

Microscopic approach to meson electroproduction

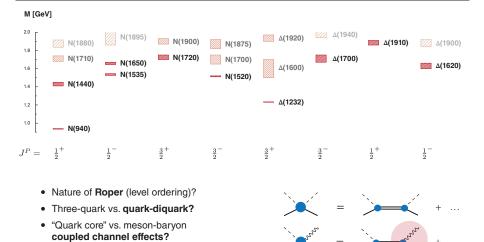
Gernot Eichmann

IST Lisboa, Portugal

"Nucleon and Resonance Structure with Hard Exclusive Processes"

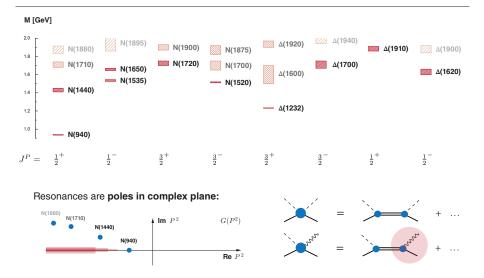
May 30, 2017 IPN Orsay, France

Light baryons



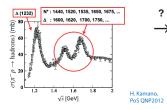
• Hybrid baryons?

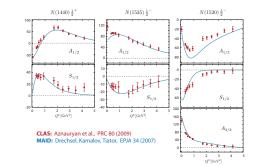
Light baryons



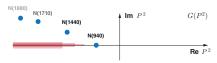
Light baryons

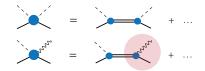
How to extract **transition FFs** from **cross sections?**

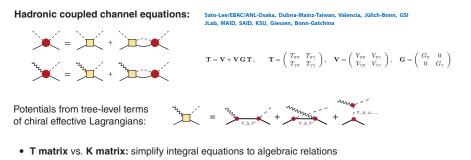




Resonances are poles in complex plane:



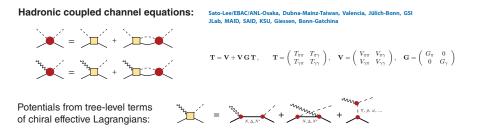




 $\mathbf{T} = \mathbf{V} + \mathbf{V} \left(\mathbf{G}_1 + \mathbf{G}_2 \right) \mathbf{T} \,, \qquad \mathbf{K} = \mathbf{V} + \mathbf{V} \, \mathbf{G}_1 \, \mathbf{K} \qquad \Rightarrow \qquad \mathbf{T} = \mathbf{K} + \mathbf{K} \, \mathbf{G}_2 \, \mathbf{T}$

Split dressing effects: "quark core" vs. meson-baryon effects





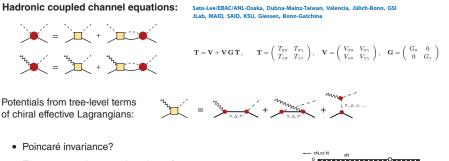
- Poincaré invariance?
- Electromagnetic gauge invariance?
- Validity of effective hadronic Lagrangians?

non-renormalizable \Rightarrow low-energy effective theory

what is an "offshell hadron"?

dynamical generation of resonances?

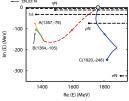
microscopic effects?



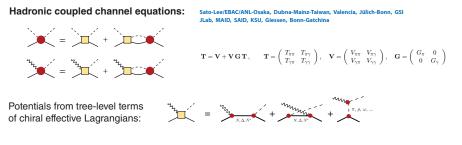
- Electromagnetic gauge invariance?
- Validity of effective hadronic Lagrangians?
 non-renormalizable ⇒ low-energy effective theory
 what is an "offshell hadron"?

dynamical generation of resonances?

microscopic effects?



Suzuki et al., PRL 104 (2010)

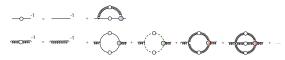


- Poincaré invariance?
- Electromagnetic gauge invariance?
- Validity of effective hadronic Lagrangians? non-renormalizable ⇒ low-energy effective theory what is an "offshell hadron"? dynamical generation of resonances?

microscopic effects?

