In-medium hadron properties in perspective of diquark structure

Phys. Rev. C87 (2013) 015204 Nucl.Phys.A945 (2016) 21-41 Phys. Rev. C94 (2016) 065201

``N and N* Structure with Hard Exclusive Process" @ IPN Orsay France, May 31, 2017

JEONG, Kie Sang (APCTP)

in collaboration with

LEE, Su Houng (Yonsei Univ.)

Outline

I. Motivations – phenomenology within iso-spin asymmetry

- II. QCD approaches Diquark and QCD sum rules
	- Symmetry energy
	- Nucleon and hyperon self energy
- III. Extreme limits and Future prospects

Iso-spin asymmetry – symmetry energy

• For finite nucleus

From equation of state Bethe-Weizsäcker formula for liquid-drop model

$$
M_{\text{nucl}} = Nm_n + Zm_p - E_B/c^2,
$$

\n
$$
E_B = a_V A - a_S A^{\frac{2}{3}} - a_C (Z(Z-1)) A^{-\frac{1}{3}} - a_A I^2 A + \delta(A, Z)
$$

\n
$$
I = (N - Z)/A
$$

Asymmetric term a_A (=32 MeV) accounts for shifted energy of nuclear matter per nucleon

From rare iso-tope to neutron star core

(Physics Today November 2008) (PRL 102 (2009) 062502 Z. Xiao et al.) (Nature 467 (2010) 1081 P. B. Demorest et al.)

Symmetry energy and quasi-nucleon

• For continuous (infinite) matter

Similarly, from equation of state

$$
\frac{E(\rho_N, I)}{A} \equiv E(\rho_N, I) = E_0(\rho_N) + \frac{E_{sym}(\rho_N)}{E_{sym}(\rho_N)}I^2 + O(I^4) + \cdots
$$

$$
E_{sym}(\rho_N) = \frac{1}{2!} \frac{\partial^2}{\partial I^2} \bar{E}(\rho_N, I) \qquad I = (\rho_n - \rho_p) / \rho_N
$$

If one assume linear density dependent potential, the symmetry energy can be easily read off from potential

 $E_{\text{sym}} = \frac{1}{4I} \left(E_n(\rho, I) - E_p(\rho, I) \right) \implies$ Linearly dependent on (ρ, I)

- Quasi-nucleon self-energies
	- In continuous matter, nuclear potential can be understood as self-energy of quasi-nucleon
	- Energy dispersion relation can be written in terms of self-energies (RMFT)

$$
G(q) = -i \int d^4x e^{iqx} \langle \Psi_0 | T[\psi(x) \bar{\psi}(0)] | \Psi_0 \rangle \ = {1 \over q - M_n - \Sigma(q)} \rightarrow \lambda^2 {q + M^* - \psi \Sigma_v \over (q_0 - E_q)(q_0 - \bar{E}_0)} \quad \text{(near quasi-pole)}
$$

Self-energies can be calculated in QCD sum rules

Hyperons and neutron star

Hyperons (S≠0) in medium (In vacuum, $M_N \sim 940$ MeV, $M_N \sim 1115$ MeV, $M_Z \sim 1190$ MeV)

 $-U(r) = 56.67f(r) - 30.21f^2(r)$

 Λ is bounded (V ~ -30 MeV) Σ potential is repulsive (V ~ +100 MeV)

 $U(r) = (V_0 + iW_0)f(r) + V_{\text{spin}}(r, \vec{l} \cdot \vec{\sigma}) + V_{\text{Coulomb}}(r)$

- If hyperon energy becomes lower than nucleon energy? $(p > p_0, 1=1)$
	- New degree of freedom (hyperon) can appear in the nuclear matter \rightarrow matter becomes softer \rightarrow maximum neutron star mass will be bounded near 1.5Mo
	- 2M⊙ neutron star has been observed (Nature 467 (2010) 1081 P. B. Demorest et al.)
		- \rightarrow should we exclude hyperons in neutron star? How such a stiff EOS could be constructed?
		- \rightarrow related with density behavior of hyperon self-energy and symmetry energy
	- Hyperon self-energies can be compared with nucleon self-energies in sum rules context

Outline

I. Motivations – phenomenology with iso-spin asymmetry

II. QCD approaches – Diquark and QCD sum rules

- Symmetry energy
- Nucleon and hyperon self energy
- III. Extreme limits and Future prospects

QCD Sum Rules: Overview

• Correlator for baryon current

$$
\Pi(q) \equiv i \int d^4x \ e^{iqx} \langle \Psi_0 | \mathcal{T}[\eta(x)\bar{\eta}(0)] | \Psi_0 \rangle
$$

= $\Pi_s(q^2, q \cdot u) + \Pi_q(q^2, q \cdot u)q + \Pi_u(q^2, q \cdot u)q$

Correlation of the quantum number contained in **n** q stands for external momentum u stands for medium velocity \rightarrow (1,0) in rest frame

• Energy dispersion relation and OPE (in **QCD degree of freedom**)

$$
\Pi_i(q_0, |\vec{q}|) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\omega \frac{\Delta \Pi_i(\omega, |\vec{q}|)}{\omega - q_0} + \text{polynomials},
$$

• Phenomenological Ansatz (in hadronic degree of freedom)

 $\Pi(q_0, |\vec{q}|) \sim \frac{1}{(q^{\mu} - \tilde{\Sigma}_{v}^{\mu})\gamma_{\mu} - M_{N}^{*}}$

Equating both sides, hadronic quantum number can be expressed in QCD degree of freedom

• Weighting - Borel transformation

$$
\mathcal{B}[\Pi_i(q_0, |\vec{q}|)] \equiv \lim_{\substack{-q_0^2, n \to \infty \\ -q_0^2/n = M^2}} \frac{(-q_0^2)^{n+1}}{n!} \left(\frac{\partial}{\partial q_0^2}\right)^n \Pi_i(q_0, |\vec{q}|)
$$

Interpolating fields – parton in hadron

• Proton is not a point-like particle

Inelastic scattering: $ep \rightarrow e + hadrons$ Functions on invariant mass W Hadrons k' $d\sigma$ $= 10 \text{ GeV}$ $\theta = 6^{\circ}$ $d\Omega dE$ $.035 \geqslant Q^2 \geqslant 0.408 \text{ GeV}^2$ $\left(\frac{\mu b}{\text{sr} \cdot \text{GeV}}\right)$ $≤ 1$ GeV² $-\boldsymbol{q}$ \mathbb{U} q Electron 1.0 $E = 13.5$ $\theta = 6$ $(1.86 \geq 0^2 \geq 0.5)$ $\sqrt{ }$ GeV² $-\boldsymbol{q}$ Proton k $(3.1 \ge Q^2 \ge 1.0)$ $(M, 0)$ lab. frame $\frac{1}{4.0}$ $\frac{1}{2.0}$ ᅚ $\frac{1}{30}$ $W(GeV)$

$$
\frac{d\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_M \left[2W_1(\nu, -q^2)\tan^2\frac{\theta}{2} + W_2(\nu, -q^2)\right] \Big/ 2M \qquad \nu = k'_0 - k_0
$$

In Bjorken limit (large-momentum transferred region), there are no resonances \rightarrow the scattering can be approximated by point-like free particles (partons)

Parton in hadron

• Bjorken scaling (at $-q^2 \rightarrow \infty$, $-q^2/(2M(k))$ $(5 - k_0)$) $\rightarrow \xi$ (fixed) limit)

Point-like particle description leads $\nu W_2(\nu, -q^2)$ on function of fixed $\xi = -q^2/(2M(k^2))$ $_{0}$ – k_{0})) \rightarrow confirmed by experimental observation

OPE (at $-q^2 \rightarrow \infty$, $-q^2/(2M(k))$ $\lambda_0 - k_0$)) = ξ) reproduces Bjorken scaling \rightarrow quantum number of hadron can be interpolated with explicit QCD current

