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Need a First Approximation to QCD 

 Comparable in simplicity to 
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining 

Origin of hadronic mass scale

AdS/QCD 
Light-Front Holography  
Superconformal Algebra

Spectroscopy and Dynamics
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Solid line:  κ = 0.53 GeV

Superconformal meson-nucleon partners
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

Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

Dosch, de Teramond, Lorce, sjb

mu = md = 46 MeV, ms = 357 MeV



Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has
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Instant Form Front Form 

z0 = 1
⇥QCD

z�

� = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

� = ct� z

z0 = 1
⇥QCD

z�

� = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

� = ct� z

Evolve in  
light-front time!

Evolve in  
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 
392 (1949)

Dirac’s Amazing Idea: 
The “Front Form”

Causal, Boost Invariant!

• Satisfies Poincarè Invariance



Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�

i

[
m2 + k2

�
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

Hint
LF

LFWFs: Off-shell in P- and invariant mass

|p, Jz >=
X

n=3

 n(xi,
~

k?i,�i)|n;xi,
~

k?i,�i >



Each element of  
flash photograph   

illuminated   
at same LF time

� = t + z/c

Eigenstate -- independent of �

Evolve in LF time

P� = i
d

d�

HQCD
LF |�h >= M2

h|�h >

HLF = P+P� � ~P 2
?

Causal, frame-independent



General remarks about orbital angular mo-
mentum
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Causal, Frame-independent.  Creation Operators on Simple Vacuum, 
Current Matrix Elements are Overlaps of LFWFS
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X
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Invariant under boosts!  Independent of Pμ 

Eigenstate of LF Hamiltonian 
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~
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HQCD
LF |�h >= M2
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• Polncarè Invariance

Off-shell in P- 
and invariant 

mass



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum
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• Light Front Wavefunctions:                                   

Sivers, T-odd from lensing
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The structure of hadrons using light-front 
holography and superconformal algebra

Properties of Hard Exclusive Amplitudes

• Form Factors (Elastic and Transition) are overlaps of Light-
Front Wavefunctions

• Key Input Hard Exclusive Processes: Distribution amplitudes 

• Factorization Theorems

• Hard Scattering Exclusive Hadron Amplitudes => Distribution 
amplitudes convoluted with hard subprocesses

• ERBL Evolution of Distribution Amplitudes

• Counting rules reflect leading twist LFWFS

• Hadron-Helicity Conservation (Chiral Theory)

• Quark Interchange Dominance

• Color Transparency 

• Hidden Color
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Form Factors are 
Overlaps of LFWFs

Interaction  
picture

Drell &Yan, West 
Exact LF formula!

Front Form

Drell, sjb



For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression
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The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧
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where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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x̂, ŷ plane

M2(L) ⇤ L

Must have �↵z = ±1 to have nonzero F2(q2)
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Nonzero Proton Anomalous Moment --> 
Nonzero orbital  quark angular momentum

Exact LF Formula for Pauli Form Factor

Lz=+1 Lz=0



p

�⇤

p + q

Must include vacuum-induced currents to compute form factors and 
other current matrix elements in instant form

Boosts are dynamical in instant form

acausal event
Instant Form



|p,Sz>= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi>|p,Sz>= ∑
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The Light Front Fock State Wavefunctions
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are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction
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Fixed LF time
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Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden Color

s
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

~Sp ·~q⇥~pq

 Hwang,  Schmidt, 
sjb

Light-Front Wavefunction  
S and P- Waves!

QCD S- and P- 
Coulomb Phases 

--Wilson Line 

“Lensing Effect”

i

Collins, Burkardt, Ji, 
Yuan. Pasquini, ...

Leading-Twist 
Rescattering 

Violates pQCD 
Factorization!

Sign reversal in DY!

 “Lensing” 
involves soft 

scales



Advantages of the Dirac’s Front Form for Hadron Physics

• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent: no boosts, no pancakes! 

• Same structure function measured at an e p collider and the 
proton rest frame 

• No dependence of hadron structure on observer’s frame 

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no vacuum condensates! 

• Profound implications for Cosmological Constant

Physics Independent of Observer’s Motion

Terrell, Penrose

Poincare’ Invariant



• “History” : Compute any subgraph only once since the LFPth 
numerator does not depend on the process — only the 
denominator changes!

• Wick Theorem applies, but few amplitudes since all k+ > 0.