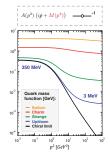
• Homogeneous Bethe-Salpeter equation for BS wave function:

 Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion



• Kernel can be derived in accordance with chiral symmetry:

Quark propagator



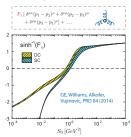
Dynamical chiral symmetry breaking generates 'constituentquark masses'

Gluon propagator

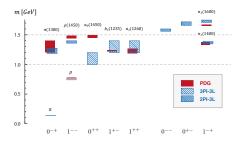


Quark-gluon vertex

Three-gluon vertex



• Kernel can be derived in accordance with chiral symmetry:

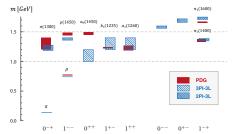


Light meson spectrum beyond rainbow-ladder:

Williams, Fischer, Heupel, PRD 93 (2016)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

• Kernel can be derived in accordance with chiral symmetry:

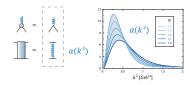


Light meson spectrum beyond rainbow-ladder:

Williams, Fischer, Heupel, PRD 93 (2016)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

• Kernel can be derived in accordance with chiral symmetry:



Rainbow-ladder:

effective gluon exchange

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \eta\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable, keep width η as parameter Maris, Tandy, PRC 60 (1999), Qin et al., PRC 84 (2011)

Gernot Eichmann (IST Lisboa)

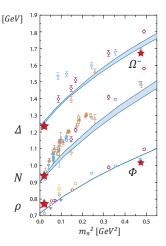
Baryons

Covariant Faddeev equation for baryons:

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

- 3-gluon diagram vanishes ⇒ 3-body effects small?
- 2-body kernels same as for mesons, no further approximations: $M_N = 0.94 \,\text{GeV}$
- Relativistic bound states carry OAM: 64 (128) tensors for nucleon (Δ)
- Octet & decuplet baryons, pion cloud effects, first steps beyond rainbow-ladder
- Baryon form factors: nucleon and Δ FFs, N→Δγ transition, ...

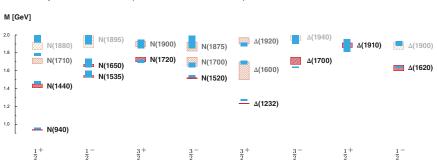
Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602



DSE / Faddeev landscape $N ightarrow N^* \gamma$

				Three-quark		
	Contact interaction	QCD-based model	DSE (RL)	RL	bRL	bRL + 3q
N,Δ masses $N,\Delta \text{ em. FFs}$ $N\to\Delta\gamma$	$\sqrt[n]{\sqrt{1}}$	イ イ イ	 	√ √ 	\checkmark	
Roper $N \rightarrow N^* \gamma$			√ 	√ 		
$N^*(1535), \ldots$ $N \to N^*\gamma$		···· ···	√ 	√ 		

Baryon spectrum

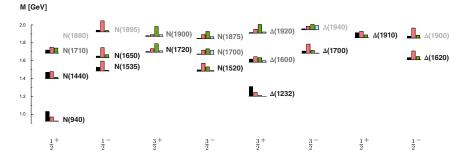


Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

- · Quantitative agreement with experiment
- N(¹/₂) and Δ(³⁺/₂) depend on sc + av diquarks; remaining ones "polluted" by ps + v diquarks
- Correct level ordering between Roper and N(1535)

- Scale Λ set by f_{π}
- Current-quark mass m_q set by m_π
- c adjusted to ρ−a₁ splitting
- η doesn't change much

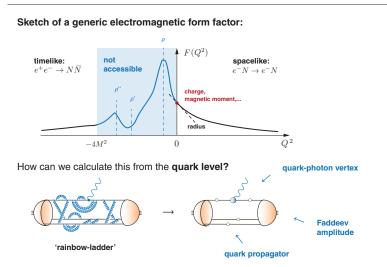
Baryon spectrum



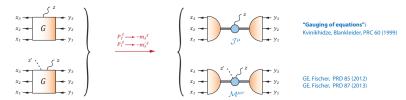
Quark-diquark with reduced pseudoscalar + vector diquarks: GE, FBS 58 (2017)

Partial-wave content:

- N and ∆ ground states dominated by s waves, negative-parity states typically by p waves (as expected)
- But 'quark-model forbidden' contributions are always present, e.g. Roper: dominated by p waves ⇒ relativity is important!