Interpolating current for baryons

To obtain physical information

- a. Quasi-particle state will be extracted from the overlap
- b. We need to construct proper interpolating current which can be strongly overlapped with object hadron state
- c. Our object: N , P , Λ , and Σ family

Example: constructing **proton** current

Required quantum number: $I = 1/2$, $J^P = (1/2)⁺$ Simplest structure: $[I = 0, J = 0$ di-quark structure] X [single quark with $I = 1/2, J = 1/2$] Di-quark structure: $\epsilon_{abc}(u_a^T C \gamma_5 d_b)$, $\epsilon_{abc}(u_a^T C d_b)$ **u** and **d** flavor in antisymmetric combination Positive parity matching: $\eta_1 = \epsilon_{abc} (u_a^T C d_b) \gamma_5 u_c$, $\eta_2 = \epsilon_{abc} (u_a^T C \gamma_5 d_b) u_c$ **Ioffe's choice**: $\eta = 2(\eta_1 - \eta_2) = \epsilon_{abc} (u_a^T C \gamma_\mu u_b) \gamma_5 \gamma^\mu d_c$ \rightarrow chiral symmetry breaking term appears in leading order

• Ioffe's choice for hyperon (Λ and Σ +) current

 $\eta_{\Lambda} \sim \epsilon_{abc} \left[(u_a^T C \gamma_\mu s_b) \gamma_5 \gamma^\mu d_c - (d_a^T C \gamma_\mu s_b) \gamma_5 \gamma^\mu u_c \right]$ $\eta_{\Sigma^+} \sim \epsilon_{abc} (u_a^T C \gamma_\mu u_b) \gamma_5 \gamma^\mu s_c$

Required quantum number

$$
I = 0, JP = (1/2)+I = 1, JP = (1/2)+
$$

Ioffe's choice for Σ

 Σ_0 interpolating field in general combination

 $\eta_{\Sigma^{0}} = \epsilon_{abc} \left([u_a^T C s_b] \gamma_5 d_c + [d_a^T C s_b] \gamma_5 u_c + t \left([u_a^T C \gamma_5 s_b] d_c + [d_a^T C \gamma_5 s_b] u_c \right) \right)$ $=\left(\frac{1-t}{2}\right)\epsilon_{abc}[u_a^T C\gamma_{\mu}d_b]\gamma_5\gamma^{\mu}s_c+\left(\frac{1+t}{4}\right)\epsilon_{abc}[u_a^T C\sigma_{\mu\nu}d_b]\gamma_5\sigma^{\mu\nu}s_c.$

Requirement: (1) spin-0 di-quark structure, (2) total $I=0$ combination

• Using Fierz rearrangement

(a)
$$
\epsilon_{abc}[u_a^T C \gamma_\mu d_b] \gamma_5 \gamma^\mu s_c = 2 \epsilon_{abc} ([u_{R,a}^T C s_{R,b}] d_{L,c} + [d_{R,a}^T C s_{R,b}] u_{L,c} - (L \leftrightarrow R))
$$

$$
\textbf{(b)} \qquad \epsilon_{abc} [u_a^T C \sigma_{\mu\nu} d_b] \gamma_5 \sigma^{\mu\nu} s_c = 4 \epsilon_{abc} \left([u_{R,a}^T C s_{R,b}] d_{R,c} + [d_{R,a}^T C s_{R,b}] u_{R,c} - (L \leftrightarrow R) \right)
$$

Quark propagation in perturbative regime (separation scale \sim 1 GeV)

$$
\left\langle T[q_\beta^a(x)\bar q^b_\alpha(0)]\right\rangle = \int \frac{d^4p}{(2\pi)^4} \frac{i}{m_q - p} \simeq \frac{i}{2\pi^2} \delta_{ab} \frac{1}{(x^2)^2} [f]_{\alpha\beta} - \frac{m_q}{4\pi^2} \frac{1}{x^2} \delta_{ab} \delta_{\alpha\beta}
$$

Light quark has chiral symmetry \rightarrow propagation from each helicity state to itself The symmetry is broken for strange quark ($m_s \neq 0$) \rightarrow mixed propagation between helicity states

Correlator of each basis can be understood in diagrammatical way

Ioffe's choice for Σ

• Σ₀ interpolating field (continued)

$$
\eta_{\Sigma^0} = \epsilon_{abc} \left([u_a^T C s_b] \gamma_5 d_c + [d_a^T C s_b] \gamma_5 u_c + t \left([u_a^T C \gamma_5 s_b] d_c + [d_a^T C \gamma_5 s_b] u_c \right) \right)
$$

= $\left(\frac{1-t}{2} \right) \epsilon_{abc} [u_a^T C \gamma_\mu d_b] \gamma_5 \gamma^\mu s_c + \left(\frac{1+t}{4} \right) \epsilon_{abc} [u_a^T C \sigma_{\mu\nu} d_b] \gamma_5 \sigma^{\mu\nu} s_c.$

(a)
$$
\epsilon_{abc}[u_a^T C \gamma_\mu d_b] \gamma_5 \gamma^\mu s_c = 2 \epsilon_{abc} \left([u_{R,a}^T C s_{R,b}] d_{L,c} + [d_{R,a}^T C s_{R,b}] u_{L,c} - (L \leftrightarrow R) \right)
$$

\n(b)
$$
\epsilon_{abc}[u_a^T C \sigma_{\mu\nu} d_b] \gamma_5 \sigma^{\mu\nu} s_c = 4 \epsilon_{abc} \left([u_{R,a}^T C s_{R,b}] d_{R,c} + [d_{R,a}^T C s_{R,b}] u_{R,c} - (L \leftrightarrow R) \right)
$$

• Lowest mass dimensional quark condensate

Correlator of basis (a): strange quark condensate (dim-3) Correlator of basis (b): four-quark condensate (dim-6)

Lack of clear information for four-quark condensate \rightarrow choice of basis (a) can be better

Ioffe's choice for **proton**

Proton case

$$
\eta_{p(t)} = 2\epsilon_{abc} \left([u_a^T C d_b] \gamma_5 u_c + t [u_a^T C \gamma_5 d_b] u_c \right)
$$

= $\left(\frac{1-t}{2} \right) \epsilon_{abc} [u_a^T C \gamma_\mu u_b] \gamma_5 \gamma^\mu d_c + \left(\frac{1+t}{4} \right) \epsilon_{abc} [u_a^T C \sigma_{\mu\nu} u_b] \gamma_5 \sigma^{\mu\nu} d_c$

Requirement: (1) spin-0 di-quark structure, (2) total $I=0$ combination

• After Fierz rearrangement

(a)
$$
\epsilon_{abc}[u_a^T C \gamma_\mu u_b]\gamma_5 \gamma^\mu d_c = 4 \epsilon_{abc} ([u_{R,a}^T C d_{R,b}] u_{L,c} - [u_{L,a}^T C d_{L,b}] u_{R,c})
$$

\n(b)
$$
\epsilon_{abc}[u_a^T C \sigma_{\mu\nu} u_b]\gamma_5 \sigma^{\mu\nu} d_c = 4 \epsilon_{abc} ([u_{R,a}^T C d_{R,b}] u_{R,c} - [u_{L,a}^T C d_{L,b}] u_{L,c})
$$

Correlator of basis (a): chiral condensate (dim-3)

Correlator of basis (b): six-quark condensate (dim-9) with perturbative gluon attachment Same reason for six-quark condensate \rightarrow choice of basis (a) would be better (loffe's choice)