• Jz Conservation at every vertex

• Unitarity is explicit

• Loop Integrals are 3-dimensional

• hadronization: coalesce comoving quarks and gluons to 
hadrons using light-front wavefunctions

Light-Front Perturbation Theory for pQCD

Z 1

0
dx

Z
d

2
k?

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

at order gn|
X

initial

Sz �
X

final

Sz |  n
K. Chiu, sjb

T = HI + HI
1

M2
initial �M2

intermediate + i✏
HI + · · ·



HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 

Light-Front Wavefunctions

Remarkable new insights from AdS/CFT, the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian

 (xi,
~

k?i,�i)

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Off-shell in invariant mass

x =
k+

P+
=

k0 + k3

P 0 + P 3



Coulomb  potential  
Veff ⇥ VC(r) = ��

r
Semiclassical first approximation to QED  

Bohr Spectrum

HQED

[� �2

2mred
+ Ve�(�S,�r)] �(�r) = E �(�r)

[� 1
2mred

d2

dr2
+

1
2mred

⌃(⌃ + 1)
r2

+ Ve�(r, S, ⌃)] �(r) = E �(r)

(H0 + Hint) |� >= E |� > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, �,⇥

Includes Lamb Shift, quantum corrections

QED atoms: positronium 
and muonium

Schrödinger Eq.



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential!  

HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

Semiclassical first approximation to QCD  

U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD

AdS/QCD:

�2 = x(1� x)b2
�

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Sums an infinite # diagrams

LQCD

Eliminate higher Fock states              
and retarded interactions

mq = 0
Single variable  ζ

⇥
� d2

d⇣2 � 1�4L2

4⇣2 + U(⇣)
⇤
 (⇣) = M2 (⇣)



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique 
Confinement Potential!

de Tèramond, Dosch, Lorcè, sjb

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

 ' 0.5 GeV

• Fubini, Rabinovici  

e'(z) = e+2z2

Single variable  ζ

[� d2

d⇣2 + 4L2�1
4⇣2 + U(⇣2)] = M2 



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

Unique confinement potential!

QCD does not know what MeV units mean! 
Only Ratios of Masses Determined



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique 
Confinement Potential!

de Tèramond, Dosch, Lorcè, sjb

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

 ' 0.5 GeV

• Fubini, Rabinovici  

e'(z) = e+2z2

Single variable  ζ

[� d2

d⇣2 + 4L2�1
4⇣2 + U(⇣2)] = M2 



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d2

dx2
+

g

x2
+

4uw � v2

4
x2

�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term

[� d2

d⇣2 + 4L2�1
4⇣2 + U(⇣2)] = M2 



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2
= h |

X

a

m2
a

/x
a

| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�

m

2
q

x

+
m

2
q

1�x

�

e�
1
2� ⇣

2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S

= M2
K

± + 4�

✓

n +

J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

m
u

= m
d

= 46 MeV, m
s

= 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x) �⇡(x) =

4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z

C. D. Roberts et al.

x,

~

k?

1� x,�~k?



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

�(x, k�)(GeV)

�(x, k�)

• Light Front Wavefunctions:                                   

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

“Hadronization at the Amplitude Level”

o↵-shell in P� and invariant massM2
qq̄

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Boost-invariant LFWF connects confined quarks and gluons to hadrons

x,

~

k?

1� x,�~

k?



 Stan BrodskyMay 29-31
 2017

The structure of hadrons using light-front 
holography and superconformal algebra

1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 

AdS5



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT

AdS5
Exploring QCD, Cambridge, August 20-24, 2007 Page 9



 Stan BrodskyMay 29-31
 2017

The structure of hadrons using light-front 
holography and superconformal algebra

•Soft-wall dilaton profile breaks 
conformal invariance

•Color Confinement in z

•Introduces confinement scale κ

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS/QCD

Exploring QCD, Cambridge, August 20-24, 2007 Page 9



AdS Soft-Wall Schrödinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5 

Identical to Single-Variable Light-Front Bound State Equation in ζ! 