Insert spectral decomposition in $\langle \cdots \psi(x_1) \cdots \overline{\psi}(y_1) \cdots j^{\mu}(z) \cdots \rangle$



Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}\right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu\nu} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}\right)^{\{\mu} \mathbf{G} \left(\mathbf{G}^{-1}\right)^{\nu\}} - \left(\mathbf{G}^{-1}\right)^{\mu\nu} \right] \Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.}\right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.}\right] - K_{(3)}^{\mu\nu} \\ \end{split}$$

Current matrix element:

- · impulse approximation + coupling to kernels
- gauge invariance is automatic, as long as all ingredients calculated from same symmetry-preserving kernel

$$\mathcal{J}^{\mu} =$$

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}\right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu\nu} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}\right)^{\{\mu} \mathbf{G} \left(\mathbf{G}^{-1}\right)^{\nu\}} - \left(\mathbf{G}^{-1}\right)^{\mu\nu} \right] \Psi_{i}$$

$$\left(\mathbf{G}^{-1} \right)^{\mu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.} \right] - K_{(3)}^{\mu} \\ \left[\mathbf{G}^{-1} \right]^{\mu\nu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.} \right] - K_{(3)}^{\mu\nu}$$

Current matrix element:

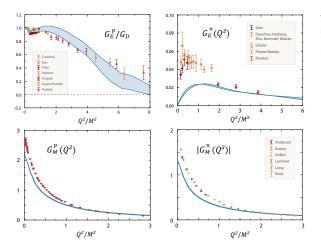
- · impulse approximation + coupling to kernels
- gauge invariance is automatic, as long as all ingredients calculated from same symmetry-preserving kernel

$$\mathcal{J}^{\mu} =$$

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}\right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu\nu} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}\right)^{\{\mu\}} \mathbf{G} \left(\mathbf{G}^{-1}\right)^{\nu\}} - \left(\mathbf{G}^{-1}\right)^{\mu\nu} \right] \Psi_{i}$$

Nucleon em. form factors



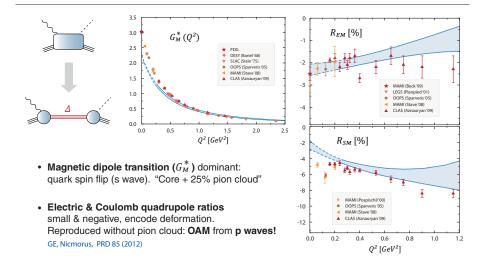
Three-body results: all ingredients calculated,

model dependence shown by bands GE, PRD 84 (2011)

- timelike vector-meson poles automatically generated in quark-photon vertex
- electric proton form factor: consistent with data, possible zero crossing
- magnetic form factors: missing pion effects at low Q²
 - ⇒ "quark core without pion-cloud effects"

イロト イポト イヨト イヨト

Nucleon- Δ - γ transition



Scattering amplitude:

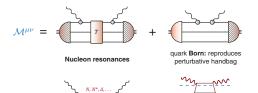
 $\mathcal{M}^{\mu\nu}$ =

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1} \right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu\nu} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1} \right)^{\{\mu} \mathbf{G} \left(\mathbf{G}^{-1} \right)^{\nu\}} - \left(\mathbf{G}^{-1} \right)^{\mu\nu} \right] \Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.} \right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.} \right] - K_{(3)}^{\mu\nu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.} \right] \\ - K_{(3)}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-$$

Scattering amplitude:

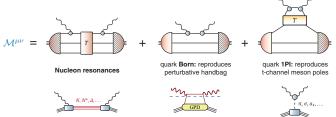


Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f}\left(\mathrm{G}^{-1}
ight)^{\mu}\Psi_{i} \qquad \qquad \mathcal{M}^{\mu
u} = \overline{\Psi}_{f}\left[\left(\mathrm{G}^{-1}
ight)^{\ell\mu}\mathrm{G}\left(\mathrm{G}^{-1}
ight)^{
u
ight)} - \left(\mathrm{G}^{-1}
ight)^{\mu
u}
ight]\Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \operatorname{perm.}\right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \operatorname{perm.}\right] - K_{(3)}^{\mu\nu} \\ \end{split}$$

Scattering amplitude:

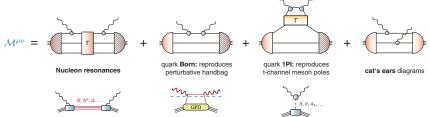


Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1} \right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu\nu} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1} \right)^{\ell \mu} \mathbf{G} \left(\mathbf{G}^{-1} \right)^{\nu \ell} - \left(\mathbf{G}^{-1} \right)^{\mu \nu} \right] \Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \operatorname{perm.}\right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \operatorname{perm.}\right] - K_{(3)}^{\mu\nu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu\}} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu\}} \otimes K_{(2)}^{\nu} + \operatorname{perm.}\right] \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu\}} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu\}} \otimes K_{(2)}^{\nu} + \operatorname{perm.}\right] \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu\}} \otimes S^{-1} - \Gamma^{\{\mu\}} \otimes S^{-1} \otimes S^{$$

Scattering amplitude:

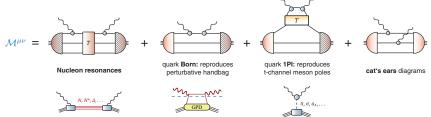


Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}
ight)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu
u} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}
ight)^{\ell \mu} \mathbf{G} \left(\mathbf{G}^{-1}
ight)^{
u
angle} - \left(\mathbf{G}^{-1}
ight)^{\mu
u}
ight] \Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.}\right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} \right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.} \\ \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} \right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.} \\ \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{$$

Scattering amplitude:

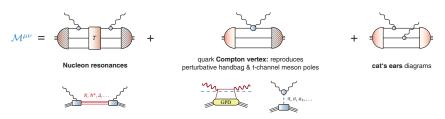


Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}\right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu
u} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}\right)^{\left\{ \mu \right\}} \mathbf{G} \left(\mathbf{G}^{-1}\right)^{
u
ight\}} - \left(\mathbf{G}^{-1}\right)^{\mu
u}
ight] \Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.}\right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.}\right] - K_{(3)}^{\mu\nu} \end{split}$$

Scattering amplitude:

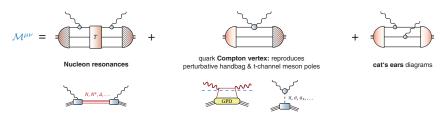


Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f}\left(\mathrm{G}^{-1}
ight)^{\mu}\Psi_{i} \qquad \qquad \mathcal{M}^{\mu
u} = \overline{\Psi}_{f}\left[\left(\mathrm{G}^{-1}
ight)^{\ell\mu}\mathrm{G}\left(\mathrm{G}^{-1}
ight)^{
u
ight)} - \left(\mathrm{G}^{-1}
ight)^{\mu
u}
ight]\Psi_{i}$$

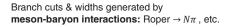
$$\left(\mathbf{G}^{-1} \right)^{\mu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.} \right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1} \right)^{\mu\nu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} \right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} + \text{perm.} \\ \right] - K_{(3)}^{\mu\nu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} \right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} + \text{perm.}$$

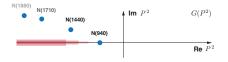
Scattering amplitude:



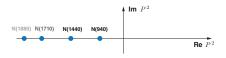
- · Poincaré covariance and crossing symmetry are automatic
- gauge invariance and chiral symmetry are automatic, as long as all ingredients calculated from same symmetry-preserving kernel
- · perturbative processes are included
- s, t, u channel poles are generated dynamically, no need for "offshell hadrons"
- hadronic rescattering is implicit ⇒ unitarity?

Resonances?





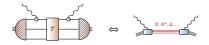
Without them: bound states without widths



Spectrum generated by quark-gluon interactions, meson-baryon effects would mainly shift poles into complex plane?

Resonances must be generated dynamically at the **quark level:** complicated topologies beyond rainbow-ladder

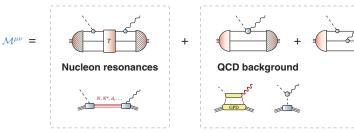
In scattering amplitude, they would mainly appear here:



but pion cloud effects will also contribute to "QCD background"

Meson electroproduction

Scattering amplitude:



Need:

- quark propagator
- nucleon Faddeev amplitude
- quark-photon vertex
- quark-meson vertex
- quark-meson-photon vertex
- + a lot of CPU power!!

Meson electroproduction

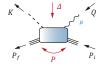
3 independent variables (\leftrightarrow s, t, u):

$$\tau = \frac{Q^2}{4m^2}, \qquad \eta = \frac{K\cdot Q}{m^2}, \qquad \lambda = -\frac{P\cdot Q}{m^2} = -\frac{P\cdot K}{m^2}$$

Amplitude depends on 6 Lorentz-invariant functions:

$$\mathcal{M}^{\mu}(P, K, Q) = \bar{u}(P_f) \left(\sum_{i=1}^{6} A_i(\tau, \eta, \lambda) M_i^{\mu}(P, K, Q) \right) u(P_i)$$

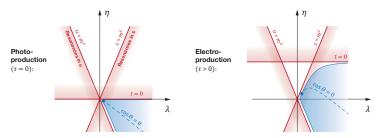
with appropriate tensor basis: no kinematic singularities! GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602



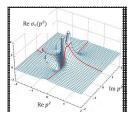
(in contrast to Dennery amplitudes) Fubini, Nambu, Wataghin 1958, Dennery 1961

$$M_{1\dots6}^{\mu}(P,K,Q) = i\gamma_5 \left\{ \left[\gamma^{\mu}, \mathcal{Q} \right], \quad t_{QK}^{\mu\nu} P^{\nu}, \quad t_{QQ}^{\mu\nu} P^{\nu}, \quad t_{QP}^{\mu\nu} i\gamma^{\nu}, \quad \lambda t_{QK}^{\mu\nu} i\gamma^{\nu}, \quad \lambda t_{QQ}^{\mu\nu} i\gamma^{\nu} \right\}$$

 $t^{\mu\nu}_{AB} = A \cdot B \delta^{\mu\nu} - B^{\mu}A^{\nu}$.