Generalized Interpolating field for Λ

• Special case: Λ

Possible I=0 combination with spin-0 di-quark structure

 $\{ \epsilon_{abc} [u^T_a C d_b] \gamma_5 s_c, \ \epsilon_{abc} [u^T_a C \gamma_5 d_b] s_c, \ \epsilon_{abc} \left([u^T_a C s_b] \gamma_5 d_c - [d^T_a C s_b] \gamma_5 u_c \right), \ \epsilon_{abc} \left([u^T_a C \gamma_5 s_b] d_c - [d^T_a C \gamma_5 s_b] u_c \right) \}$ 3rd and 4th basis can be expressed as

$$
\epsilon_{abc} ([u_a^T C s_b] \gamma_5 d_c - [d_a^T C s_b] \gamma_5 u_c) = \frac{1}{2} \epsilon_{abc} ([u_a^T C d_b] \gamma_5 s_c + [u_a^T C \gamma_5 d_b] s_c - [u_a^T C \gamma_5 \gamma_\mu d_b] \gamma^\mu s_c)
$$

$$
\epsilon_{abc} ([u_a^T C \gamma_5 s_b] d_c - [d_a^T C \gamma_5 s_b] u_c) = \frac{1}{2} \epsilon_{abc} ([u_a^T C d_b] \gamma_5 s_c + [u_a^T C \gamma_5 d_b] s_c + [u_a^T C \gamma_5 \gamma_\mu d_b] \gamma^\mu s_c)
$$

 \rightarrow basis set can be reduced to 3-independent bases set

Representation in helicity bases

(a)
$$
\epsilon_{abc}[u_a^T C d_b]\gamma_5 s_c = \epsilon_{abc} ([u_{R,a}^T C d_{R,b}] s_{R,c} - [u_{R,a}^T C d_{R,b}] s_{L,c} - (L \leftrightarrow R))
$$
 P-scalar diquark
\n(b)
$$
\epsilon_{abc}[u_a^T C \gamma_5 d_b] s_c = \epsilon_{abc} ([u_{R,a}^T C d_{R,b}] s_{R,c} + [u_{R,a}^T C d_{R,b}] s_{L,c} - (L \leftrightarrow R))
$$
 Scalar diquark

(b)
$$
\epsilon_{abc}[u_a^T C \gamma_5 d_b]s_c = \epsilon_{abc}\left([u_{R,a}^T C d_{R,b}]s_{R,c} + [u_{R,a}^T C d_{R,b}]s_{L,c} - (L \leftrightarrow R)\right)
$$

(c)
$$
\epsilon_{abc}[u_a^T C \gamma_5 \gamma_\mu d_b] \gamma^\mu s_c = 2 \epsilon_{abc} \left([u_{R,a}^T C s_{R,b}] d_{L,c} - [d_{R,a}^T C s_{R,b}] u_{L,c} - (L \leftrightarrow R) \right)
$$

Vector diquark

Generalized Interpolating field for Λ

• Special case: Λ (continued)

Set of basis and **lowest mass dimensional quark condensate**

(a)
$$
\epsilon_{abc}[u_a^T C d_b]\gamma_5 s_c = \epsilon_{abc} ([u_{R,a}^T C d_{R,b}] s_{R,c} - [u_{R,a}^T C d_{R,b}] s_{L,c} - (L \leftrightarrow R))
$$

(b) $\epsilon_{abc}[u_a^T C \gamma_5 d_b] s_c = \epsilon_{abc} ([u_{R,a}^T C d_{R,b}] s_{R,c} + [u_{R,a}^T C d_{R,b}] s_{L,c} - (L \leftrightarrow R))$

 $\epsilon_{abc}[u_a^T C \gamma_5 \gamma_\mu d_b]\gamma^\mu s_c = 2\epsilon_{abc} \left([u_{R,a}^T C s_{R,b}] d_{L,c} - [d_{R,a}^T C s_{R,b}] u_{L,c} - (L \leftrightarrow R) \right)$ (c)

Correlator of basis (a), (b), (c): strange quark condensate (dim-3) Cross correlator of basis (**): chiral condensate (dim-3)**

General form of Λ interpolating field

$$
\eta_{\Lambda(\tilde{a},\tilde{b})} = A_{(\tilde{a},\tilde{b})} \epsilon_{abc} \left([u_a^T C d_b] \gamma_5 s_c + \tilde{a} [u_a^T C \gamma_5 d_b] s_c + \tilde{b} [u_a^T C \gamma_5 \gamma_\mu d_b] \gamma^\mu s_c \right)
$$

Where A determines overall normalization and coupling strength to physical **Λ** state

QCD Sum Rules: dispersion relation

- Simplest case: Nucleon in vacuum $\Pi(q) \equiv i \int d^4x e^{iqx} \langle 0|{\bf T}[\eta(x)\bar{\eta}(0)]|0\rangle = \Pi_s(q^2) + \Pi_q(q^2) q.$
- Using Cauchy relation

$$
\Pi_i(q^2) = \frac{1}{2\pi i} \int_0^\infty ds \frac{\Delta \Pi_i(s)}{s - q^2} + \text{polynomials}
$$

$$
\Delta\Pi_i(q^2) \equiv \lim_{\epsilon \to 0^+} [\Pi_i(q^2 + i\epsilon) - \Pi_i(q^2 - i\epsilon)]
$$

\n
$$
= (2\pi)^4 i \sum_{\alpha} \left(\delta^4(q - p_{\alpha}) \langle 0 | \eta(0) | \alpha \rangle \langle \alpha | \bar{\eta}(0) | 0 \rangle - \delta^4(q + p_{\alpha}) \langle 0 | \bar{\eta}(0) | \alpha \rangle \langle \alpha | \eta(0) | 0 \rangle \right)
$$

\nImaginary part contains all possible hadronic resonance α

• Emphasizing ground state – Borel sum rules

$$
\mathcal{B}[\Pi_i(q^2)] = \frac{1}{2\pi i} \int_0^\infty ds \frac{e^{-s/M^2}}{e^{-s/M^2}} \Delta \Pi_i(s)
$$

\n
$$
\equiv \lim_{\substack{-q^2, n \to \infty \\ -q^2/n = M^2}} \frac{(-q^2)^{n+1}}{n!} \left(\frac{\partial}{\partial q^2}\right)^n \Pi_i(q^2) \equiv \hat{\Pi_i}(M^2)
$$

The continuum will be suppressed by setting $M \sim$ hadronic mass scale

 $\ln s$

Re s

 (a)

- The moment (Borel mass $-q^2/n=M^2$) is a fictitious value (non-physical) In principle, physical values such as mass should not depends on M
- As OPE is truncated, actually it depends \rightarrow the value can be read off at plateau of Borel curve

QCD SR: operator product expansion

• Operator product expansion (Example: 2-quark condensate diagram)

- Separation scale is set to be hadronic scale (\leq 1 GeV)
	- **Wilson coefficient** contains perturbative contribution above separation scale short-ranged partonic propagation in hadron
	- **Condensate** contains non-perturbative contribution below separation scale long ranged correlation in low energy part of hadron
	- Quark confinement inside hadron is low energy QCD phenomenon
	- Genuine properties of hadron are reflected in the condensates

QCD Sum Rules: in-medium case

• Energy dispersion relation with fixed 3-momentum

$$
\Pi_i(q_0, |\vec{q}|) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\omega \frac{\Delta \Pi_i(\omega, |\vec{q}|)}{\omega - q_0} + \text{polynomials},
$$

 $\Delta\Pi_i(\omega, |\vec{q}|) \equiv \lim_{\epsilon \to 0^+} [\Pi_i(\omega + i\epsilon, |\vec{q}|) - \Pi_i(\omega - i\epsilon, |\vec{q}|)]$

- **I.** In-medium hadronic excitation is certainly not symmetric as in the vacuum case
- Medium reference frame occurs energy sum rules for quasi-particle state is proper choice

• Energy Borel sum rules

$$
\mathcal{B}[\Pi_i(q_0, |\vec{q}|)] = \frac{1}{2\pi i} \int_{-\omega_0}^{\omega_0} d\omega \ W(\omega) \Delta \Pi_i(\omega, |\vec{q}|)
$$

\n
$$
\equiv \lim_{\substack{-q_0^2, n \to \infty \\ -q_0^2/n = M^2}} \frac{(-q_0^2)^{n+1}}{n!} \left(\frac{\partial}{\partial q_0^2}\right)^n \Pi_i(q_0, |\vec{q}|) \equiv \hat{\Pi}_i(M^2, |\vec{q}|),
$$