U(z) = �4z2 + 2�2(L + S � 1)

• Dosch, de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

 ' 0.5 GeV

• Fubini, Rabinovici  

e'(z) = e+2z2

Single variable  ζ

⇥
� d2

d⇣2 � 1�4L2

4⇣2 + U(⇣)
⇤
 (⇣) = M2 (⇣)



Uniqueness of Dilaton

pion is massless in chiral limit iff 
p=2!

p

m2
⇡/2

'p(z) = pzp

e'(z) = e+2z2

• Dosch, de Tèramond, sjb



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q+} = 2H, {S, S+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  

+[�@
x

+
f

x

], Q

+ =  [@
x

+
f

x

],
S =  

+
x, S

+ =  x

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics 

Q '
p

H, S '
p

K



Consider Rw = Q + wS;

w: dimensions of mass squared

Superconformal Quantum Mechanics 

Retains Conformal Invariance of Action

G11 =
�
� @

2
x

+ w

2
x

2 + 2wf � w +
4(f + 1

2 )2 � 1
4x

2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R+
w} = 2H + 2w2K + 2wfI � 2wB

G22 =
�
� @

2
x

+ w

2
x

2 + 2wf + w +
4(f � 1

2 )2 � 1
4x

2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2
(n,L) = 42

(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2

Q '
p

H, S '
p

K
Fubini and 
Rabinovici 



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM ) Same κ!

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 

Superconformal  
Quantum Mechanics 



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Quark Chiral 
Symmetry of 
Eigenstate!

Nucleon: Equal Probability for L=0,1



p

Gluonic distribution reflects quark+diquark color structure of the proton

Color confinement potential —> high density gluon field: flux tube

|p >= |u3C [ud]3̄C >

U

d
J=0

p(Jz = +1/2)

u(Sz = +1/2) u(Sz = �1/2)

Lz = 0 Lz = �1

AdS/QCD + Light Front Holography: Proton is bound state of a quark + scalar diquark

Equal probability L=0, L=1

de Teramond, Dosch, Lorce, sjb 

Skyrme model: Ellis, Karliner, sjb

Quark chiral symmetry
Anomalous moment nonzero
Leading Twist Sivers Effect

LF Jz conservation: K. Chiu, sjb
3C ⇥ 3C = 3̄C + 6C



p
p

Collisions of  flux tubes of  protons

p

Gluonic distribution reflects quark+diquark color structure of the protons

Color confinement potential —> high density gluon field: flux tube

|p >= |u3C [ud]3̄C >

Highest  hadron multiplicity produced when the two flux tubes are aligned and 
overlap completely along their length.

v2 (dominant) + v3 (from `Y’ quark + diquark configurations)

Hadrons produced from the 
collisions of flux tubes

• Strangeness and charm enhancements

Bjorken, Goldhaber, sjb
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7
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Superconformal meson-nucleon partners
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contributions in different angular-momentum configura-
tions from the broad and overlapping resonances. Thus,
there is now the chance to clarify the “missing” resonance
problem. The attempt to assign (nearly) all baryon reso-
nances to SU(3) multiplets should be helpful to identify
problems and to serve as guidance for further discussions.
This assignment requires to identify the leading orbital
angular momenta L and the spin S within the three-
quark system. Measured quantities are only the total an-
gular momentum, the spin J of the baryon, and its mass.
Here, theoretical input is required. We use a holographic
mass formula derived in [11] which reproduces the known
spectrum of nucleon and ∆ resonances with remarkable
precision.

In this paper, we shall use the word missing resonance
in a restricted sense. E.g., we may interpret the three
resonances N3/2+(1900), N5/2+(2000), N7/2+(1990) [12]
as members of a spin quartet, with orbital angular mo-
menta L = 2 and quark spin S = 3/2 coupling to the ob-
served particle spin J . In this interpretation, N1/2+(1880)
—observed in recent coupled-channel analyses [13]— was
missing to complete a quark spin quartet [14]. But the
existence of a N1/2+ resonance would be required in any
kind of quark model. More subtle is the question if two ad-
ditional doublets (N3/2+ , N5/2+) and (∆3/2+ , ∆5/2+) as
requested by symmetry arguments (see eq. (9) below) are
realized in nature. None of these states has been observed.
The latter type of resonances, i.e. the non-observation of a
complete L, S multiplet, we shall call missing resonances
in the context of this paper.

We refrain here from a discussion of the possibility that
baryon resonances are formed as parity doublets. If this
conjecture holds true, it gives an exciting new approach to
the internal dynamics of excited hadronic states; we give
here a few references for further reading [15–18]. However,
the predictive power of the conjecture is limited: it pre-
dicts that resonances should occur as parity doublets but
there is no prediction at which mass. In this article we
hence restrict ourselves to a discussion of the data within
the quark model and its symmetries.

