DVCS and DVMP off Scalar Targets

 Chueng-Ryong Ji North Carolina State University

"Nucleon and Resonance Structure with Hard Exclusive Processes"

May 31, 2017 IPN Orsay

International Journal of Modern Physics E Vol. 22, No. 2 (2013) 1330002 (98 pages) ⃝c World Scientific Publishing Company DOI: 10.1142/S0218301313300026

CONCEPTUAL ISSUES CONCERNING GENERALIZED PARTON DISTRIBUTIONS

CHUENG-RYONG JI

Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA crji@ncsu.edu

BERNARD L. G. BAKKER

Department of Physics and Astrophysics, Vrije Universiteit, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands b.l.g.bakker@vu.nl

> Received 15 July 2012 Revised 30 October 2012 Accepted 6 November 2012 Published 6 February 2013

Outline

- JLab Kinematics ($t < -|t_{min}| \neq 0$)
- Original Formulation of DVCS with GPDs (Twist 2)
- Benchmark Barebone Calculation for JLab Kinematics (Exact Result vs. Reduced Result)
- Toward finding the Most General Hadronic Tensor Structure with CFFs (DNA method)
- Conclusion and Outlook

JLab Kinematics $t < -|t_{min}| \neq 0$

$$
t = \Delta^2 = -\frac{\zeta^2 M^2 + \Delta_{\perp}^2}{1 - \zeta}
$$
; $\Delta^+ (\equiv \Delta^0 + \Delta^3) = -\zeta p^+$; $\Delta_{\perp}^2 > \Delta_{\text{min}}^2 \neq 0$

Coincidence Experiment

Figure 1.11: E00-110 schematic setup showing the three different detectors used to measured each of the particles in the final state. Carlos Muñoz CamachoThesis('05)

Flatten $[$ {{"Q^2", "xBj", "k", "k'", "the", "thq", "thq'", "thp'", "q'", "t/Q^2"}}, $ln[277]$:= Table[Block[{M = 0.938, Q = Sqrt[pars[[i, 1]]], xBj = pars[[i, 2]], Eb = pars[[i, 3]], the = pars $[\,i, 4\,]$ | Pi / 180, thetaC = 20 Pi / 180, thq = ArcCos [costhetaqT2] }, {Q^2, xBj, Eb, PeT1, the 180/Pi, thq 180/Pi, ArcCos[costhqf] 180/Pi, ArcCos[costhpf] 180 / Pi, qfT3mu[[1]], MandeltT2 / Q^2}], {i, 1, 12}]}, 1] // MatrixForm

Out[277]//MatrixForm=

Table III in E12 - 06 - 114, Julie Roche et al. Jlab 12 GeV Exclusive Kinematics

Nucleon GPDs in DVCS Amplitude

X.Ji,PRL78,610(1997): Eqs.(14) and (15)

"To calculate the scattering amplitude, it is convenient to define Just above Eq.(14), a special system of coordinates."

Note here that
$$
q'^2 = -\Delta_{\perp}^2 = 0
$$
.

Nucleon GPDs in DVCS Amplitude

A.V.Radyushkin, PRD56, 5524 (1997): Eq.(7.1)

$$
q = q' - \zeta p \quad ,
$$
\n
$$
\zeta = \frac{Q^2}{2p \cdot q' \quad ,}
$$
\n
$$
\zeta = p - p' \qquad \qquad + i\epsilon^{\mu\nu\alpha\beta} \frac{p_\alpha q'_\beta}{p \cdot q'} \left\{ \overline{u}(p')q'u(p)T_f^a(\zeta) + \frac{1}{2M} \overline{u}(p')(q'r - rq')u(p)T_K^a(\zeta) \right\}
$$
\n
$$
r = p - p' \qquad \qquad + i\epsilon^{\mu\nu\alpha\beta} \frac{p_\alpha q'_\beta}{p \cdot q'} \left\{ \overline{u}(p')q'\gamma_5 u(p)T_G^a(\zeta) + \frac{q' \cdot r}{2M} \overline{u}(p')\gamma_5 u(p)T_f^a(\zeta) \right\}
$$

At the beginning of Section 2E (Nonforward distributions), ``Writing the momentum of the virtual photon as q=q'-ζp is equivalent to using the Sudakov decomposition in the light-cone `plus'(p) and `minus'(q') components in a situation when there is no transverse momentum." €

Note that here
$$
(q - q')^2 = \Delta^2 = t = \xi^2 M^2 > 0
$$

while $t < 0$ in DVCS.