\n
$$
W(\omega) = (\omega - \bar{E}_q) e^{-\omega^2/M^2}
$$
 Anti-state is suppressed, only quasi-particle part is emphasized

QCD Sum Rules: spectral ansatz

• According to relativistic mean field theory

$$
G(q) = \frac{1}{\cancel{q} - M_n - \Sigma(q)} \to \lambda^2 \frac{\cancel{q} + M^* - \cancel{u} \Sigma_v}{(q_0 - E_q)(q_0 - \bar{E}_0)}
$$
 Quasi-hadron propagator in **RMFT**

Each invariant can be assumed according to phenomenological Ansatz Via Borel transformation, self-energies can be obtained in terms of invariants

$$
\Pi_s(q_0, |\vec{q}|) = -\lambda_N^{*2} \frac{M_N^*}{(q_0 - E_q)(q_0 - \bar{E}_q)} + \cdots
$$

\n
$$
\Pi_q(q_0, |\vec{q}|) = -\lambda_N^{*2} \frac{1}{(q_0 - E_q)(q_0 - \bar{E}_q)} + \cdots
$$

\n
$$
\Pi_u(q_0, |\vec{q}|) = +\lambda_N^{*2} \frac{\Sigma_v}{(q_0 - E_q)(q_0 - \bar{E}_q)} + \cdots
$$

\n
$$
\implies
$$

\n
$$
\Pi_u(q_0, |\vec{q}|) = +\lambda_N^{*2} \frac{\Sigma_v}{(q_0 - E_q)(q_0 - \bar{E}_q)} + \cdots
$$

$$
\bar{\mathcal{B}}[\Pi_s(q_0^2, |\vec{q}|)] = \lambda_N^{*2} M_h^* e^{-(E_q^2 - \vec{q}^2)/M^2}
$$

$$
\bar{\mathcal{B}}[\Pi_q(q_0^2, |\vec{q}|)] = \lambda_N^{*2} e^{-(E_q^2 - \vec{q}^2)/M^2}
$$

$$
\bar{\mathcal{B}}[\Pi_u(q_0^2, |\vec{q}|)] = \lambda_N^{*2} \Sigma_v^h e^{-(E_q^2 - \vec{q}^2)/M^2}
$$

• Condensates and in-medium properties

DIS diagram

- I. In-medium properties are included in low energy scale (long-ranged)
- II. PCAC (Gellman-Oakes-Renner relation), Chiral perturbation theory, Lattice QCD, DIS experiment can be used to obtain in-medium condensates

In-medium condensates

• Simplest guess: linear Fermi gas approximation

 $\langle \hat{O} \rangle_{\rho,I} = \langle \hat{O} \rangle_{\text{vac}} + \langle n | \hat{O} | n \rangle \rho_n + \langle p | \hat{O} | p \rangle \rho_p$ $= \langle \hat{O} \rangle_{\text{vac}} + \frac{1}{2} (\langle n | \hat{O} | n \rangle + \langle p | \hat{O} | p \rangle) \rho$ $+\frac{1}{2}(\langle n|\hat{O}|n\rangle - \langle p|\hat{O}|p\rangle)I\rho.$

[Vacuum condensate] + [nucleon expectation value] x [density] Iso-spin symmetric and asymmetric part

Example: chiral condensates

 $\langle \bar{q}q \rangle_{\rho} = \langle \bar{q}q \rangle_{\rm vac} + \frac{\sigma_N}{2m_e} \rho$ Iso-spin symmetric part Nucleon-pion sigma term $\sigma_N = \frac{1}{3} \sum_{i=1}^{3} (\langle \tilde{N} | [Q_A^a, [Q_A^a, H_{QCD}]] | \tilde{N} \rangle - \langle 0 | [Q_A^a, [Q_A^a, H_{QCD}]] | 0 \rangle)$ $= 2 m_q \int d^3x \left(\langle \tilde{N} | \bar{q} q | \tilde{N} \rangle - \langle 0 | \bar{q} q | 0 \rangle \right) \equiv 2 m_q \langle N | \bar{q} q | N \rangle$ where, $H_{QCD} = \int d^3x (2m_q\bar{q}q + m_s\bar{s}s + \cdots)$ With Hellman-Feynman theorem $2m_q\langle\psi|\bar{q}q|\psi\rangle = m_q\frac{d}{dm_{\gamma}}\langle\psi|H_{QCD}|\psi\rangle$

and linear density approximation $\mathcal{E} \sim M_N \rho$

In-medium condensates

• Asymmetric part

From trace anomaly and heavy quark expansion

$$
T^{\mu}_{\ \mu} = m_u \bar{u}u + m_d \bar{d}d + m_s \bar{s}s + \sum_{h=c,t,b} m_h \bar{h}h + \cdots
$$

$$
= \left(-\frac{9\alpha_s}{8\pi}\right)G^2 + m_u \bar{u}u + m_d \bar{d}d + m_s \bar{s}s + O(\mu^2/4m_h^2)
$$

Low-lying baryon octet mass relation

$$
m_p = A + m_u B_u + m_d B_d + m_s B_s
$$

\n
$$
m_n = A + m_u B_d + m_d B_u + m_s B_s
$$

\n
$$
m_{\Sigma^+} = A + m_u B_u + m_d B_s + m_s B_d
$$

\n
$$
m_{\Sigma^-} = A + m_u B_s + m_d B_u + m_s B_d
$$

\n
$$
m_{\Sigma^0} = A + m_u B_d + m_d B_s + m_s B_u
$$

\n
$$
m_{\Sigma^-} = A + m_u B_s + m_d B_d + m_s B_u
$$

\nwhere $A \equiv \langle (\bar{\beta}/4\alpha_s)G^2 \rangle_p$, $B_u \equiv \langle \bar{u}u \rangle_p$,

Strange contents

$$
\bar{s}s\rangle_{\rho} = \langle \bar{s}s\rangle_{\text{vac}} + \langle \bar{s}s\rangle_{N}\rho
$$

$$
= (0.8)\langle \bar{q}q\rangle_{\text{vac}} + y\frac{\sigma_{N}}{2m_{q}}\rho
$$

$$
y = \langle \bar{s}s\rangle_{N}/\langle \bar{q}q\rangle_{N}
$$

Ratio 0.8 is determined from vacuum sum rule for hyperon **v** can be determined from direct lattice QCD \rightarrow recent lattice results says γ should be small ^y~0.05 (PRD87 074503, PRD91 051502, PRD94 054503) We confined $y \rightarrow 0.1$

21

4-quark condensates – baryon sum rules

• In 3-quark constituted baryon sum rules

- There is no loop in leading order diagram \rightarrow no suppression factor comes from loop diagram
- Can be numerically important in sum rules
- Indeed, 4-quark condensates give non-negligible contribution to baryon sum rules
- For twist-4 condensates, DIS data can be used (within linear density approximation)
- Twist-4 ops. in baryon OPE

Operator type $\gamma_5\gamma-\gamma_5\gamma$ $\gamma - \gamma$ $\sigma-\sigma$ $t^A - t^A$ $\langle \bar{q}_1\gamma_5\gamma t^A q_1\bar{q}_2\gamma_5\gamma t^A q_2 \rangle_{p,\text{s.t.}} \equiv T^1_{q_1q_2} \ \ \langle \bar{q}_1\gamma t^A q_1\bar{q}_2\gamma t^A q_2 \rangle_{p,\text{s.t.}} \equiv T^2_{q_1q_2} \ \ \langle \bar{q}_1\sigma t^A q_1\bar{q}_2\sigma t^A q_2 \rangle_{p,\text{s.t.}} \equiv T^5_{q_1q_2}$ $\langle \bar{q}_1 \gamma q_1 \bar{q}_2 \gamma q_2 \rangle_{p,\text{s.t.}} \equiv T_{q_1 q_2}^4 \qquad \quad \langle \bar{q}_1 \sigma q_1 \bar{q}_2 \sigma q_2 \rangle_{p,\text{s.t.}} \equiv T_{q_1 q_2}^6$ $\langle \bar{q}_1 \gamma_5 \gamma q_1 \bar{q}_2 \gamma_5 \gamma q_2 \rangle_{p,\text{s.t.}} \equiv T_{q_1 q_2}^3$ $I-I$ q_1 and q_2 stand for light quark flavor

$$
\langle p|\bar{q}_1\Gamma_i^{\alpha}q_1\bar{q}_2\Gamma_i^{\beta}q_2|p\rangle_{\rm s.t.} = \left(u^{\alpha}u^{\beta} - \frac{1}{4}g^{\alpha\beta}\right)\frac{1}{4\pi\alpha_s}\frac{M_n}{2}\overline{T}_{q_1q_2}^i
$$