The outline of the paper is as follows: In sects. 2 and 3
we summarise the empirical data on light-flavoured delta
and nucleon resonances, respectively. In particular we re-
call that these can be suitable organised according to lead-
ing and daughter Regge trajectories where the resonance
positions follow from a simple mass formula. In sect. 4
we summarise the relevant symmetries for light-flavoured
baryons and the classification of states in multiplets within
the framework of the (harmonic oscillator) constituent
quark model. In sect. 5 we discuss the structure of the
nucleon and ∆ resonances within the framework of this
classification, before concluding in sect. 6.

2 The mass spectrum of ∆ resonances

2.1 Regge trajectories

It is well known that meson and baryon resonances lie on
Regge trajectories, i.e. that their squared masses depend
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Fig. 1. The leading Regge trajectory: ∆ resonances with maxi-
mal J in a given mass range. Also shown is the Regge trajectory
for mesons with J = L + S.

linearly on the total angular momentum J . Figure 1 shows
such a plot; ∆ resonances are plotted having the largest
total angular momentum J in a given mass range. This
trajectory is called the leading Regge trajectory. The reso-
nances are consistent with having even orbital angular mo-
mentum L = 0, 2, 4, 6 and quark spin S = 3/2 maximally
aligned to form total angular momentum J = L+3/2. The
errors in the fit are given by the PDG errors and a second
systematic error of 30MeV added quadratically. This sys-
tematic error is introduced to avoid hard constraints from
well measured meson or baryon masses like the ∆(1232)
mass; the error can be interpreted as uncertainty due to
variations of the self-energy of different hadrons due to,
e.g., the proximity of (strong) decay thresholds.

Figure 1 also shows the leading Regge trajectory of
natural-parity mesons, again as a function of the total an-
gular momentum. Light mesons with approximate isospin
degeneracy and with J = L+1 are presented. Although it
is customary to plot the meson trajectories for L even and
L odd (for positive- and negative-parity mesons, respec-
tively) separately, there is no problem fitting both trajec-
tories simultaneously: This property is called MacDowell
symmetry [19].

The dotted line represents such a common fit to the
meson masses taken from the PDG [12]; the error in the fit
is given by the PDG errors and a second systematic error
of 30MeV added quadratically. The slope is determined
as 1.142GeV2. The ∆ trajectory is given by the ∆(1232)
mass and the slope as determined from the meson tra-
jectory. Obviously, mesons and ∆’s have the same Regge
slope. This observation is the basis for diquark models;
indeed, the QCD forces between quark and antiquark are
the same as those between quark and diquark.

The leading Regge trajectory:  Δ resonances with maximal J in a given mass range. 
Also shown is the Regge trajectory for mesons with J = L+S.

  
E. Klempt and B. Ch. Metsch





Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

Dosch, de Teramond, Lorce, sjb

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2
)

Deur



• Boost Invariant 

• Trivial LF vacuum! No condensate, but consistent with GMOR 

• Massless Pion 

• Hadron Eigenstates (even the pion) have LF Fock components of different Lz 

• Proton: equal probability 

• Self-Dual Massive Eigenstates: Proton is its own chiral partner. 

• Label State by minimum L as in Atomic Physics 

• Minimum L dominates at short distances                

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall 
AdS/QCD Model

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

No mass -degenerate parity partners!

Jz = +1/2 :< Lz >= 1/2, < Sz
q >= 0



Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20



Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3



Nucleon Transition Form Factors

F p

1

N!N

⇤(Q
2

) =

p
2

3

Q
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⇢⇣
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Q
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Using SU(6) flavor symmetry and normalization to static quantities
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FIG. 1. Polarization measurements and predictions for the proton and neutron Dirac form factors [69,

70]. The blue line is the prediction of the proton Dirac FF from LFHQCD, Eq. (21) multiplied by Q4.

The orange and the green lines are predictions for the neutron Dirac FF, Q4Fn
1 (Q

2), from Eq. (23)

and from Eq. (25) with the phenomenological factor r = 2.08, respectively. The dotted lines are the

asymptotic predictions. The asymptotic value of the neutron FF is determined using r = 2.08.

FIG. 2. Polarization measurements and predictions for the proton and neutron Pauli form factors [69,

70]. The blue line is the proton Pauli FF, Q6F p
2 (Q

2) prediction, with �p = 0.27 in Eq. (22). The green

line is the prediction for the neutron Pauli FF, Q6Fn
2 (Q

2), with �n = 0.38 in Eq. (24) from LFHQCD.

