}^{n} , G_{e}^{n} ;

G_E^p/**G**_M^p: Recoil polarization Vs Rosenbluth cross section separation

Rosenbluth separation

$$\Rightarrow \frac{d\sigma}{d\Omega_{e}}(\epsilon, Q_{cst}^{2}) \propto \left(G_{M}^{2}(Q^{2}) + \frac{\epsilon}{\tau}G_{E}^{2}(Q^{2})\right) \xrightarrow{\rightarrow} \frac{\text{Strongly}}{\text{affected by}}$$

Recoil polarization experiment: $\vec{ep} \rightarrow e\vec{p}$ Components of polarization transferred:

$$\Rightarrow \frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta}{2}\right)$$

→ Slightly affected (few %) by 2γ exch.

=> Much stronger Q^2 dependence of G_E/G_M for recoil polarization experiments

2γ exchange very likely responsible for this effect Elastic e[±]p experiments (Olympus @ DESY, CLAS 6 @ JLab) have directly measured 2γ exchange at low Q^2 .

5

UCONN

Form Factors and spin puzzle

Nucleon Spin content:

The quarks and gluons contribute to less than ½ of the total nucleon spin => Spin puzzle !

^{May 29-31 2017} "Missing" contribution: $L_{q,q}$? => needs "3D" parameterization

=> Correlation $r_{\perp} \leftrightarrow xP$

=> Orbital Angular momentum
=> Nucleon tomography ("strong size")

NB: calculation of Bethe-Heitler cross section involves EM Form Factors

Tomographic parton images of the nucleon

=> Correlation $r_{\perp} \leftrightarrow xP$

=> Orbital Angular momentum
=> Nucleon tomography ("strong size")

4 "chiral-even" + 4 "chiral-odd" GPDs: $H^{q}, E^{q}, \widetilde{H}^{q}, \widetilde{E}^{q} = H^{q}_{T}, E^{q}_{T}, \widetilde{H}^{q}_{T}, \widetilde{E}^{q}_{T}$

In practice: the observables are not the GPDs, but the Compton Form Factors (CFF), (moments in x of the GPDs):

$$\mathcal{F} = \int_{-1}^{1} dx \, \mathcal{C}(x,\xi) F(x,\xi,t)$$

=> First moments in x of the GPDs: Electroweak Form Factors

$$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t) \qquad \int_{-1}^{1} dx \widetilde{H}^{q}(x,\xi,t) = g_{A}^{q}(t) \\ \int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t) \qquad \int_{-1}^{1} dx \widetilde{E}^{q}(x,\xi,t) = g_{P}^{q}(t)$$

Higher moments: **Ji sum rule** (direct link with quark total angular momentum *J*):

$$\int_{1}^{1} dx x \Big[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \Big] = 2 J_{q}$$

$$(J_{q} = L_{q} + S_{q})$$

Plots from [Punjabi et al. Eur.Phys.J. A51 (2015) 79]

UCONN

Overview

Nucleon structure with (space-like) Form Factors:

- Theory and experimental status;
- Form factors and spin puzzle: connection with GPDs.

Nucleon Form Factors with Super BigBite Spectrometer (SBS):

- Super BigBite Spectrometer apparatus in Hall A at Jefferson Lab 12 GeV;
- SBS experimental program: Nucleon Form Factors at high Q²;
- Impact of the Form Factor measurements from SBS.

Summary

Jefferson Lab @ 12 GeV: Continuous wave beam, $I_{max} \sim 80 \ \mu A$, $Pol_{beam max} \ge 85 \ \%$, $E_{max} = 11 \ GeV$ in Halls A, B, C (12 GeV for Hall D only).

Super BigBite spectrometer:

Medium solid angle spectrometer with *modular* detector package behind a dipole magnet. One of the *major new projects* for Hall A @ Jefferson Lab 12 GeV.