Benchmark Calculation in JLab Kinematics

• To see the effect of taking t<0, we mimic the kinematics at JLab and compute bare bone VCS amplitudes neglecting masses. and similarly for *F*. **Now See the enect of taking two, we mimic that i** Motivation Invariant Scalars GPDs of Fermions Dynamical E↵ects Summary and Conclusions Adds-on Motivation Invariant Scalars GPDs of Fermions Dynamical E↵ects Summary and Conclusions Adds-on ✓ \times *VCS* amplitudes neglecting masses TUBLICATOS EL JERO ETIU COMPUTE DEI E DONT \overline{a} 2(*x* ⇣*e*↵)*p*⁺ \Box Motivation Invariant Summary \Box The Fermions Dynamic Disk Summary and Conclusions Adda Conclusions Adda Summary and Conclusions Adda Summary and Conclusions Adda Summary and Conclusions Adda Summary and Conclusions $\mathcal{L}\mathbf{S}$ amplitudes neg \overline{L} (*^x* ⇣*e*↵) *^p*⁺ *,* ?*,* Motivation Invariant Scalars GPDs of Fermions Dynamical E↵ects Summary and Conclusions Adds-on *x* \overline{C} 2 \overline{C} ? nasses.

$$
k^{\mu} = (x p^{+}, 0, 0, 0), \quad k^{\prime \mu} = \left((x - \zeta_{\text{eff}}) p^{+}, \Delta_{\perp}, \frac{\Delta_{\perp}^{2}}{2(x - \zeta_{\text{eff}}) p^{+}} \right)
$$

$$
q^{\mu} = \left(-\zeta p^{+}, 0, 0, \frac{Q^{2}}{2\zeta p^{+}} \right), \quad q^{\prime \mu} = \left(\alpha \frac{\Delta_{\perp}^{2}}{Q^{2}} p^{+}, -\Delta_{\perp}, \frac{Q^{2}}{2\alpha p^{+}} \right)
$$

\nHere, for $Q \to \infty$,
$$
\zeta_{\text{eff}} = \zeta + \alpha \frac{\Delta_{\perp}^{2}}{Q^{2}} \to \zeta
$$

$$
\alpha = \frac{(x - \zeta) Q^{2}}{2\Delta_{\perp}^{2}} \left(1 - \sqrt{1 - \frac{4\zeta}{x - \zeta} \frac{\Delta_{\perp}^{2}}{Q^{2}} \right)}{\Delta_{\perp}^{2}} \to \zeta
$$

$$
q^{\prime -} \to q^{-} = \frac{Q^{2}}{2\zeta p^{+}}
$$

"Bare Bone" VCS Operators & Amplitudes

$$
\mathcal{L}(\{\lambda',\lambda\}h) = \bar{u}(\ell';\lambda')q^*(q;h)u(\ell;\lambda) \mathcal{M} = \sum_h \mathcal{L}(\{\lambda',\lambda\}h)\frac{1}{q^2}\mathcal{H}(\{s',s\}\{h',h\})
$$

Using
\n
$$
k \rightarrow \infty
$$
\n
$$
k \rightarrow
$$

and the reduced amplitude that agrees in the DVCS limit ين في المعروف.
مصر المعروف: *U* white $\frac{1}{2}$ and $\frac{1}{$

$$
T_{s}^{\mu\nu} \gamma^{\mu} \underline{\gamma}^{\alpha} \gamma \underline{\zeta} = g_{n}^{\mu\alpha} \gamma^{\nu} + g_{n}^{\alpha\nu} \gamma^{\mu} + g_{n}^{\mu\nu} \gamma^{\alpha} + i \xi^{\mu\alpha\nu\beta} \gamma^{\beta} \gamma^{\gamma} \times \bar{u}(k'; s') \eta(-) u(k; s) \times \bar{u}(k'; s') \eta(-) u(k; s) -i \epsilon^{\mu\nu\alpha\beta} n_{\alpha}(-) n_{\beta}(+) \times \bar{u}(k'; s') \eta(-) \gamma_{5} u(k; s)]
$$

 \in

The tensor structure of the reduced amplitude is identical to the ones given by X. Ji and A.V. Radyushkin.