The dotted lines are the asymptotic predictions.
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Dressed soft-wall current brings in higher 
Fock states and more vector meson poles
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Use Counting Rules to Verify Composition of Tetraquark

T+(uds̄d̄)

K�(sū)

A(e+e� ! M̄(qq̄) + T ([qq][q̄q̄]) ⇠ 1p
s(2+4�1�1) = 1

s2

Same fall-o↵ as A(e+e� ! ¯B(q[qq]) +B(q[q̄q̄]) ⇠ 1p
s(3+3�1�1) =

1
s2



Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
⇤
z2⇧2

z � z
�
1 + 2�2z2

⇥
⇧z �Q2z2

⌅
J�(Q, z) = 0.

• Solution bulk-to-boundary propagator

J�(Q, z) = �
⇧

1 +
Q2

4�2

⌃
U

⇧
Q2

4�2
, 0, �2z2

⌃
,

where U(a, b, c) is the confluent hypergeometric function

�(a)U(a, b, z) =
⌥ ⇥

0
e�ztta�1(1 + t)b�a�1dt.

• Form factor in presence of the dilaton background ⇥ = �2z2

F (Q2) = R3
⌥

dz

z3
e��2z2

⇥(z)J�(Q, z)⇥(z).

• For large Q2 ⇤ 4�2

J�(Q, z)⌅ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.

Exploring QCD, Cambridge, August 20-24, 2007 Page 34

Dressed 
Current 

 in Soft-Wall 
Model
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Grigoryan and Radyushkin

e'(z) = e+2z
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Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:
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 B+(LB) �T (LT = LB)

!
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on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

x
i

to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2��m2

, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Meson Baryon

Tetraquark

Proton: quark + scalar diquark |q(qq) >
(Equal weight: L = 0, L = 1)

Baryon

Bosons, Fermions with Equal Mass!



Superconformal Algebra

• quark-antiquark meson (LM = LB+1))

• quark-diquark baryon (LB)

• quark-diquark baryon (LB+1)

• diquark-antidiquark tetraquark (LT = LB)

• Universal Regge slopes

2X2 Hadronic Multiplets
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Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.
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masses strongly break the conformal symmetry [18].

The structure of the hadronic mass generation obtained from the supersymmetric

Hamiltonian GS, Eq. (17), provides a frame-independent decomposition of the quadratic

masses for all four members of the supersymmetric multiplet. In the massless quark limit:

M2
H/� =

contribution from 2-dim

light-front harmonic oscillator

z }| {
(2n+ LH + 1)| {z }

kinetic

+(2n+ LH + 1)| {z }
potential

+

contribution from AdS and

superconformal algebra

z }| {
2(LH + s) + 2� . (25)

Here n is the radial excitation number and LH the LF angular momentum of the hadron

wave function; s is the total spin of the meson and the cluster respectively, � = �1 for the

meson and for the negative-chirality component of the baryon (the upper components

in the susy-doublet) and � = +1 for the positive-chirality component of baryon and

for the tetraquark (the lower components). The contributions to the hadron masses

squared from the light-front potential �2⇣2 and the light-front kinetic energy in the LF

Hamiltonian, are identical because of the virial theorem.

We emphasize that the supersymmetric features of hadron physics derived here from

superconformal quantum mechanics refers to the symmetry properties of the bound-

state wave functions of hadrons and not to quantum fields; there is therefore no need to

introduce new supersymmetric fields or particles such as squarks or gluinos.

We have argued that tetraquarks – which are degenerate with the baryons with the

same (leading) orbital angular momentum– are required to complete the supermulti-

plets predicted by the superconformal algebra. The tetraquarks are the bound states

of the same confined color-triplet diquarks and anti-diquarks which account for baryon

spectroscopy.

The light-front cluster decomposition [32, 33] for a bound state of N constituents

–as an “active” constituent interacting with the remaining cluster of N�1 constituents–

also has implications for the holographic description of form factors. As a result, the

form factor is written as the product of a two-body form factor multiplied by the form

factor of the N � 1 cluster evaluated at its characteristic scale. The form factor of the

N�1 cluster is then expressed recursively in terms of the form factor of the N�2 cluster,

and so forth, until the overall form factor is expressed as the N � 1 product of two-body

form factors evaluated at di↵erent characteristic scales. This cluster decomposition is

in complete agreement with the QCD twist assignment which leads to counting-rule

scaling laws [34, 35]. This solves a previous problem with the twist assignment for
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+ <

X

i

m

2
i

xi
>

�(mesons) = �1

�(baryons, tetraquarks) = +1
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The structure of hadrons using light-front 
holography and superconformal algebra

Features of Supersymmetric Equations

• J =L+S baryon simultaneously satisfies both 
equations of G with L , L+1 with same mass 
eigenvalue

• Jz =  Lz + 1/2 = (Lz + 1) - 1/2

• Proton spin carried by quark Lz

• Mass-degenerate meson “superpartner” with 
LM=LB+1. “Shifted  meson-baryon Duality”

Mesons and baryons have same 

Sz = ±1/2

 !

