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We review the interface between the current theoretical framework based on generalized
parton distributions (GPDs) and experimental measurements of deeply virtual Compton
scattering (DVCS) observables. We find that the present theoretical framework needs to
be extended to cover the current and future DVCS experiments. The current formula-
tion is based on the quantum chromodynamics factorization of the handbag diagrams,
relying on handbag dominance. Our examination reveals that the handbag diagrams by
themselves do not satisfy electromagnetic gauge invariance. Our numerical estimates of
the DVCS amplitudes in a solvable model indicate that the handbag contribution is not
sufficient to saturate the exact result. Assuming the extraction of GPDs is made, we
analyzed the crossover point in GPDs, important for the single spin asymmetry seen in
DVCS experiments. We found that the inclusion of the higher Fock states is essential to
explain the available data of single spin asymmetry.
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Outline  

•  JLab Kinematics (t < -|tmin|≠0) 
•  Original Formulation of DVCS with GPDs (Twist 2) 
•  Benchmark Barebone Calculation for JLab 

Kinematics (Exact Result vs. Reduced Result) 
•  Toward finding the Most General Hadronic Tensor 

Structure with CFFs (DNA method)    
•  Conclusion and Outlook 



JLab Kinematics t < -|tmin|≠0 
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Table III in E12 - 06 - 114, Julie Roche et al.  
Jlab 12 GeV Exclusive Kinematics  



Nucleon GPDs in DVCS Amplitude 
X.Ji,PRL78,610(1997): Eqs.(14) and (15) 
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Just above Eq.(14), 
``To calculate the scattering amplitude, it is convenient to define 
a special system of coordinates.” 

Note here that  = 0 . 



Nucleon GPDs in DVCS Amplitude 
A.V.Radyushkin, PRD56, 5524 (1997): Eq.(7.1)  

At the beginning of Section 2E (Nonforward distributions), 
``Writing the momentum of the virtual photon as q=q’-ζp is  
equivalent to using the Sudakov decomposition in the  
light-cone `plus’(p) and `minus’(q’) components in a situation 
when there is no transverse momentum .” 

€ 

q = " q −ζ p ,

ζ =
Q2

2p ⋅ " q 
,

r = p − " p 

€ 

T µν (p,q, # q ) =
1

2(p ⋅ # q )
ea
2

a
∑ [ −gµν +

1
p ⋅ # q 

(pµ # q ν + pν # q µ )
' 

( 
) 

* 

+ 
, 

× u ( # p ) # / q u(p)TF
a (ζ ) +

1
2M

u ( # p )( # / q / r − / r # / q )u(p)TK
a (ζ )

/ 
0 
1 

2 
3 
4 

+ iεµναβ pα # q β
p ⋅ # q 

u ( # p ) # / q γ 5u(p)TG
a (ζ ) +

# q ⋅ r
2M

u ( # p )γ 5u(p)TP
a (ζ )

/ 
0 
1 

2 
3 
4 
]

Note that  here  (q− q ')2 = Δ2 = t =ζ 2M 2 > 0
while                  in DVCS.   t < 0



Benchmark Calculation in JLab Kinematics  
•  To see the effect of taking t<0, we mimic the 

kinematics at JLab and compute bare bone 
VCS amplitudes neglecting masses. 
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Jµ = F 0p0
µ + Fpµ.

The functions F 0 and F will in general depend on the scalar
products of all momenta involved. Thus we have
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 “Bare Bone” VCS Operators & Amplitudes  
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Fig. 3. Tree-level diagrams for s-channel and u-channel Compton scattering.

The reduced hadronic operators used in the formulation of GPDs are defined as
the limits Q → ∞ of the operators given in Eq. (3) and found to be

Os|Red =
ϵ/∗(q′;h′)γ+ϵ/(q;h)

2p+
1

x− ζ
,

Ou|Red =
ϵ/(q;h)γ+ϵ/∗(q′;h′)

2p+
1

x
,

(4)

where p+ is the plus-component of the momentum of the parent hadron target. The
usefulness of such a definition relies on the kinematics, as we shall see.

In the rest of this section we set the mass m to 0, which is justified by the fact
that the dominant energy scale is Q, defined by the square of the momentum of the
virtual photon: Q2 = −q2, being much larger than the mass of the particles.