Matrix elements can be obtained from DIS experiment data

• Nucleon OPE (neutron)

$$
\overline{\mathcal{W}}_{M}[\Pi_{n,s}(q_{0}^{2},|\vec{q}|)] = \lambda_{n}^{*2}M_{n}^{*}e^{-(E_{n,q}^{2}-\vec{q}^{2})/M^{2}} = \mathcal{B}[\Pi_{n,s}^{e}(q_{0}^{2},|\vec{q}|)] - \bar{E}_{n,q}\bar{\mathcal{B}}[\Pi_{n,s}^{o}(q_{0}^{2},|\vec{q}|)]
$$
\n
$$
= -\frac{1}{4\pi^{2}}(M^{2})^{2}E_{1}\langle\bar{u}u\rangle_{\rho,I},
$$
\n
$$
\overline{\mathcal{W}}_{M}[\Pi_{n,q}(q_{0}^{2},|\vec{q}|)] = \lambda_{n}^{*2}e^{-(E_{n,q}^{2}-\vec{q}^{2})/M^{2}} = \bar{\mathcal{B}}[\Pi_{n,q}^{e}(q_{0}^{2},|\vec{q}|)] - \bar{E}_{n,q}\bar{\mathcal{B}}[\Pi_{n,q}^{o}(q_{0}^{2},|\vec{q}|)]
$$
\n
$$
= \frac{1}{32\pi^{4}}(M^{2})^{3}E_{2}L^{-\frac{4}{9}} + \frac{1}{32\pi^{2}}M^{2}\left\langle\frac{\alpha_{s}}{\pi}G^{2}\right\rangle_{\rho,I}E_{0}L^{-\frac{4}{9}}
$$
\n
$$
- \left[\frac{1}{9\pi^{2}}M^{2}E_{0} - \frac{4}{9\pi^{2}}\vec{q}^{2}\right]\langle u^{\dagger}iD_{0}u\rangle_{\rho,I}L^{-\frac{4}{9}} - \left[\frac{4}{9\pi^{2}}M^{2}E_{0} - \frac{4}{9\pi^{2}}\vec{q}^{2}\right]\langle d^{\dagger}iD_{0}d\rangle_{\rho,I}L^{-\frac{4}{9}}
$$
\n
$$
- \frac{1}{2}\langle\bar{d}\gamma d\bar{d}\gamma d\rangle_{\text{tr.}} - \frac{1}{2}\langle\bar{d}\gamma_{5}\gamma d\bar{d}\gamma_{5}\gamma d\rangle_{\text{tr.}} + \frac{3}{2}\langle\bar{u}\gamma_{5}\gamma u\bar{d}\gamma_{5}\gamma d\rangle_{\text{tr.}} + \frac{5}{2}\langle\bar{u}\gamma u\bar{d}\gamma d\rangle_{\text{tr.}}
$$
\n
$$
- \frac{1}{2}\langle\bar{d
$$

• Σ^+ hyperon OPEs

 $\overline{\mathcal{W}}_M[\Pi_{\Sigma^+,s}(q_0^2,\vert\vec{q}\vert)]=\lambda_{\Sigma^+}^{*2}M_{\Sigma^+}^*e^{-(E_{\Sigma^+,q}^2-\bar{q}^2)/M^2}=\bar{\mathcal{B}}[\Pi_{\Sigma^+,s}^e(q_0^2,\vert\vec{q}\vert)]-\bar{E}_{\Sigma^+,q}\bar{\mathcal{B}}[\Pi_{\Sigma^+,s}^o(q_0^2,\vert\vec{q}\vert)]$ $=\frac{m_s}{16\pi^4}(M^2)^3E_2L^{-\frac{8}{9}}-\frac{1}{4\pi^2}(M^2)^2E_1\langle\bar{s}s\rangle_{\rho,I}+m_s\langle\bar{u}\gamma u\bar{u}\gamma u\rangle_{\text{tr.}}-m_s\langle\bar{u}\gamma_5\gamma u\bar{u}\gamma_5\gamma u\rangle_{\text{tr.}}$ $+ \bar{E}_{\Sigma^+,q}\left| \frac{m_s}{2\pi^2} M^2 \langle u^\dagger u \rangle_{\rho,I} E_0 L^{-\frac{8}{9}} - \frac{4}{2} \langle \bar{s}s \rangle_{\text{vac}} \langle u^\dagger u \rangle_{\rho,I} \right|,$ $\overline{\mathcal{W}}_M[\Pi_{\Sigma^+,q}(q_0^2,\vert\vec{q}\vert)]=\lambda_{\Sigma^+}^{*2}e^{-(E_{\Sigma^+,q}^2-\bar{q}^2)/M^2}=\bar{\mathcal{B}}[\Pi_{\Sigma^+,q}^e(q_0^2,\vert\vec{q}\vert)]-\bar{E}_{\Sigma^+,q}\bar{\mathcal{B}}[\Pi_{\Sigma^+,q}^o(q_0^2,\vert\vec{q}\vert)]$ $=\frac{1}{22\pi^4}(M^2)^3E_2L^{-\frac{4}{9}}-\frac{1}{22\pi^2}M^2\left\langle\frac{\alpha_s}{\pi}G^2\right\rangle_LE_0L^{-\frac{4}{9}}$ $-\left[\frac{1}{9\pi^2}M^2E_0-\frac{4}{9\pi^2}\vec{q}^2\right]\langle s^\dagger iD_0s\rangle_{\rho,I}L^{-\frac{4}{9}}-\left[\frac{4}{9\pi^2}M^2E_0-\frac{4}{9\pi^2}\vec{q}^2\right]\langle u^\dagger iD_0u\rangle_{\rho,I}L^{-\frac{4}{9}}$ $-\frac{1}{2}\langle \bar{u}\gamma u\bar{u}\gamma u\rangle_{\text{tr.}}-\frac{1}{2}\langle \bar{u}\gamma_5\gamma u\bar{u}\gamma_5\gamma u\rangle_{\text{tr.}}+\frac{3}{2}\langle \bar{u}\gamma_5\gamma u\bar{s}\gamma_5\gamma s\rangle_{\text{tr.}}+\frac{5}{2}\langle \bar{u}\gamma u\bar{s}\gamma s\rangle_{\text{tr.}}$ $-\frac{1}{2}\langle\bar{u}\gamma u\bar{u}\gamma u\rangle_{\text{s.t.}}+\frac{1}{2}\langle\bar{u}\gamma_5\gamma u\bar{u}\gamma_5\gamma u\rangle_{\text{s.t.}}-\frac{1}{2}\langle\bar{u}\gamma u\bar{s}\gamma s\rangle_{\text{s.t.}}+\frac{1}{2}\langle\bar{u}\gamma_5\gamma u\bar{s}\gamma_5\gamma s\rangle_{\text{s.t.}}$ $+ \bar{E}_{\Sigma^+,q}\left| \frac{1}{\rho_{\sigma^2}} M^2 \langle u^\dagger u \rangle_{\rho,I} E_0 L^{-\frac{4}{9}} \right|,$ $\overline{\mathcal{W}}_M[\Pi_{\Sigma^+,u}(q_0^2,\vert\vec{q}\vert)]=\lambda_{\Sigma^+}^{*2}\Sigma_v^{\Sigma^+}e^{-(E_{\Sigma^+,q}^2-\bar{q}^2)/M^2}\bar{\mathcal{B}}[\Pi_{\Sigma^+,u}^e(q_0^2,\vert\vec{q}\vert)]-\bar{E}_{\Sigma^+,q}\bar{\mathcal{B}}[\Pi_{\Sigma^+,u}^o(q_0^2,\vert\vec{q}\vert)]$ $=\frac{7}{12\pi^2}(M^2)^2\langle u^{\dagger}u\rangle_{\rho,I}E_1L^{-\frac{4}{9}}$ $+ \bar{E}_{\Sigma^{+},q}\bigg[\frac{4}{9\pi^{2}}M^{2}\langle s^{\dagger}iD_{0}s\rangle_{\rho,I}E_{0}L^{-\frac{4}{9}} + \frac{16}{9\pi^{2}}M^{2}\langle u^{\dagger}iD_{0}u\rangle_{\rho,I}E_{0}L^{-\frac{4}{9}}$ $+ \left. 2 \left[\langle \bar{u} \gamma u \bar{u} \gamma u \rangle_{\rm s.t.} - \langle \bar{u} \gamma_5 \gamma u \bar{u} \gamma_5 \gamma u \rangle_{\rm s.t.} + \langle \bar{u} \gamma u \bar{s} \gamma s \rangle_{\rm s.t.} - \langle \bar{u} \gamma_5 \gamma u \bar{s} \gamma_5 \gamma s \rangle_{\rm s.t.} \right] \right].$