Earliest run start: 2019, ~200 running days approved;

ECal

Physics programs: Form factors at high Q²: * G_Mⁿ (LD₂), G_Eⁿ (pol. ³He); * G_E^p (LH₂, recoil pol); Semi-Inclusive DIS (³He); Tagged DIS Other new SBS subsystems:

- * Ring Imaging Cherenkov (SIDIS);
- * GEM trackers (SIDIS);
- * radial TPC (TDIS);
- * Large Angle Calorimeter (TDIS);
- + new detector package for BigBite:
- * GEM trackers;
- * New hodoscope;
- * Gas Ring Imaging Cherenkov

Jan. 19 2017

Super BigBite Spectrometer Collaboration: *Institutions involved*

- * Argonne National Lab. (USA)
- * Carneggie Mellon U. (USA);
- * Christopher Newport U. (USA);
- * Hampton U. (USA);
- * Idaho State U. (USA);
- * INFN Bari (Italy);
- * INFN Genova (Italy)
- * INFN Roma, (Italy);
- * James Madison U. (USA);
- * Jefferson Lab. (USA);
- * Mississipi State U. (USA);
- * Norfolk State U. (USA);

- * Norfolk State U. (Norfolk, USA);
- * North Carolina A&T U. (Greensboro, USA);
- * North Carolina Central U. (Durham, USA);
- * Ohio U. (USA);
- * St Mary's U. (Canada);
- * Stony Brook U. (USA);
- * U. of Connecticut (USA);
- * U. of Glasgow (Glasgow, Scotland);
- * U. of Virginia (USA);
- * U. of William and Mary (USA);
- * Yerevan State U. (Armenia);

UCONNSBS experimental program:Proton electric Form Factor (G P)E12-07-109

Purpose: measure ratio G_{E}^{p}/G_{M}^{p} up to 12 GeV² with recoil proton polarization ($\alpha P_{f}/P_{f}$)

$$\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta}{2}\right) \left[1 + o_{2\gamma}\right]$$

Experimental conditions: $I_{\text{beam}} = 75 \ \mu\text{A}; \ Pol_{\text{beam}} \ge 85\%;$ Proton polarization eff = 50%;

Acceptances: $\Delta \Omega_{\rm e} = 130 \, {\rm msr}$ $\Delta \Omega_{\rm p} \ge 30 \, {\rm msr}$

Resolutions: ECal: $\sigma_{\rm E}$ /E ~ 8%;

Proton arm:

* momentum:
$$\sigma_p/p = 1\%$$
;

* angle: 1mrad

* vertex reconstruction: 5mm

SBS experimental program: Proton electric Form Factor (G_F^p)

* Measurement of G_{E}^{p} at $Q^{2} = 12 \text{ GeV}^{2}$ (unprecented), with excellent statistical accuracy; lower Q^{2} points will greatly surpass statistical accuracy of previous measurements * additional constraints on FF models: selection of best descriptions of G_{E}^{p}/G_{M}^{p} (and/or improvement of others)

UCONN

UCONN SBS experimental program: Neutron magnetic Form Factor (G_Mⁿ) E12-09-019

Neutron form factors => flavor separation of Dirac-Pauli Form Factors

Purpose: measure G_M^n up to 13.5 GeV² with quasi-elastic electron scattering on deuterium; measure $R = \sigma(en \rightarrow en) |\sigma(ep \rightarrow ep) =>$ many systematic uncertainties cancel in R;

UCONN SBS experimental program: Neutron magnetic Form Factor (G_Mⁿ)

- * Very accurate measurement of G_M^n up to $Q^2 = 13.5 \text{ GeV}^2$ (unprecedented) and possible quark flavor separation of F_1/F_2 (combined with G_M^p in Hall A).
- * Complementary measurement from CLAS12
- * Precision of those measurements will be a great improvement w.r.t. existing data.

UCONNSBS experimental program:Neutron electric Form Factor (G_n)E12-09-016

Neutron form factors => flavor separation of Dirac-Pauli Form Factors

Purpose: measure ratio G_{E}^{n}/G_{M}^{n} with double polarization (L_{beam} , T_{target})

SBS experimental program: Neutron electric Form Factor (G_Fⁿ)

UCONN

* Measurement of G_{E}^{n} up to $Q^{2} = 10 \text{ GeV}^{2}$ (unprecedented: *currently no data beyond 4 GeV*²), with good statistical precision

* Additional constraint on FF models: selection of best descriptions of G_Eⁿ/G_Mⁿ (and/or improvement of others) Jan. 19 2017

UCONN

Impact of Form Factor measurements from SBS (I)

* Many measurements at unprecedented Q² values (up to 10 GeV² or more), with good to excellent statistical and systematic accuracy.

=> Great extension of the Form Factors world data set at higher Q² !

=> Drastic new constraints on FF models available => improve understanding of nucleon structure.