< Jz >=
1

2
(Sz

q =
1

2
, Lz = 0) +

1

2
(Sz

q = �1

2
, Lz = 1) =< Lz >=

1

2





New World of Tetraquarks

• Diquark: Color-Confined Constituents: Color

• Diquark-Antidiquark bound states

3C ⇥ 3C = 3̄C + 6C

3̄C ⇥ 3C = 1C

Bound!

�(TN) ' 2�(pN)� �(⇡N)

3̄C

2
⇥
�([{qq}N) + �(qN)

⇤
� [�(qN) + �(q̄N)] = [�({qq}N) + �({qq}N)]

Candidates f0(980)I = 0, JP
= 0

+
, partner of proton

a1(1260)I = 0, JP
= 1

+
, partner of �(1233)

de Tèramond, Dosch, Lorce, sjb



Universal Hadronic Features

• Universal quark light-front kinetic energy 

• Universal quark light-front potential energy 

• Universal Constant Term

�M2
LFKE = 2(1 + 2n + L)

�M2
LFPE = 2(1 + 2n + L)

M2 = �M2
LFKE + �M2

LFPE + �M2
spin

M2
spin = 22(S + L� 1 + 2ndiquark )

Equal: 
Virial 

Theorem!

+ <

X

i

m

2
i

xi
>



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry



Regge slope for heavy-light mesons, baryons:  
increases with heavy quark mass

R(GeV)



A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks
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Foundations of Light-Front 
Holography

• The QCD Lagrangian for mq =0 has no mass scale.  

• What determines the hadron mass scale? 

• DAFF principle: add terms linear in D and K to Conformal 
Hamiltonian:  Mass scale κ appears, but action remains scale 
invariant —> unique harmonic oscillator potential 

• Apply DAFF to the Poincare’ invariant LF Hamiltonian: Unique 
color-confining potential

• Fixes AdS5 dilaton: predicts Spin and Spin-Orbit Interactions

• Apply DAFF to Superconformal representation of the Lorentz group

• Predicts Meson, Baryon, Tetraquark spectroscopy, dynamics

• Supersymmetric Features of Spectrum



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

from dilaton e
2z2



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡

]



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS
Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD 
(Quark Confinement)

All-Scale QCD Coupling

e�
Q2

42

Deur, de Tèramond, sjb
m⇢ =

p
2

mp = 2

� ⌘ 2

World Data:

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV MS scheme

78

Use Q0 for 
starting 
DGLAP  

and ERBL 
Evolution ⇤MS = 0.339± 0.019 GeV

Prediction

⇤MS = 0.332± 0.017 GeV
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holography and superconformal algebra

• Regge spectroscopy—same slope in n,L for mesons, baryons

• Chiral features for mq=0: mπ =0, chiral-invariant proton!

• Hadronic LFWFs

• Counting Rules

• Connection between hadron masses and ⇤MS

Superconformal AdS Light-Front Holographic QCD (LFHQCD) 

Meson-Baryon Mass Degeneracy for LM=LB+1

Features of  LF Holographic QCD 
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Fundamental Hadronic Features of Hadrons 

• Partition of the Proton’s Mass: Potential vs. Kinetic Contributions

• Color Confinement

• Role of Quark Orbital Angular Momentum in the Proton

• Quark-Diquark Structure

• Quark Mass Contribution

• Baryonic Regge Trajectory

• Mesonic Supersymmetric Partners

• Proton Light-Front Wavefunctions and Dynamical Observables

• Form Factors, Distribution Amplitudes, Structure Functions

• Non-Perturbative - Perturbative QCD Transition

• Dimensional Transmutation: Mp/⇤MS

�M2
LFKE = 2(1 + 2n + L)

�M2
LFPE = 2(1 + 2n + L)