• Λ hyperon OPE with Generalized interpolating field

$$
\overline{\mathcal{W}}_{M}[\Pi_{\Lambda,s}(q_{0}^{2},|\vec{q}|)]=\lambda_{\Lambda}^{*2}M_{\Lambda}^{*}e^{-(E_{\Lambda,s}^{2},q^{2})/M^{2}}=\bar{\mathcal{B}}[\Pi_{\Lambda,s}^{e}(q_{0}^{2},|\vec{q}|)]-E_{\Lambda,q}\bar{\mathcal{B}}[\Pi_{\Lambda,s}^{q}(q_{0}^{2},|\vec{q}|)]
$$
\n
$$
=-\frac{(1-\tilde{a}^{2}+2\tilde{b}^{2})}{64\pi^{4}}m_{s}(M^{2})^{3}E_{2}L^{-\frac{8}{5}}\\+\frac{(1-\tilde{a}^{2}+2\tilde{b}^{2})}{16\pi^{2}}(M^{2})^{2}\langle\bar{s}s\rangle_{\rho,I}E_{1}-\frac{\tilde{a}\tilde{b}}{4\pi^{2}}(M^{2})^{2}\langle\bar{q}q\rangle_{\rho,I}E_{1}
$$
\n
$$
-\frac{(1-\tilde{a}^{2}-2\tilde{b}^{2})}{128\pi^{2}}m_{s}M^{2}\left\langle\frac{\alpha_{s}}{\pi}G^{2}\right\rangle_{\rho,I}E_{0}L^{-\frac{8}{5}}\\+\frac{(1+\tilde{a}^{2}+4\tilde{b}^{2})}{128\pi^{2}}m_{s}(W\bar{d}q)_{\mathrm{tr.}}+\frac{(1+\tilde{a}^{2}-4\tilde{b}^{2})}{4}m_{s}(\tilde{w}\gamma_{5}u\bar{d}\gamma_{5}d)_{\mathrm{tr.}}\\-\frac{(1-\tilde{a}^{2}-2\tilde{b}^{2})}{8}m_{s}(\tilde{w}\gamma_{4}d\gamma_{4})_{\mathrm{tr.}}-\frac{(1-\tilde{a}^{2}+2\tilde{b}^{2})}{8}m_{s}(\tilde{w}\gamma_{5}\gamma u\bar{d}\gamma_{5}\gamma d)_{\mathrm{tr.}}-\frac{(1+\tilde{a}^{2})}{8}-\frac{(1-\tilde{a}^{2}+4\tilde{b}^{2})}{8}m_{s}(\tilde{w}\gamma_{5}d\gamma_{5})_{\mathrm{tr.}}-\frac{(1-\tilde{a}^{2}+4\tilde{b}^{2})}{8}m_{s}(\tilde{w}\gamma_{4}d\gamma_{5})_{\mathrm{tr.}}\\-\tilde{E}_{\Lambda,q}\
$$

25

• A hyperon OPE with Generalized interpolating field (continued)

$$
\overline{\mathcal{W}}_{M}[\Pi_{\Lambda,q}(q_{0}^{2},\vert\vec{q}\vert)]=\lambda_{\Lambda}^{*2}e^{-(E_{\Lambda,q}^{2}-\bar{q}^{2})/M^{2}}=\bar{\mathcal{B}}[\Pi_{\Lambda,q}^{e}(q_{0}^{2},\vert\vec{q}\vert)]-\bar{E}_{\Lambda,q}\bar{\mathcal{B}}[\Pi_{\Lambda,q}^{o}(q_{0}^{2},\vert\vec{q}\vert)]
$$
\n
$$
=\frac{(1+\tilde{a}^{2}+4\tilde{b}^{2})}{256\pi^{4}}(M^{2})^{3}E_{2}L^{-\frac{4}{9}}+\frac{(1+\tilde{a}^{2}+4\tilde{b}^{2})}{256\pi^{2}}M^{2}\left\langle\frac{\alpha_{s}}{\pi}G^{2}\right\rangle_{\rho,I}E_{0}L^{-\frac{4}{9}}
$$
\n
$$
-\frac{\tilde{a}\tilde{b}}{4\pi^{2}}m_{s}M^{2}\langle\bar{q}q\rangle_{\rho,I}E_{0}L^{-\frac{4}{9}}+\frac{(1+\tilde{a}^{2}+4\tilde{b}^{2})}{32\pi^{2}}m_{s}M^{2}\langle\bar{s}s\rangle_{\rho,I}E_{0}L^{-\frac{4}{9}}
$$
\n
$$
-\frac{(1-\tilde{a}^{2}+2\tilde{b}^{2})}{4}\langle\bar{u}u\bar{d}d\rangle_{\text{tr.}}-\frac{(1-\tilde{a}^{2}-2\tilde{b}^{2})}{4}\langle\bar{u}\gamma_{5}u\bar{d}\gamma_{5}d\rangle_{\text{tr.}}+\frac{(1+\tilde{a}^{2}-\tilde{b}^{2})}{4}\langle\bar{u}\gamma u\bar{d}\gamma d\rangle_{\text{tr.}}+\frac{(1+\tilde{a}^{2}+1\tilde{b}^{2})}{4}\langle\bar{u}\gamma_{5}\gamma u\bar{d}\gamma_{5}\gamma d\rangle_{\text{tr.}}+\frac{(1-\tilde{a}^{2})}{8}\langle\bar{u}\sigma u\bar{d}\sigma d\rangle_{\text{tr.}}+\tilde{a}\tilde{b}\langle\bar{q}q\bar{s}s\rangle_{\text{tr.}}+\tilde{b}\langle\bar{q}\gamma_{5}q\bar{s}\gamma_{5}s\rangle_{\text{tr.}}
$$
\n
$$
+\frac{(1+\tilde{
$$

Sum rule result I - nucleons

• **Neutron** sum rules and symmetry energy (at $\rho = \rho_0$)

- 1. The quasi-neutron energy is slightly reduced \rightarrow represents bounding at $\rho = \rho_0$
- 2. Large cancelation mechanism in both of the quasi-neutron and the symmetry energy
- 3. Twist-4 matrix elements enhance the strength of cancelation mechanism