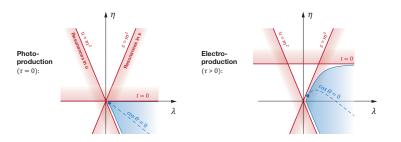
Meson electroproduction



Singularity structure of quark propagator prevents direct kinematic access to all relevant regions

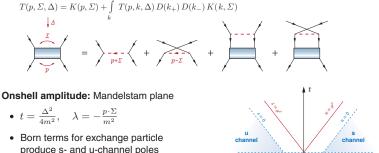
Strategies:

- if amplitudes free of kinematic singularities, only physical poles and cuts
 - ⇒ extrapolate from unphysical regions (or offshell kinematics)
- clean solution (expensive): use contour deformations

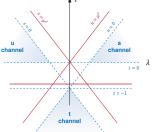


A toy model

Scattering amplitude for two **massive scalar particles** (mass m) with **massive exchange particle** (mass μ):



Bound state pole in t channel



A toy model

Scattering amplitude for two **massive scalar particles** (mass m) with **massive exchange particle** (mass μ):

$$T(p, \Sigma, \Delta) = K(p, \Sigma) + \int_{k} T(p, k, \Delta) D(k_{+}) D(k_{-}) K(k, \Sigma)$$

$$\downarrow d$$

$$\downarrow d$$

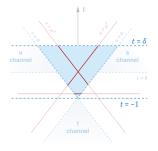
$$\downarrow p$$

$$\downarrow$$

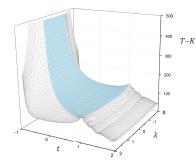
Onshell amplitude: Mandelstam plane

- $t = \frac{\Delta^2}{4m^2}$, $\lambda = -\frac{p \cdot \Sigma}{m^2}$
- Born terms for exchange particle
 produce s- and u-channel poles
- Bound state pole in t channel
- Poles in propagators and exchange particle pose restrictions:

 $-1 < t < \delta, \quad |\lambda| < 1+t, \quad \delta = \frac{\mu^2}{m^2} - 1$



A toy model

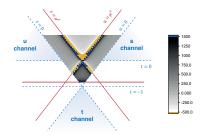


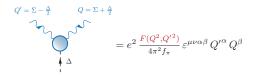
- Born terms for exchange particle produce s- and u-channel poles
- Bound state pole in t channel
- Poles in propagators and exchange particle pose restrictions:

 $-1 < t < \delta, \hspace{1em} |\lambda| < 1+t, \hspace{1em} \delta = \frac{\mu^2}{m^2}-1$

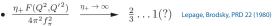
Subtract Born terms to get rid of s- and u-channel poles (\leftrightarrow 1Pl part):

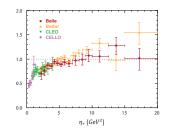
- rise is due to t-channel bound state
- outside blue region: naive integration over poles (wrong)
- scattering amplitude almost independent of λ!

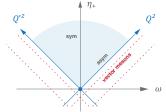




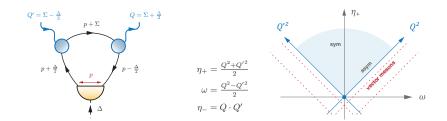
• F(0,0) = 1 in chiral limit (Abelian anomaly)



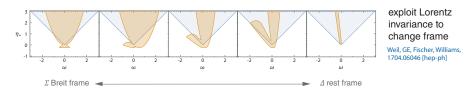




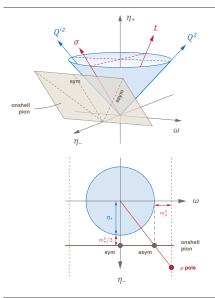
$$\eta_{+} = \frac{Q^{2} + Q'^{2}}{2}$$
$$\omega = \frac{Q^{2} - Q'^{2}}{2}$$
$$\eta_{-} = Q \cdot Q'$$