Sanity Checks of Amplitudes

- Gauge invariance of each and every polarized amplitude including the longitudinal polarization for the virtual photon.
- Klein-Nishina Formula in RCS.
- Angular Momentum Conservation.

Checking Amplitudes

- Gauge invariance of each and every polarized amplitude including the longitudinal polarization for the virtual photon.
- Klein-Nishina Formula in RCS.
- Angular Momentum Conservation.

Comparison

Complete DVCS amplitudes, $\sum_h \mathcal{L}(\{\lambda',\lambda\},h) \frac{1}{q^2} \mathcal{H}(\{h',h\}\{s',s\})$ in three approaches, ours, A.V. Radyushkin, and $\mathsf X$. Ji. Because the hadrons and leptons are massless, $\lambda'=\lambda$ and $s'=s.$

AVR=XJ, taking into account the real photon helicity swap for the exact collinear kinematics vs. the nonlinear kinematicsin LFD: 2*p*⁺ *x q*0*µ* ematic λ onlinear kinematic 0*,* 0?*,*

$$
q^{\prime \mu} = \left(\alpha \frac{\Delta_{\perp}^2}{Q^2} p^+, -\Delta_{\perp}, \frac{Q^2}{2\alpha p^+}\right) \leftrightarrow \left(0, 0_{\perp}, \frac{Q^2}{2\zeta p^+}\right) + h^{\prime} \leftrightarrow -h^{\prime}
$$

C.Carlson and C.Ji, Phys.Rev.D67,116002 (2003); B.Bakker and C.Ji, Phys.Rev.D83,091502(R) (2011).

For any orders in Q (*x* − ζ)*Q*² 2 (*x* ⇣)*p*⁺ *q* ✏*/*(*q*; *^h*)⁺ (*q*0)✏*/*⇤ (*q*0 ; *h*0)

Exact Reduced and reduced and

$$
D = \frac{4\zeta\Delta^2}{(x-\zeta)Q^2}, \quad D_{\pm} = 1 \pm \sqrt{1-D}
$$

q2 H Ared = ΣL 12 H Her ۱. *Q* $\Delta = |$ 2(*x*−ζ)*Q*² $\text{Here, } \Delta = |\Delta_+|$ $\frac{1}{2}$ and $\frac{1}{2}$ is the DVCS in $\frac{1}{2}$ Here, $\Delta = |\Delta_{\perp}|$