Virial Theorem

U(⇣2) = 4⇣2

Equal L=0,1

LM = LB + 1

m⇢ ' 2.2 ⇤MSmp ' 3.21 ⇤MS

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

�M

2 =<

m

2
q

x

>

from the Yukawa coupling  
to the Higgs zero mode

M2(n,LB) = 42(n + LB + 1)p

MS schemeQ0 = 0.87± 0.08 GeV



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

Sivers, T-odd from lensing
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FIG. 5: Left panel: results for the quark TMD of the pion, multiplied by k?, from the pure-valence LFWF for the m = 50 MeV scenario,
as function of k? and at fixed x = 0.5. The solid curve shows the result at the scale of the model, Q

0

= 0.5 GeV, corresponding with
the initial scale for the TMD evolution. The shaded band gives the spread of the results after evolution of the TMD to 1 GeV with three
di↵erent values of g

2

: 0.09 GeV2 (dashed curve), 0.11 GeV2 (dotted curve) and 0.13 GeV2 (dashed-dotted curve). Right panel: results
for k?MAX as function of x, at the scale of the model (solid curve) and after TMD evolution to Q = 1 GeV (lower band) and Q = 5
GeV (upper band) with three di↵erent values of g

2

: 0.09 GeV2 (dashed curve), 0.11 GeV2 (dotted curve) and 0.13 GeV2 (dashed-dotted
curve).

(a) (b)

FIG. 6: Left panel: results for the quark TMD of the pion, multiplied by k?, from the e↵ective-valence LFWF for the m = 50 MeV
scenario as function of k? and at fixed x = 0.5. The solid curve shows the result at the scale of the model, Q

0

= 0.5 GeV, corresponding
with the initial scale for the TMD evolution. The shaded band gives the spread of the results after evolution of the TMD to 1 GeV
with three di↵erent values of g

2

: 0.09 GeV2(dashed curve), 0.11 GeV2 (dotted curve) and 0.13 GeV2 (dashed-dotted curve). Right panel:
results for k?MAX as function of x, at the scale of the model (solid curve) and after TMD evolution to Q = 1 GeV (lower band) and Q = 5
GeV (upper band) with three di↵erent values of g

2

: 0.09 GeV2 (dashed curve), 0.11 GeV2 (dotted curve) and 0.13 GeV2 (dashed-dotted
curve).
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Results for the quark TMD of the pion, multiplied by k⊥, from the pure-valence LFWF for the m = 50 MeV 
scenario, as function of k⊥ and at fixed x = 0.5. The solid curve shows the result at the scale of the model, Q0 = 
0.5 GeV, corresponding with the initial scale for the TMD evolution. The shaded band gives the spread of the 
results after evolution of the TMD to 1 GeV
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FIG. 1: (Color online) Plots of chiral-even GPDs in impact parameter space as functions of b = |b⊥|

for different values of x = 0.3, 0.5, 0.8 and the initial scale µ0 = 0.313 GeV. Left panel for u quark

and right panel for d quark.

7

(a)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.04

0.08

0.12

0.16

0.2

b⊥ [fm]

H
u v
(x

,b
⊥

)

 

 

x=0.3

x=0.5

x=0.8

(b)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.02

0.04

0.06

0.08

b⊥ [fm]

H
d v
(x

,b
⊥

)

 

 

x=0.3

x=0.5

x=0.8

(c)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.02

0.04

0.06

0.08

0.1

0.12

b⊥ [fm]

E
u v
(x

,b
⊥

)

 

 

x=0.3

x=0.5

x=0.8

(d)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.04

0.08

0.12

0.16

b⊥ [fm]

-
E

d v
(x

,b
⊥

)

 

 

x=0.3

x=0.5

x=0.8

(e)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.03

0.06

0.09

0.12

0.15

0.180.18

b⊥ [fm]

H̃
u v
(x

,b
⊥

)

 

 

x=0.3

x=0.5

x=0.8

(f)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

b⊥ [fm]

H̃
d v
(x

,b
⊥

)

 

 

x=0.3

x=0.5

x=0.8

(g)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.03

0.06

0.09

0.12

0.15

b⊥ [fm]

Ẽ
u v
(x

,b
⊥

)

 

 

x=0.3

x=0.5

x=0.8

(h)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.05

0.1

0.15

0.2

0.25

b⊥ [fm]

-
Ẽ
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Hu(x, b?)

Eu(x, b?) Ed(x, b?)

Hd(x, b?)