 \rightarrow simple linear gas approximation would not be good choice

Determination of $\{\tilde{a}, \tilde{b}\}$ in **A** sum rules

3D plot with \tilde{a} and \tilde{b}

Vacuum sum rules with $\eta_{\Lambda(\tilde{a},\tilde{b})}=A_{(\tilde{a},\tilde{b})}\epsilon_{abc}\left([u_a^T C d_b]\gamma_5 s_c+\tilde{a}[u_a^T C \gamma_5 d_b]s_c+\tilde{b}[u_a^T C \gamma_5 \gamma_\mu d_b]\gamma^\mu s_c\right)$

- 1. Self-energies will be obtained by taking ratio $M_{\Lambda} = \bar{\mathcal{B}}[\Pi_{\Lambda,s}(q_0^2, |\vec{q}|)]/\bar{\mathcal{B}}[\Pi_{\Lambda,q}(q_0^2, |\vec{q}|)]$ $\Sigma_v^{\Lambda} = \overline{\mathcal{B}}[\Pi_{\Lambda,v}(q_0^2, |\vec{q}|)]/\overline{\mathcal{B}}[\Pi_{\Lambda,q}(q_0^2, |\vec{q}|)]$
- 2. Overall normalization A becomes meaningless in practical calculation \rightarrow free parameter reduces to \tilde{a} and \tilde{b}
- 3. Plane $\{\tilde{a}, \tilde{b}\}$ has stable/unstable region
- **Ioffe's choice** corresponds to $\{\tilde{a}, \tilde{b}\} = \{-1, -1/2\}$ and $A_{(-1,-1/2)} = \sqrt{8/3}$

$$
\eta_{\Lambda(-1,-1/2)} \Rightarrow \sqrt{\frac{2}{3}} \epsilon_{abc} \left(\left[u_a^T C \gamma_\mu s_b \right] \gamma_5 \gamma^\mu d_c - \left[d_a^T C \gamma_\mu s_b \right] \gamma_5 \gamma^\mu u_c \right)
$$

 This linear combination is located on boundary of stable region \rightarrow mass can be drastically changed via even small variation of { \tilde{a} , \tilde{b} }

Determination of $\{\tilde{a}, \tilde{b}\}$ in **A** sum rules

3D plot with \tilde{a} and \tilde{b}

In-medium sum rules with $\eta_{\Lambda(\tilde{a},\tilde{b})}=A_{(\tilde{a},\tilde{b})}\epsilon_{abc}\left([u_a^T C d_b]\gamma_5 s_c+\tilde{a}[u_a^T C \gamma_5 d_b]s_c+\tilde{b}[u_a^T C \gamma_5 \gamma_\mu d_b]\gamma^\mu s_c\right)$

- 1. The OPF **does not contain** the derivative expansion and $\bar{s}ys$ dependent Ops.
- 2. **Ioffe's choice** is located on unstable point and the quasi- Λ energy/ $M_A \sim 1.5$
- 3. To control the repulsive tendency of the quasi-Λ energy, one can try derivative expansion

$$
s\gamma_{\mu}sqq = (s\gamma_{\mu}sqq) + x^{\dagger} (s\gamma_{\mu}D_{\nu}sqq)
$$

$$
\langle \bar{s}\gamma_{\mu}D_{\nu}s\bar{q}q \rangle = \frac{1}{4}g_{\mu\nu}m_{s}\langle \bar{s}s\bar{q}q \rangle + \frac{4}{3}\left(\langle \bar{s}\gamma_{0}D_{0}s\bar{q}q \rangle - \frac{1}{4}m_{s}\langle \bar{s}s\bar{q}q \rangle\right)\left(u_{\mu}u_{\nu} - \frac{1}{4}g_{\mu\nu}\right)
$$

→ Trace part can reduce the quasi-Λ energy but contains large uncertainty \rightarrow It is worthwhile to try new linear combination with \tilde{a} and \tilde{b}

Stable $\{\tilde{a}, \tilde{b}\}$ for Λ sum rules

Confining stable points on $\{\tilde{a}, \tilde{b}\}$ plain

Cross section with fixed $\tilde{a} = -2.0$ and $\tilde{a} = -4$

Sum rules have been obtained by averaging results on following 9 points: $\{\tilde{a}, \tilde{b}\} = \{(-1.80, -0.10), (-1.80, -0.15), (-1.80, -0.30), (-2.00, -0.10), (-2.00, -0.20), (-2.00, -0.30), (-2.20, -0.10), (-2.20, -0.30), (-2.20, -0.30)\}$

As $|\tilde{a}|$ becomes large, sum rules become stable and weakly dependent on \tilde{b} \rightarrow enhanced scalar diquark basis gives stable and reasonable sum rules

Sum rule result II – Λ hyperon

• A sum rules with new interpolating field

- 1. The quasi- Λ energy is slightly reduced \rightarrow represents bounding at normal nuclear density
- 2. Weak attraction and weak repulsion \rightarrow scalar: VsA / VsN ~ 0.31 vector: VvA / VvN ~ 0.26
	- \rightarrow naïve quark # counting for determination of N-H force strength may not be good
- 3. Constant negative anti-**Λ** pole case (2nd graph) and density dependent case (3rd graph)

$$
\bar{E}_q = \Sigma_v(\bar{E}_q) - \sqrt{\bar{q}^2 + M^*(\bar{E}_q)^2}
$$
 (anti-**A** pole)

Sum rule result III – density behavior

• Comparison of density behavior (neutron matter)

- 1. Constant negative pole case: the quasi energy of **A** and **neutron** crosses at $\rho/\rho_0 = 1.8$
- 2. Density dependent case: never crosses
- 3. In Σ + sum rules, there is only small difference between constant- and density dependent-case

4. Within new interpolating field for Λ, the early onset of the hyperon in the dense nuclear matter is unlikely

Outline

- I. Motivations phenomenology within iso-spin asymmetry
- II. QCD approaches Diquark and QCD sum rules
	- Symmetry energy
	- Nucleon and hyperons

III. Extreme limits and Future prospects

At extremely high density?

• QCD phase transition

In $q ≥ μ$ > Λας region, QCD can be directly applicable

Static quantities can be obtained from partition function for dense QCD

$$
\mathcal{Z}_{\Omega} = \text{Tr} \exp \left[-\beta (\hat{H} - \vec{\mu} \cdot \vec{\hat{N}}) \right] = \int \mathcal{D}(\bar{\psi}, \psi, A, \eta) \exp \left[-\int_0^{\beta} d\tau \int d^3x \mathcal{L}_E(\bar{\psi}, \psi, A, \eta) \right]
$$

Dense QCD Lagrangian (Euclidean)

$$
\mathcal{L}_E = \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \frac{1}{2\xi} (\partial_\mu A^a_\mu)^2 + \bar{\eta}^a (\partial^2 \delta_{ab} + gf_{abc} \partial_\mu A^c_\mu) \eta^b + \sum_f^{n_f} \left[\psi_f^{\dagger} \partial_\tau \psi_f + \bar{\psi}_f (-i \gamma^i \partial_i + m_f) \psi_f - \mu_f \psi_f^{\dagger} \psi_f - g \bar{\psi}_f A \psi_f \right]
$$

Full QCD and effective approach within scale hierarchy

Extremely low temperature

• At T~0 limit, quark is mainly confined near Fermi sea

If one scales longitudinal momentum to near Fermi surface $\int d^4p \rightarrow \mu_f^2 \int d\Omega \int dl^2 s^2$ where $l = (l_0, (\vec{l} \cdot \vec{v}_f) \vec{v}_f)$ Free fermion part should be invariant under scaling

 $\int d^2 l s^2 \psi_{\vec{v}_f}^{\dagger} s(l_0 - l_{\parallel}) \psi_{\vec{v}_f} \longrightarrow \psi \sim s^{-\frac{3}{2}}$

Four-quark interaction

General scattering

 $\int \Pi_{i}^{4} (dk_{\perp}^{2} dl^{2})_{i} [\psi^{\dagger}(k_{3})\psi(k_{1})V(k)\psi^{\dagger}(k_{4})\psi(k_{2})] \delta(k_{1} + k_{2} - (k_{3} + k_{4}))$

scales as s^2 : irrelevant in $s \to 0$ scaling

Interaction between opposite velocity (BCS type)