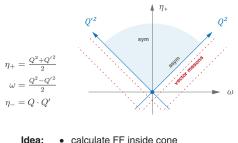


Quark singularities complicate matters: symmetric limit ok, but asymmetric limit only up to $\sim 4 \text{ GeV}^2$ Maris, Tandy, PRC 65 (2002)

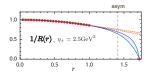


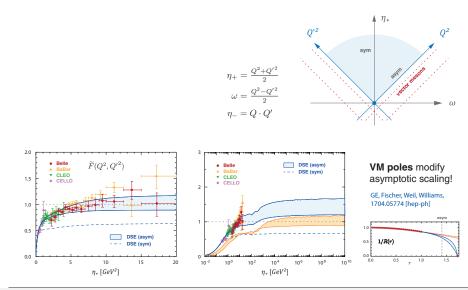
Gernot Eichmann (IST Lisboa)



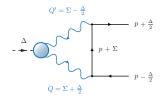


- calculate FF inside cone
 - interpolate to physical plane using VM pole as constraint
 - can be done for arbitrary Q²





Gernot Eichmann (IST Lisboa)



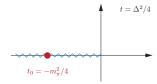
• After reanalysis of radiative corrections still 2*σ* discrepancy in branching ratio between exp and theory:

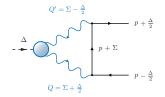
$6.87(36) \times 10^{-8}$	KTeV Collab.: Abouzaid et al., PRD 75 (2007); Husek, Kampf, Novotny, EPJ C74 (2014)
$6.23(09) \times 10^{-8}$	Dorokhov, JETP Lett. 91 (2010), Masjuan, Sanchez-Puertas, 1504.07001

• Depends on pion transition FF as input: GE, Fischer, Weil, Williams, 1704.05774

$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p + \Sigma)^2 + m^2} \, \frac{F(Q^2, Q'^2)}{Q^2 \, Q'^2} \, .$$

 cannot be calculated directly in Euclidean kinematics because of photon and lepton poles





• After reanalysis of radiative corrections still 2*σ* discrepancy in branching ratio between exp and theory:

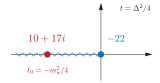
$6.87(36) \times 10^{-8}$	KTeV Collab.: Abouzaid et al., PRD 75 (2007); Husek, Kampf, Novotny, EPJ C74 (2014)
$6.23(09) \times 10^{-8}$	Dorokhov, JETP Lett. 91 (2010), Masjuan, Sanchez-Puertas, 1504.07001

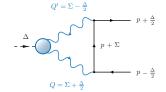
• Depends on pion transition FF as input: GE, Fischer, Weil, Williams, 1704.05774

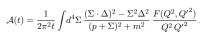
$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p + \Sigma)^2 + m^2} \, \frac{F(Q^2, Q'^2)}{Q^2 \, Q'^2} \, .$$

- cannot be calculated directly in Euclidean kinematics because of photon and lepton poles
- · workaround with dispersion relations:

$$\operatorname{Im} \mathcal{A}^{\operatorname{LO}}(t) = \frac{\pi \ln \gamma(t)}{2\beta(t)} F(0,0) \qquad \Rightarrow \qquad \operatorname{Re} \mathcal{A}(t) = \frac{\mathcal{A}(0)}{\mathcal{A}(0)} + \frac{\ln^2 \gamma(t) + \frac{1}{3}\pi^2 + 4\operatorname{Li}_2(-\gamma(t))}{4\beta(t)}$$

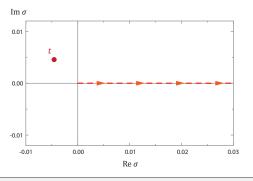




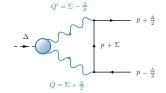


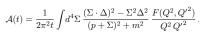
Photon and lepton poles produce **branch cuts** in complex $\Sigma^2 = \sigma$ plane:

• 'Euclidean integration': $0 < \sigma < \infty$

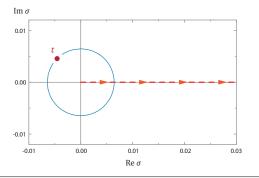


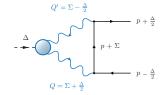
Gernot Eichmann (IST Lisboa)

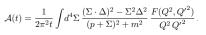


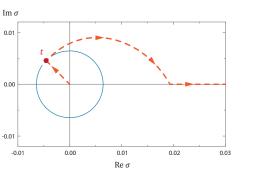


- 'Euclidean integration': $0 < \sigma < \infty$
- not possible: circular photon cut