2.1. Lepton, hadron and photon kinematics

Working with massless particles leads to a considerable simplification of the
formulas. In the DVCS limit, Q2 → ∞, all mass terms are suppressed by fac-
tors m/Q to some power compared to the leading order, which is the order we
limit ourselves to. The lepton kinematics is determined by the fact that the leptons
produce the virtual photon with a momentum given by the expression for qµ.

We take four different kinematics for the momenta of the incoming and outgoing
particles in the hadronic amplitude; note that we have chosen to use a reference
frame where the y-components of all momenta vanish. Using a rotation about the
z-axis, which is kinematical in LFD, we can easily restore finite y-components.
Each of the four kinematics has its own merit of consideration as we discuss in this
section. These four kinematics correspond to the hard-scattering part of a DVCS
amplitude where the fermions are the quarks and p+ is again the plus-component
of the momentum of the parent hadron target. As such, we may call the tree-level
amplitude the “bare bone” of the DVCS amplitude, which contains a soft part too.

A representation that is rather more suggestive than Fig. 3 is given in Fig. 4.
In this figure the z-axis is vertical; the perpendicular momentum components are
understood to be (much) smaller than the longitudinal momentum components.

The four kinematics that we discuss in this section are as follows.
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where the s- and u-channel operators of the intermediate fermion
are given by
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(k � q0)2

The reduced hadronic operators used in the formulation of GPDs
are defined as the limits Q ! 1 of the operators given in Eq. (??)
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and the reduced amplitude that agrees in the DVCS limit 

The tensor structure of the reduced amplitude is identical to   
the ones given by X. Ji and A.V. Radyushkin. 

Using the identity 
and Sudakov vectors 
we compare the exact amplitude 
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Sanity Checks of Amplitudes 
•  Gauge invariance of each and every polarized amplitude  
   including the longitudinal polarization for the virtual photon.  
•  Klein-Nishina Formula in RCS.   
•  Angular Momentum Conservation. 
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Checking Amplitudes 
•  Gauge invariance of each and every polarized amplitude  
   including the longitudinal polarization for the virtual photon.  
•  Klein-Nishina Formula in RCS.   
•  Angular Momentum Conservation. 
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Comparison 
Kinematical
Issues in GPD
Extraction

Ben Bakker

Motivation

Original
formulation of
DVCS in in
terms of GPDs

Tree-level
calculation
Results in three
kinematics
Comparison of
approaches

Conclusions

Complete DVCS amplitudes,
∑

h L({λ′,λ}, h) 1
q2H({h′, h}{s ′, s}) in

three approaches, ours, A.V. Radyushkin, and X. Ji. Because the
hadrons and leptons are massless, λ′ = λ and s ′ = s.
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AVR=XJ, taking into account the real photon helicity swap for  
the exact collinear kinematics vs. the nonlinear kinematicsin LFD:  
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For any orders in Q 

Exact Reduced Table 3: Complete full and reduced amplitudes.
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Table 4: Expanded Complete full and reduced amplitudes up to the order of 1/Q4.
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to find the terms proportional to ū(k′; s′)n/(−)u(k; s)
and ū(k′; s′)n/(−)γ5u(k; s) that correspond to the nucleon
GPDs H(x,∆2, ξ) and H̃(x,∆2, ξ) defined in the original
formulation of GPDs [2, 3], respectively. For example,
one finds for Ts in leading order of Q

Ts
µν =

q−

s
[{nµ(−)nν(+) + nν(−)nµ(+) − gµν}

×ū(k′; s′)n/(−)u(k; s)
−iϵµναβnα(−)nβ(+)
×ū(k′; s′)n/(−)γ5u(k; s)

]
, (11)

where q− ∼ Q2/ζp+ is the leading order in Q. A
similar expression is found for Tu. This expression is
equivalent to the one obtained by the reduced operator
given by Eq. (4) that corresponds to the original formu-
lation of the leading twist GPDs [2, 3]. However, in
the kinematics given by Eq. (5), we should use (k− = 0
in the massless case) qµ = q+nµ(+) + q−nµ(−), q′µ =
q′+nµ(+) + q′−nµ(−) + q′µ⊥, kµ = k+nµ(+), k′µ =
k′+nµ(+) + k′−nµ(−) + k′µ⊥ in Eq. (9) to find the corre-
sponding Ts and Tu. It corresponds to the use of full op-
erator given by Eq. (3). The point is that one should not
retain only the terms proportional to the highest power
in Q, namely those proportional to q−, in the realistic
situation of DVCS experiments. As we have shown in
Table 3, our exact results of complete tree-level ampli-