CFFs should be generalized for $t = \Delta^2 \neq 0$ beyond the leading twist p^{μ} = $\Lambda(1\,,0\,,0)$ definition given by $\frac{d^2}{dx^2} n^{\mu}, \frac{d^2}{dx^2}$ <u>=</u> $\frac{1}{\sqrt{p}}$ H_2 λ^2 , ξ) = $\mu \int M^2 - \Delta^2$ $\frac{\xi}{x^2} + i\varepsilon$ $\begin{pmatrix} 2 \end{pmatrix}$ $\frac{1}{2}$ 1 $x + \frac{\xi}{2}$ $\overline{2}$ − *i*^ε \int |
|
| $\overline{}$ l \setminus \int , , -1 $\left[x \frac{1}{2} - 1\varepsilon \right]$ $\left[x + \frac{3}{2} - i\varepsilon \right]$ +1 ∫ $y = -\zeta p + \frac{\zeta}{2\zeta}$, $\zeta = \frac{\zeta}{2\overline{p}}$. *i*σαβ **n**₂ $\begin{bmatrix} p \\ p \end{bmatrix}$ *p* 1 *d* ι * $\Delta^{\mu} = -\xi \left[p^{\mu} - \frac{M^2 - \Delta^2/4}{2} n^{\mu} \right] + \Delta^2$ p^{μ} = $\Lambda(1\,,0\,,0)$ definition aiver $n^{\mu} = (1$ *ct* , 0 *x* , 0 *y* , −1 *z* $)/(2\Lambda)$, P^{μ} = 1 \overline{L} $(P + F^{\rightarrow} P^{\rightarrow} = p^{\mu} +$ $M^2 - \frac{\Delta^2}{2}$ / 4 \mathcal{Z} n^{μ} , $q^{\mu} = -\xi p^{\mu} + \frac{Q^2}{2\epsilon}$ 2ξ *n*µ , ξ = \boldsymbol{Q}^2 2*P* ⋅ *q* , $^{\prime}$ 1 $p^{\mu} - \frac{M^2 - \Delta^2/4}{2} n^{\mu}$) $\overline{}$, $+ \Delta^{\mu}_{\perp}$. Dy = 12*γ* $H(x, \Delta^2, \xi)$ 5 $H(\Delta^2, \xi) =$ $\dot{f} = \Lambda^2 \neq 0$ hevor $\frac{4}{4}$ $n^\mu,$ 2*P* ⋅ *q* , ^µ . *T* $C t$ $\begin{array}{cc} x & y & z \end{array}$ $\overline{\Delta}$ *n i g*₁ν ∪ *i* ι ν_. + *i*^ε Ω $\sqrt{1}$ $\mathcal{L}(\mathbf{D})$ $H(\mathbf{A}^2, \xi) = \mu \int d\mathbf{A} \left[-\frac{\mathbf{A}^2}{2} + \frac{4}{2} \mu \right] \frac{1}{2}$ *i n*α 2*M* $\sqrt{2}$ \mathfrak{b} \overline{r} − *i* $\bm{\mathfrak{p}}^{\bm{\mu}}$ \mathcal{Q}^2 *a* $\frac{x}{c}$ = $\frac{1}{c}$ $\frac{7}{4}$ $\frac{1}{\overline{n}}$ $\overline{}$ + $\overline{}$ $\binom{n}{2}$ $\binom{n}{2}$ $\zeta = \frac{\overline{\zeta}}{2\overline{n}}$, $\left[\frac{M^2 - \lambda^2 / 4}{2 \cdot M^2} \right]$ $t = \Delta^2 \neq 0$ b 222 \overline{O} *M*.α
MΩD∩ − 7
1− 11− \in $\alpha_t = \Delta^2 \neq 0$ beyond the leading $\frac{1}{2} \sum_{\mu}^{\mu} \Delta^2 = 0$ $+$; $\frac{1}{2}$

Number of Independent Amplitudes in VCS

12 independent tensor structures

€ R.Tarrach, Nuovo Cim. 28A, 409 (1975); M.Perrottet, Lett. Nuovo Cim. 7, 915 (1973); D.Drechsel et al.,PRC57,941(1998); A.V.Belitsky, D.Mueller and A.Kirchner, NPB629, 323(2002); A.V.Belitsky and D.Mueller, PRD82, 074010(2010)

DNA Method *Gµ*^ν *(q q)* = *q* ^α*dµ*ναβ*^q* ^β = *q* ′² *^gµ*^ν [−] *^q DIVA WEINOQ g*_{*n*} *a l*_{*n*} *a d*_{*n*} *a d*_{*n*} *a d*_{*n*} *a d*_{*n*} *a d* *G* \overline{P} */ <i>P IVI* \overline{P} *IVI* \overline{C} *UI**DU**Q*

$$
d^{\mu\nu\alpha\beta} = g^{\mu\nu} g^{\alpha\beta} - g^{\mu\beta} g^{\nu\alpha}
$$

\n
$$
G^{\mu\nu}(q'q) = q'_{\alpha} d^{\mu\nu\alpha\beta} q_{\beta} = q' \cdot q g^{\mu\nu} - q^{\mu} q'^{\nu},
$$