May 29-31 2017

UCONN Impact of Form Factor measurements from SBS (II)

UCONN

Overview

Nucleon structure with (space-like) Form Factors:

- Theory and experimental status;
- Form factors and spin puzzle: connection with GPDs.

Nucleon Form Factors with Super BigBite Spectrometer (SBS):

- Super BigBite Spectrometer apparatus in Hall A at Jefferson Lab 12 GeV;
- SBS experimental program: Nucleon Form Factors at high Q²;
- Impact of the Form Factor measurements from SBS.

Summary

UCONN

Summary

Form Factor measurements have known a *huge* regain of interest:

- at low Q² (proton radius puzzle not mentioned here);
- at high Q² (proton spin puzzle and GPDs).

Super BigBite Spectrometer bears a complete program to measure Form Factors (G_{E}^{p} , G_{M}^{n} , G_{E}^{n}), which will greatly extend Q² range as well as statistical accuracy of existing measurements;

The impact of these data will be two-fold:

* **improve understanding of QCD and nucleon structure** by selecting the most accurate FF description(s) among the many available;

* provide first moments of GPDs for measurements at a future EIC:

Thank you for your attention !

UCONN FF experimental program in Hall A: Proton magnetic Form Factor (G_M^p)

Measured with H(e, e')p HRS ($\sigma_p/p \sim 10^{-4}$, $\sigma_{\theta,\phi} < 1$ mrad) provides great accuracy for proton selection

UCONN SBS experimental program: Proton electric Form Factor (G_F^p)

Dominant Background:

UCONN SBS experimental program: Neutron magnetic Form Factor (G_Mⁿ) at high Q²

Main source of systematics: inelastic contamination

Fractional error on G_M^n : $\frac{1}{2} \Delta R/R(tot) (G_M^n \alpha R^{\frac{1}{2}})$

UCONN SBS experimental program: Neutron magnetic Form Factor (G_Fⁿ) at high Q²

Q ² (GeV ²)	$\begin{array}{c} \Delta(G_{E}^{n}/G_{m}^{n})/\\ (G_{E}^{n}/G_{m}^{n}) \text{ stat.}\\ (\%)\end{array}$	$\begin{array}{c} \Delta(G_{E}^{n}/G_{m}^{n})/\\(G_{E}^{n}/G_{m}^{n}) \text{ syst.}\\(\%)\end{array}$
1.5	1.3	2.4
4.0	6.0	4.4
7.0	19.8	7.3
10.0	22.5	6.6

Main source of systematics: inelastic contamination

Inelastic contamination reduced with a cut on TOF

Jan. 19 2017

UCONN SBS experimental program: Proton electric Form Factor (G_F^p)

Jefferson Lab

=> Dipole magnet required to precess P₁ at target to P₂^{PP}

Vector Meson Dominance models:

* coupling of photon to vector mesons (J^{PC} = 1⁻⁻)
* can be analytically continued to timelike region (dispersion analysis)
=> proton radius...

Constituant Quark Models:

- * Nucleon modeled as 3 quarks in a confining potential
- * Requires Poincare transformation of constituants/proton before and after interactions;
- * exists with many dynamics:

Point form (dynamical space and time translations);

Instant form (dynamical time translation and boost);

Light-front form (dynamical LF transverse rotations and 1 translation component);

may include additional features (quark FFs, covariant spectator model, pion cloud model,...)

May 29-31 2017

son Lab

Dyson Schwinger Equation calculations:

- * Non Perturbative approximation of QCD
- * Infinite set of equations, truncated in such a way that it does not alter QCD symmetries
- * May also be used for the calculation of other quantities (e.g. PDFs, GPDs)

=> e.g. describes the *full* quark propagator with "dressing" as function of momentum (agrees with L-QCD)

[Bashir et al., Commun. Theor. Phys. 58, 79 (2012)]

[Cloet, Roberts, Thomas, Phys. Rev. Lett. 111, 101803 (2013)]

UCONN

Form Factors: Open questions and issues

Many propositions to address this issue:

* very low Q^2 measurements, down to ~10⁻³ GeV² (e.g. initial state radiation at Mainz);

* low Q^2 elastic *ep* and μp measurement (MUSE @ PSI);

=> by providing new constraints on current form factor models and global FF fits, high Q² form factor measurements might also give a new insight towards the solution of this issue...

May 29-31 2017

* No data beyond 10 GeV² for G_e^p, G_Mⁿ, G_eⁿ;
 * FF predictions diverge at higher Q² from one model to the other.

37