 $\int \Pi_{i}^{4} (dk_{\perp}^{2} dl^{2})_{i} [\psi^{\dagger}(k_{3})\psi(k_{1})V(k)\psi^{\dagger}(-k_{3})\psi(-k_{1})] \delta(l_{1} + l_{2} - (l_{3} + l_{4}))$

scales as s^0 : **marginal** in $s \to 0$ scaling

In QCD, there is no relevant interaction which scales as s^{-n} \rightarrow BCS type interaction becomes most important at scaling

Color BCS paired states

4 quark interaction in QCD $(Nc=3)$

• Modification of Fermi-sea

Anti-triplet channel is attractive (V<0) $\tau_{ij}^a \tau_{kl}^a = \frac{1}{6} (\delta_{ij} \delta_{kl} + \delta_{il} \delta_{kj}) - \frac{1}{3} (\delta_{ij} \delta_{kl} - \delta_{il} \delta_{kj})$

 \rightarrow BCS condensation in low energy limit To take entire Fermi surface, spin-0 condensate is favored \rightarrow in same helicity (asymmetric in spin)

For asymmetric wave function as for fermion, flavor should be in asymmetric configuration

In non negligible M_s^2/μ , **2SC** state is favored $\langle \psi_a^{\alpha} C \gamma_5 \psi_b^{\beta} \rangle \sim \Delta_1 \epsilon^{\alpha \beta 1} \epsilon_{ab1} + \Delta_2 \epsilon^{\alpha \beta 2} \epsilon_{ab2} + \Delta_3 \epsilon^{\alpha \beta 3} \epsilon_{ab3}$

$$
\langle \psi_{L,\alpha i}^T C \psi_{L,\beta j} \rangle = -\langle \psi_{R,\alpha i}^T C \psi_{R,\beta j} \rangle = \frac{\Delta}{2} \epsilon_{\alpha \beta 3} \epsilon_{ij3}
$$

$$
\mathcal{L}_{\Delta} = -\frac{\Delta}{2} \psi_L^T C \epsilon \psi_L \epsilon - (L \to R) + \text{h.c.}
$$

In 2SC phase, u-d red-green states are trapped in gap and only s quarks and $u-d$ blue quarks can be liberated

Naïve future plan – diquark

- Diquark paring pattern
- I. In **A** structure, scalar ($I=0$) light diquark structure should be emphasized $\eta_{\Lambda} = \epsilon_{abc} \left([u_a^T C d_b] \gamma_5 s_c + (\tilde{a} \leq -2) [u_a^T C \gamma_5 d_b] s_c + (\tilde{b} \sim -1/8) [u_a^T C \gamma_5 \gamma_{\mu} d_b] \gamma^{\mu} s_c \right)$
- II. 2SC BCS paring at cold dense matter

$$
\left\langle \psi_{L,\alpha i}^T C \psi_{L,\beta j} \right\rangle = - \left\langle \psi_{R,\alpha i}^T C \psi_{R,\beta j} \right\rangle = \frac{\Delta}{2} \epsilon_{\alpha \beta 3} \epsilon_{i j 3}
$$

• The diquark structure corresponds to the light 4q ops.

- Just above QCD scale ($q > \mu \sim \Lambda_{\alpha c}$), diquark may be weakly bounded state in perturbative interaction
- But below the scale ($q \leq \mu \sim \Lambda_{\alpha}$), diquark contribution may mainly overlapped with four-quark condensates
- \blacksquare $\langle \bar{q}_{1a'} \Gamma q_{1a} \bar{q}_{2b'} \Gamma q_{2b} \rangle \simeq \langle \bar{q}_{1a'} \tilde{\Gamma} \bar{q}_{2b'} q_{1a} \tilde{\Gamma} q_{2b} \rangle$
- Scalar/Twist-4 condensates correspond to `good/bad' diquark (s=0/s=1) correlation
- GPD analysis for internal structure of baryons can contribute to dense matter physics

Naïve future plan – similarities

• Dense matter and heavy quark system

Singlet state can be obtained by solving Bethe-Salpeter equation

$$
\Gamma_{\mu}(p_1, -p_2) = iC_{\text{color}} \int \frac{d^4k}{(2\pi)^4} g^2 V(k) \gamma^{\nu} \Delta(p_1 + k)
$$

$$
\times \Gamma_{\mu}(p_1 + k, -p_2 + k) \Delta(-p_2 + k) \gamma_{\nu}
$$

In non-relativistic and heavy mass limit

$$
\Gamma_{\mu}(q/2 + p, -q/2 + p)
$$

=
$$
- \left(\varepsilon - \frac{\mathbf{p}^2}{m} \right) \sqrt{\frac{M_{\Phi}}{N_c}} \psi(\mathbf{p}) \frac{1 + \gamma_0}{2} \gamma_i \delta_{\mu i} \frac{1 - \gamma_0}{2}
$$

Coulombic bound state

$$
\left(\varepsilon - \frac{\mathbf{p}^2}{m}\right)\psi(\mathbf{p}) = -g^2 C_{\text{color}} \int \frac{d^3k}{(2\pi)^3} V(\mathbf{k}) \psi(\mathbf{p} + \mathbf{k})
$$

Large gap size can be obtained by solving gap equation with one gluon exchange

$$
\Delta(k) = ig^2 \int \frac{d^4q}{(2\pi)^4} \left(\gamma_\mu \frac{\lambda^a}{2} \right)^T S_{21}(q) \left(\gamma_\nu \frac{\lambda^a}{2} \right) D_{\mu\nu}(q - k)
$$

$$
\Delta/\mu = (b/g^5) \exp\left(-3\pi^2/\sqrt{2}g \right) \quad b = 256\pi^4
$$

Singlet \rightarrow Octet Gap \rightarrow Ungapped

External gluon attachment can dissolve the bound state

For color BCS state, Meissner mass screens dissociation of gapped state \rightarrow requires large momentum transf.

Needs more improvement

- Diquark in nucleon
	- Cross between two bases does not have perturbative contrbution

$$
\eta_{p(t)} = 2\epsilon_{abc} \left([u_a^T C d_b] \gamma_5 u_c + t [u_a^T C \gamma_5 d_b] u_c \right)
$$

= $\left(\frac{1-t}{2} \right) \epsilon_{abc} [u_a^T C \gamma_\mu u_b] \gamma_5 \gamma^\mu d_c + \left(\frac{1+t}{4} \right) \epsilon_{abc} [u_a^T C \sigma_{\mu\nu} u_b] \gamma_5 \sigma^{\mu\nu} d_c$

(a)
$$
\epsilon_{abc}[u_a^T C \gamma_\mu u_b]\gamma_5 \gamma^\mu d_c = 4 \epsilon_{abc} ([u_{R,a}^T C d_{R,b}] u_{L,c} - [u_{L,a}^T C d_{L,b}] u_{R,c})
$$

\n(b)
$$
\epsilon_{abc}[u_a^T C \sigma_{\mu\nu} u_b]\gamma_5 \sigma^{\mu\nu} d_c = 4 \epsilon_{abc} ([u_{R,a}^T C d_{R,b}] u_{R,c} - [u_{L,a}^T C d_{L,b}] u_{L,c})
$$

- However chiral symmetry breaking effect appears in 2quark and 4quark condensates \rightarrow loffe's choices may not the only option
- Non local nature is missing
	- The interpolating fields are defined as local operator
	- Even in the point like limit, the gauge connection effect should be concerned

 $O_{\mu_1 \cdots \mu_n}^{(a)}(x, C) = \bar{q}(x) \gamma_{\mu_1} \vec{D}_{\mu_2} \cdots \vec{D}_{\mu_n} U(x, x; C) q(x)$ All the local divergence occurs at two endpoints, does not depend on the path \rightarrow x1-x2=0 limit gives Wilson loop phase factor

GPD studies may provide experimental constraints