\n
$$
G^{\mu\nu}(qq) = q_{\alpha} d^{\mu\nu\alpha\beta} q_{\beta} = q^2 g^{\mu\nu} - q^{\mu} q^{\nu},
$$

\n
$$
G^{\mu\nu}(q'q') = q'_{\alpha} d^{\mu\nu\alpha\beta} q'_{\beta} = q'^2 g^{\mu\nu} - q'^{\mu} q'^{\nu},
$$

\n
$$
G^{\mu\nu}(\overline{P}q) = \overline{P}_{\alpha} d^{\mu\nu\alpha\beta} q_{\beta} = \overline{P} \cdot q g^{\mu\nu} - q^{\mu} \overline{P}^{\nu},
$$

\n
$$
G^{\mu\nu}(q'P) = q'_{\alpha} d^{\mu\nu\alpha\beta} \overline{P}_{\beta} = \overline{P} \cdot q' g^{\mu\nu} - \overline{P}^{\mu} q'^{\nu}.
$$

\n
$$
\tilde{T}^{\mu\nu}_{\text{DNA}} := \sum_{i=1}^{5} S_i \tilde{T}^{(i)\mu\nu}_{\text{DNA}} = S_1 G^{\mu\nu}(q'q)
$$

\n
$$
+ S_2 G^{\mu\lambda}(q'q') G_{\lambda}^{\nu}(qq)
$$

\n
$$
+ S_3 G^{\mu\lambda}(q'P) G_{\lambda}^{\nu}(qq) + G^{\mu\lambda}(q'q') G_{\lambda}^{\nu}(\overline{P}q)
$$

\n
$$
+ S_5 G^{\mu\lambda}(q'q') \overline{P}_{\lambda} \overline{P}_{\lambda'} G^{\lambda\nu}(qq).
$$

Compton Form Factors (CFFs): S_i , $i = 1, 2, ..., 5$

B.Bakker and C.Ji,Few-Body Syst.58,1 (2017) R Rakker and C. Ii Few-Rody Syst 58 1 (2017) DNA = *M*19*.* (45) The tensor M_1 does not fit immediately in the Bardeen-Tung construction, but was introduced in Ref. [16] and

Most General Hadronic Tensor for Scalar Target

$$
T^{\mu\nu} = G_{qq'}^{\mu\nu} S_1 + G_q^{\mu\lambda} G_{q'\lambda}^{\ \ \nu} S_2 + G_{q\overline{P}}^{\mu\lambda} G_{\overline{P}q'\lambda}^{\ \ \nu} S_3
$$

+
$$
(G_{q\overline{P}}^{\mu\lambda} G_{q'\lambda}^{\ \ \nu} + G_q^{\mu\lambda} G_{\overline{P}q'\lambda}^{\ \ \nu}) S_4 + G_q^{\mu\lambda} \overline{P}_{\lambda} \overline{P}_{\lambda} G_{q'}^{\lambda'\nu} S_5
$$

$$
G_{qq'}^{\mu\nu} = g^{\mu\nu} q \cdot q' - q'^{\mu} q^{\nu}
$$

\n
$$
G_{q}^{\mu\nu} = g^{\mu\nu} q^2 - q^{\mu} q^{\nu}
$$

\n
$$
G_{q'}^{\mu\nu} = g^{\mu\nu} q'^2 - q'^{\mu} q'^{\nu}
$$

\n
$$
G_{q\overline{p}}^{\mu\nu} = g^{\mu\nu} q \cdot \overline{P} - \overline{P}^{\mu} q^{\nu}
$$

\n
$$
G_{\overline{p}q'}^{\mu\nu} = g^{\mu\nu} q' \cdot \overline{P} - q'^{\mu} \overline{P}^{\nu}
$$

For $q^2=0$, only S_1 , S_2 and S_4 contribute.