tudes including all orders in Q are apparently different
from those obtained by the reduced operator. As shown
in Table 4, the results from the reduced operator agree
with our results only in the leading order terms but not in
the ∆2/Q2 order and the terms beyond that order. This
reveals that the applicabilities of the original formula-
tions of the leading twist GPDs [2, 3] are limited to the
t = ∆2 = 0 kinematic region when the nucleon mass is
neglected. We caution against using the t = 0 formulas
in the analysis of experimental data in situations where
∆ is not small compared to Q.

3. Toward Generalized Tensor Structure

The hadronic tensors used in the formulation of GPDs
do not yield the higher order corrections of ∼ 1/Q cor-
rectly even in the bare bone tree-level amplitude. Thus,
it will be crucial to find the generalized hadronic tensor
structure.

Since the spin degrees of freedom for the nucleon,
the virtual photon, and the real photon are given by
2, 3, and 2, respectively, the total independent number
of available DVCS amplitudes respecting parity sym-
metry can be found to be 12. Therefore, in general,
twelve GPDs are needed to describe the DVCS ampli-
tudes. The four GPDs discussed in Refs. [2, 3], namely,
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well connected high and low energy approaches towards
the generalization of hadronic tensor structures to cover
the whole range of kinematics in virtual Compton scat-
tering experiments. Concluding remarks follow in Sec-
tion 4.

2. Benchmark Calculation in DVCS

This section is devoted to our benchmark calculation
of the complete full DVCS amplitude shown in Fig. 2
for the scattering of a massless lepton ℓ off a point-like
fermion f of mass m with momentum k. In the final
state, we find the scattered lepton ℓ′, the fermion f ′
with momentum k′ and a (real) photon γ′. (‘Complete’
means that the amplitude includes the leptonic part and
‘full’ means that no approximations are made in the cal-
culation of the hadronic amplitude.) We discuss this
simplest possible setting, namely DVCS on a structure-
less spin-1/2 particle. Since this provides the bare bone
structure on top of which the GPDs are formulated, we
think important lessons can be learnt from the analysis
of this simplest structure. Kinematic issues revealed in
this analysis are expected to prevail in realistic physi-
cal situations since GPDs are carried on top of the bare
bone structure.

l
l’

q q’

k k’k+q

l
l’

q’q

k k−q’ k’

Figure 2: Tree-level diagrams for s-channel and u-channel Compton
Scattering

The complete amplitude at tree level can be written
as

M =
∑

h

L({λ′, λ}h)
1
q2H({s′, s}{h′, h}), (1)

where the quantities λ′, λ, h′, h, s′, and s are the he-
licities of the outgoing and incoming leptons, outgoing
and incoming photons, and the rescattered and target
fermions, respectively. Leaving out inessential factors,
we may write (see Fig. 2)

L({λ′, λ}h) = ū(ℓ′; λ′)ϵ/∗(q; h)u(ℓ; λ),
H({s′, s}{h′, h}) = ū(k′; s′)(Os + Ou)u(k; s), (2)

where the s- and u-channel operators of the intermediate
fermion are given by

Os =
ϵ/∗(q′; h′)(k/ + q/ + m)ϵ/(q; h)

(k + q)2 − m2 ,

Ou =
ϵ/(q; h)(k/ − q/ ′ + m)ϵ/∗(q′; h′)

(k − q′)2 − m2 . (3)

The reduced hadronic operators used in the formula-
tion of GPDs are defined as the limits Q → ∞ of the
operators given in Eq. (3) and found to be

Os|Red =
ϵ/∗(q′; h′)γ+ϵ/(q; h)

2p+
1

x − ζ ,

Ou|Red =
ϵ/(q; h)γ+ϵ/∗(q′; h′)

2p+
1
x
, (4)

where p+ is the plus-component of the momentum of
the parent hadron target, x = k+/p+ is the fraction of the
plus-component of the momentum carried by the probed
quark and ζ = (p−p′)+/p+ is the “skewness” parameter.

For simplicity, we set the mass m to 0, which is jus-
tified by the fact that the dominant energy scale is Q,
defined by the square of the momentum of the virtual
photon: Q2 = −q2, being much larger than the mass of
the particles.