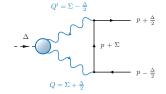


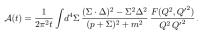


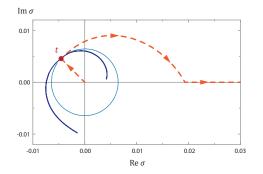




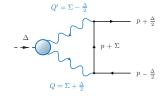
- 'Euclidean integration': $0 < \sigma < \infty$
- not possible: circular photon cut
- deform integration contour: cut opens at t

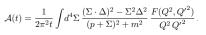


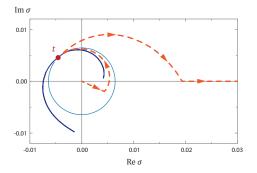




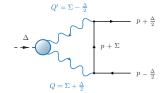
- 'Euclidean integration': $0 < \sigma < \infty$
- not possible: circular photon cut
- deform integration contour: cut opens at t
- but lepton cut does not open at t!



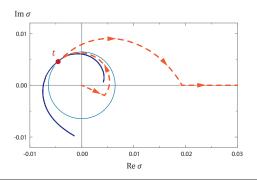




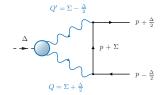
- 'Euclidean integration': $0 < \sigma < \infty$
- not possible: circular photon cut
- deform integration contour: cut opens at t
- but lepton cut does not open at t!
- deform contour such that it never crosses any cut!



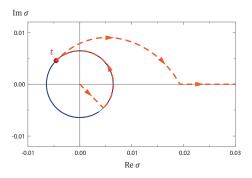
$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \; \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p + \Sigma)^2 + m^2} \; \frac{F(Q^2, {Q'}^2)}{Q^2 \, Q'^2}$$



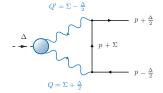
Gernot Eichmann (IST Lisboa)



$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p + \Sigma)^2 + m^2} \, \frac{F(Q^2, {Q'}^2)}{Q^2 \, {Q'}^2}$$



Gernot Eichmann (IST Lisboa)



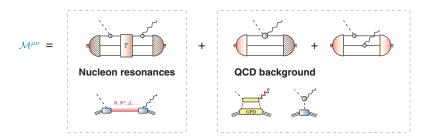
$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p + \Sigma)^2 + m^2} \, \frac{F(Q^2, {Q'}^2)}{Q^2 \, {Q'}^2}$$



- Algorithm is stable & efficient
- Can be applied to any integral as long as singularity locations known
- solves problems with Wick rotation!

Weil, GE, Fischer, Williams, 1704.06046 [hep-ph]

Summary



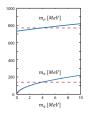
- · in principle, full expression for meson electroproduction amplitude
- complete calculation not (yet?) feasible
 ⇒ treat as fixed background potential in coupled-channel equations
- kinematic access to physical region difficult (singularities in integrands)
 ⇒ contour deformation methods in development
 ⇒ smart workarounds: extrapolations from offshell kinematics, etc.
- also relevant for GlueX! Exotic mesons can be (relativistic) qq states ...

Thank you!

Backup slides

Mesons

 Pion is Goldstone boson: m_π² ~ m_q

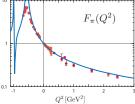


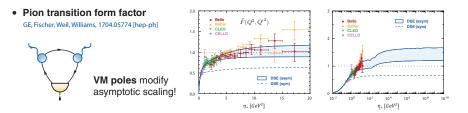
• Pion em. form factor:

Maris & Tandy, PRC 61 (2000), Chang et al., PRL 111 (2013)

Timelike VM poles automatically generated in quark-photon vertex!

A. Krassnigg, Schladming 2010





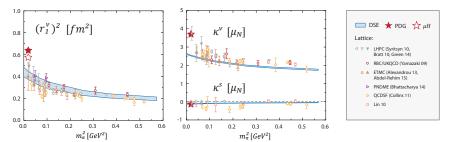
Nucleon em. form factors

Nucleon charge radii:

isovector (p-n) Dirac (F1) radius

Nucleon magnetic moments:

isovector (p-n), isoscalar (p+n)



 Pion-cloud effects missing (⇒ divergence!), agreement with lattice at larger quark masses.