Metz's approach $S_1 = -B_1, S_2 = B_3, S_3 = -B_2, S_4 = B_4, S_5 = B_{19}$

The method using the projectors introduces a kinematical singularity at $q' \cdot q = 0$. In Tarrach's paper a method is described to remove these kinematic poles. Here we give the final result of that algorithm as obtained in the thesis of Metz³. His CFFs are denoted as B_1 , B_2 , B_3 , B_4 , and B_{19} . They are implicitly given in terms of the elementary tensor by the following equations:

$$
M^{\mu\nu} = B_1 M_1^{\mu\nu} + B_2 M_2^{\mu\nu} + B_3 M_3^{\mu\nu} + B_4 M_4^{\mu\nu} + B_{19} M_{19}^{\mu\nu},
$$

\n
$$
M_1^{\mu\nu} = -q' \cdot q g^{\mu\nu} + q^{\mu} q'^{\nu},
$$

\n
$$
M_2^{\mu\nu} = -(\bar{P} \cdot q)^2 g^{\mu\nu} - q' \cdot q \bar{P}^{\mu} \bar{P}^{\nu} + \bar{P} \cdot q (\bar{P}^{\mu} q'^{\nu} + q^{\mu} \bar{P}^{\nu}),
$$

\n
$$
M_3^{\mu\nu} = q'^2 q^2 g^{\mu\nu} + q' \cdot q q'^{\mu} q^{\nu} - q^2 q'^{\mu} q'^{\nu} - q'^2 q^{\mu} q^{\nu},
$$

\n
$$
M_4^{\mu\nu} = \bar{P} \cdot q (q'^2 + q^2) g^{\mu\nu} - \bar{P} \cdot q (q'^{\mu} q'^{\nu} + q^{\mu} q^{\nu})
$$

\n
$$
-q^2 \bar{P}^{\mu} q'^{\nu} - q'^2 q^{\mu} \bar{P}^{\nu} + q' \cdot q (\bar{P}^{\mu} q^{\nu} + q'^{\mu} \bar{P}^{\nu}),
$$

\n
$$
M_{19}^{\mu\nu} = (\bar{P} \cdot q)^2 q'^{\mu} q^{\nu} + q'^2 q^2 \bar{P}^{\mu} \bar{P}^{\nu} - \bar{P} \cdot q q^2 q'^{\mu} \bar{P}^{\nu} - \bar{P} \cdot q q'^2 \bar{P}^{\mu} q^{\nu}.
$$

³A. Metz, Virtuelle Comptonstreuung un die Polarisierbarkeiten de Nukleons (in German), PhD thesis, Universität mainz, 1997.

Gauge invariance requires more than handbag amplitudes

$$
J_S^{\mu} = F_{S1} ((\Delta \cdot q)q^{\mu} - q^2 \Delta^{\mu})
$$
\n
$$
= \int_{\gamma^*}^{e'} F_{S2} ((\Delta \cdot q)^{\xi}_{\zeta} \overline{\theta}^{AB}_{\zeta - x} q^{\mu}) - (q^2 + P \cdot q) \Delta^{\mu})
$$
\n
$$
= \sum_{\gamma^* \text{ with } x \in \mathbb{Z}^*} \int_{\gamma, \pi, \eta, \rho, \omega, K}^{\gamma, \pi, \eta, \rho, \omega, K} f_{\eta^*, \Delta, \Delta}^{\mu\nu\alpha\beta} P_{\nu} \Delta_{\alpha} q_{\beta}
$$
\n
$$
H, E- \text{unpolarized, } H, \tilde{E} \text{- polarized GPD}
$$
\nThe GPDs Define Nuclear Structure

d⌦*q*0d*E^k* d⌦*k*⁰

d⌦*q*0d*E^k* d⌦*k*⁰

Conclusion and Outlook

- Although the existing formulation meant already good progress, the realistic experimental setup requires the extension of the formalism to cover the broader kinematic regions of the DVCS experiments.
- The determination of most general hadron tensor structure is important not only for CFFs also for the discussion of GPDs.
- Maintaining EM gauge invariance is an important constraint.
- The DNA of the most general hadronic tensor structure for scalar target is found and applicable to DVCS and DVMP off 4H_6 .