The following kinematics corresponds to the realistic
situation where the physical limitations on the detector
settings for the coincidence experiment force the outgo-
ing hadrons to be detected off the hard-scattering axis.
Usually, the z-axis is chosen along the direction of the
hard virtual photon, while the x-axis is chosen along the
perpendicular component of the outgoing hadron:

qµ =
(
−ζp+, 0, 0, Q2

2ζp+

)
,

q′µ =
(
α
∆2

Q2 p+,−∆, 0, Q2

2αp+

)
,

kµ =
(
xp+, 0, 0, 0

)
,

α =
(x − ζ)Q2

2∆2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝1 −

√

1 − 4ζ∆2

(x − ζ)Q2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ , (5)

where k′µ = kµ + qµ − q′µ and the lepton kinematics
is determined by the fact that the leptons produce the
virtual photon with a momentum given by the expres-
sion for qµ. Here, the quantity α reduces to ζ in the
limit ∆/Q → 0. In this limit, the kinematics becomes
collinear and completely coincides with the special set
of coordinates used in Ref. [2]. In order to simplify the
results for the amplitudes in this kinematics, we define
the quantities

D =
4ζ∆2

(x − ζ)Q2 , D± = 1 ±
√

1 − D. (6)

Because D+D− = D, we may simplify 1/D− to D+/D
when to take the DVCS limit Q → ∞. Using these no-
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T̃µ⌫
DNA :=

5X

i=1

Si T̃
(i)µ⌫
DNA

= S
1

Gµ⌫(q0q)+S
2

Gµ�(q0q0)G�
⌫(qq)+S

3

Gµ�(q0P)G�
⌫(Pq)+S

4

[Gµ�(q0P)G�
⌫(qq)+Gµ�(q0q0)G�

⌫(Pq)]+S
5

Gµ�(q0q0)P�P�0G�⌫(qq)

T̃µ⌫
DNA :=

5X

i=1

Si T̃
(i)µ⌫
DNA = S

1

Gµ⌫(q0q)

+ S
2

Gµ�(q0q0)G�
⌫(qq)

+ S
3

Gµ�(q0P)G�
⌫(Pq)

+ S
4

[Gµ�(q0P)G�
⌫(qq) + Gµ�(q0q0)G�

⌫(Pq)]

+ S
5

Gµ�(q0q0)P�P�0G�⌫(qq). (3)

Si , i = 1, 2, ..., 5
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where we use the numbering in Eq. (39).
We have found three different results for the form of the Compton tensor, even in the simplest case, namely

tree-level. This demonstrates that the choice of the basis elements used in Tµν , apart from the fact that there
are only three independent four vectors to choose from, matters in identifying the CFFs. In general, one will
find linear relations between the tensors used in one conventions to the ones used in another one. In general,
those relations will not be free of kinematical poles, because they are obtained by solving sets of coupled linear
equation, which by Cramer’s rule are found as ratios of determinants.

4.1.3 A Novel Projection Method

The projection methods we discussed in the previous sub-section share the occurrence of single and double
poles from the beginning, which must be removed to obtain a formulation of the Compton tensor free of
kinematical singularities. Here we propose a method that is free of poles ab inito so that no regularisation is
necessary. It will serve as the back bone of the Compton tensor. To this back bone, pairs of momenta are fixed
by contraction, like the base pairs in DNA. So we define

dµναβ = gµνgαβ − gµβgνα. (42)

We note that dµναβ is symmetric under the simultaneous interchange µ ↔ ν, α ↔ β and changes sign by
the interchanges µ ↔ α, and ν ↔ β. Using this back bone we construct pieces of “DNA” by contracting it
with the three basis four vectors. With an obvious notation we write them as follows:

Gµν(q ′q) = q ′
αd

µναβqβ = q ′ · q gµν − qµq ′ν,

Gµν(qq) = qαdµναβqβ = q2 gµν − qµqν,

Gµν(q ′q ′) = q ′
αd

µναβq ′
β = q ′2 gµν − q ′µq ′ν,

Gµν(Pq) = Pαdµναβqβ = P · q gµν − qµP
ν
,

Gµν(q ′P) = q ′
αd

µναβ Pβ = P · q ′ gµν − P
µ
q ′ν . (43)

The first tensor is identical with q ′ ·q times Tarrach’s projector, the second and the third ones aremultiples of the
projectors used by Perrottet. The last two are novel. Including P in the set of building blocks of projectors, more
freedom in the construction of the transverse tensor is created. These five tensors have vanishing contractions
with q ′

µ and qν and are free of kinematical singularities ab initio. The latter property obviates the necessity of
the Tarrach construction to remove the single and double poles.