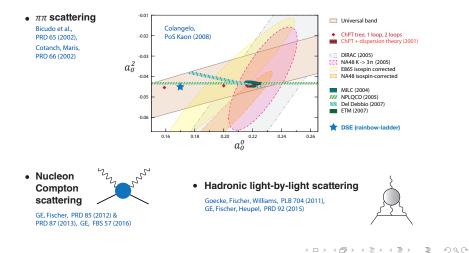
• But: pion-cloud cancels in $\kappa^s \Leftrightarrow$ quark core

Exp: $\kappa^s = -0.12$ Calc: $\kappa^s = -0.12(1)$ GE, PRD 84 (2011)

< ロ ト < 同 ト < 三 ト < 三 ト

... and more

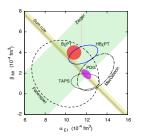
Scattering amplitudes from quark level:



Compton scattering

Nucleon polarizabilities:

ChPT & dispersion relations Hagelstein, Miskimen, Pascalutsa, PPNP 88 (2016)



In total: polarizabilities \approx

 $\label{eq:Quark-level effects} \ \leftrightarrow \ \text{Baldin sum rule}$

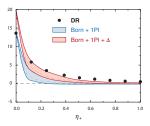
- + nucleon resonances (mostly Δ)
- + pion cloud (at low η_+)?

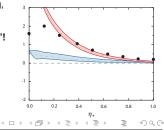
First DSE results: GE, FBS 57 (2016)

- Quark Compton vertex (Born + 1PI) calculated, added ∠ exchange
- compared to DRs Pasquini et al., EPJ A11 (2001), Downie & Fonvieille, EPJ ST 198 (2011)
- α_E dominated by handbag, β_M by Δ contribution

\Rightarrow large "QCD background"!

 $\alpha_E + \beta_M \ [10^{-4} \, {\rm fm}^3]$





Muon g-2

• Muon anomalous magnetic moment: total SM prediction deviates from exp. by ~3 σ

$$\int_{p}^{q} = ie \, \bar{u}(p') \left[F_1(q^2) \, \gamma^{\mu} - F_2(q^2) \, \frac{\sigma^{\mu\nu}q_{\nu}}{2m} \right] u(p)$$

• Theory uncertainty dominated by **QCD:** Is QCD contribution under control?

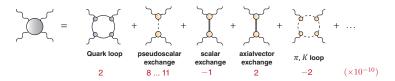
¥

Hadronic light-by-light scattering

$a_{\mu} [10^{-10}]$		Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)			
Exp:	11	659 208.9	(6.3)	_	
QED:	11	658 471.9	(0.0)		
EW:		15.3	(0.2)		
Hadronic:					
• VP (LO+F	IO)	685.1	(4.3)		
• LBL		10.5	(2.6)	?	
SM:	11	659 182.8	(4.9)	-	
Diff:		26.1	(8.0)	_	

LbL amplitude: ENJL & MD model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Pauk 2014



Muon g-2

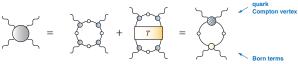
• Muon anomalous magnetic moment: total SM prediction deviates from exp. by ~3 σ

$$\int_{p}^{p} = ie \, \bar{u}(p') \left[F_1(q^2) \, \gamma^{\mu} - F_2(q^2) \, \frac{\sigma^{\mu\nu}q_{\nu}}{2m} \right] u(p)$$

• Theory uncertainty dominated by **QCD:** Is QCD contribution under control?

Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)				
59 208.9	(6.3)	_		
58 471.9	(0.0)			
15.3	(0.2)			
685.1	(4.3)			
10.5	(2.6)	?		
59 182.8	(4.9)	-		
26.1	(8.0)	_		
	Phys. Rept. 59 208.9 58 471.9 15.3 685.1 10.5 59 182.8	Phys. Rept. 477 (2009) 59 208.9 (6.3) 58 471.9 (0.0) 15.3 (0.2) 685.1 (4.3) 10.5 (2.6) 59 182.8 (4.9)		

• LbL amplitude at quark level, derived from gauge invariance: GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)



- no double-counting, gauge invariant!
- need to understand structure of amplitude GE, Fischer, Heupel, PRD 92 (2015)

Tetraquarks are resonances

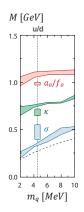
• Light scalar mesons σ , κ , a_0 , f_0 as tetraquarks: solution of four-body equation reproduces mass pattern GE, Fischer, Heupel, PLB 753 (2016)

$$\begin{array}{c} -p_1 \\ -p_2 \\ p_2 \\ p_1 \\ -p_1 \\ p_1 \\ -p_1 \\ -p_1$$

BSE dynamically generates **meson poles** in wave function, drive σ mass from 1.5 GeV to ~350 MeV

Four quarks rearrange to "meson molecule"

Tetraquarks are "dynamically generated **resonances**" (but from the quark level!)



< ロ ト < 同 ト < 三 ト < 三 ト