Given these building blocks the transverse tensor T̃µν
DN A can be written as follows

T̃µν
DNA :=

5∑

i=1

Si T̃ (i) µν
DNA = S1 Gµν(q ′q)

+S2 Gµλ(q ′q ′)Gλ
ν(qq)

+S3 Gµλ(q ′P)Gλ
ν(Pq)

+S4 [Gµλ(q ′P)Gλ
ν(qq)+ Gµλ(q ′q ′)Gλ

ν(Pq)]
+S5 Gµλ(q ′q ′)PλPλ′Gλν(qq). (44)

By direct computation one may check that the DNA representation is simply related to Metz’s as given in
Eq. (39):

T̃ (1)
DNA = −M1, T̃ (2)

DNA = M3, T̃ (3)
DNA = −M2, T̃ (4)

DNA = M4, T̃ (5)
DNA = M19. (45)

The tensor M19 does not fit immediately in the Bardeen-Tung construction, but was introduced in Ref. [16]
as T19 ≡ M19/q ′ · q together with two other ones that can only occur for spin-1/2 targets, in order to create
more freedom to construct the Compton tensor. Metz used this tensor to replace another one in his original
transverse basis. We shall not discuss this matter in more detail, but just note that in the DNA construction this
tensor occurs quite naturally.

A final remark is in order here. In the literature sometimes one sees representations of the Compton tensor
that are not manifestly transverse. In those cases use has been made of the equations of motion for the wave
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where we use the numbering in Eq. (39).
We have found three different results for the form of the Compton tensor, even in the simplest case, namely
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ν
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5∑

i=1

Si T̃ (i) µν
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+S2 Gµλ(q ′q ′)Gλ
ν(qq)

+S3 Gµλ(q ′P)Gλ
ν(Pq)
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ν(Pq)]
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Eq. (39):
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DNA = M19. (45)

The tensor M19 does not fit immediately in the Bardeen-Tung construction, but was introduced in Ref. [16]
as T19 ≡ M19/q ′ · q together with two other ones that can only occur for spin-1/2 targets, in order to create
more freedom to construct the Compton tensor. Metz used this tensor to replace another one in his original
transverse basis. We shall not discuss this matter in more detail, but just note that in the DNA construction this
tensor occurs quite naturally.

A final remark is in order here. In the literature sometimes one sees representations of the Compton tensor
that are not manifestly transverse. In those cases use has been made of the equations of motion for the wave



T µν =Gqq '
µν S1 +Gq

µλGq 'λ
ν S2 +GqP

µλGPq 'λ
νS3

+ (GqP
µλGq 'λ

ν +Gq
µλGPq 'λ

ν )S4 +Gq
µλPλPλ 'Gq '

λ 'νS5
Gqq '

µν = gµνq ⋅q '− q 'µ qν

Gq
µν = gµνq2 − qµqν

Gq '
µν = gµνq '2− q 'µ q 'ν

GqP
µν = gµνq ⋅P −Pµqν

GPq '
µν = gµνq '⋅P − q 'µ Pν

For q’2= 0, only S1, S2 and S4  contribute.   

Most General Hadronic Tensor for Scalar Target  



S1 = −B1, S2 = B3, S3 = −B2, S4 = B4, S5 = B19



Gauge invariance requires more than handbag amplitudes 
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The GPDs Define Nucleon Structure

Q^2 >> M^2, |t|,.. 



Conclusion and Outlook 
•  Although the existing formulation meant already good 

progress, the realistic experimental setup requires the 
extension of the formalism to cover the broader 
kinematic regions of the DVCS experiments.   

•  The determination of most general hadron tensor 
structure is important not only for CFFs also for the 
discussion of GPDs.  

•  Maintaining EM gauge invariance is an important 
constraint. 

•  The DNA of the most general hadronic tensor 
structure for scalar target is found and applicable to 
DVCS and DVMP off 4He . 