Chiral Even GPDsMaji, Mondal, Chakrabarti
arXiv:1702.02493

Leading twist GPDs 
and spin densities in a 

proton
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FIG. 9: Pauli u quark form factor multiplied by Q4.
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FIG. 10: Pauli d quark form factor multiplied by Q4.
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FIG. 11: Dirac proton form factor multiplied by Q4.
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FIG. 12: Dirac neutron form factor multiplied by Q4.

FIG. 13: Wigner distribution ρuUU (x,b⊥,k⊥) at x = 0.5,
kx = ky = 0.5 GeV.

FIG. 14: Wigner distribution ρdUU (x,b⊥,k⊥) at x = 0.5,
kx = ky = 0.5 GeV.

FIG. 15: Wigner distribution ρuLL(x,b⊥,k⊥) at x = 0.5,
kx = ky = 0.5 GeV.

FIG. 16: Wigner distribution ρdLL(x,b⊥,k⊥) at x = 0.5,
kx = ky = 0.5 GeV.
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FIG. 2: d quark PDFs multiplied with x.
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FIG. 3: quark magnetization PDFs: xEq - our results,
xEq

GPRV - results of Ref. [68].
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FIG. 4: u quark TMDs multiplied with x.
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FIG. 5: d quark TMDs multiplied with x.
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FIG. 6: Comparison our predictions for xgqv1T (x) quark TMDs
multiplied with corresponding upper limits xF qv

1 (x).
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FIG. 7: Dirac u quark form factor multiplied by Q4.
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FIG. 8: Dirac d quark form factor multiplied by Q4.

Nucleon parton distributions in a light-front quark model  

Gutsche, Lyubovitskij, Schmidt 

arXiv:1605.03526
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LHeC: Virtual Photon-Proton Collider

variable spacelike photon virtuality 
various primary flavors

Study Ridge Phenomena with 
Controlled source

proton or ions

p

Perspective from the photon-proton collider frame
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Gluon carries away
momentum and orbital  

angular momentum of quark
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Deep Inelastic Scattering on |uudg> LF Fock state

Sz
q = + 1

2 ,�
1
2

⌧1 ⌧2 ⌧3

Jz = + 1
2
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Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

m⇢

mP
= 1p

2

Light-Front Holography:

⇤MS

m⇢
= 0.455± 0.031

“In other words, if you manage to calculate mP it better come out pro-

portional to ⇤QCD since ⇤QCD is the only quantity with dimension of mass

around.

Similarly for m⇢.

Put in precise terms, if you publish a paper with a formula giving m⇢/mP in

terms of pure numbers such as 2 and ⇡, the field theory community will hail

you as a conquering hero who has solved QCD exactly.”

(mq = 0)
m⇡ = 0

m⇢ ' 2.2 ⇤MSmp ' 3.21 ⇤MS

de Tèramond, Dosch, sjb
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The structure of hadrons using light-front 
holography and superconformal algebra

Hadronization at the Amplitude Level

• Quarks and Gluons are confined; do not appear as 
asymptotic states

• Hadron LFWFs: Arbitrarily Off-Shell in parton 
invariant mass; Fock state expansion

• Hadron LFWFs:  Amplitudes that convert quarks 
and gluons to hadrons, Fock state by Fock state

• Jz conservation each and every state: entanglement

• Harmonic oscillator confinement — potential 
energy between colored partons grows as

• Must compute processes at amplitude level

U(⇣2) = 

4
⇣

2 = 

4
b

2
?x(1� x)
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q
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g

Compute off-shell amplitude

     Convolute with LFWFs
LFWFs confine to color-singlet hadrons

On-shell Final State
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LF Time Evolution

Entangled Amplitude

color-confining interaction
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ERBL Evolution of Distribution Amplitudes for Q2 > Q2
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LF Time Evolution
Use Light-Front Time-Ordered  

Perturbation Theory

conserved at every vertex
P+, ~P? and Jz
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Compute off-shell amplitude
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k?i,�i)

�⇤

LF Time Evolution

Renormalization Scales Fixed:  BLM/PMC 

Abelian Limit SatisfiedScheme Independent

Factorization Scale Q0 set at perturbative- 
nonperturbative interface

No n! renormalon growth

Counting Rules:  Hard Exclusive Processes, x ~ 1 



 Stan BrodskyMay 29-31
 2017

The structure of hadrons using light-front 
holography and superconformal algebra

Invariance Principles of Quantum  Field Theory

• Polncarè Invariance:  Physical predictions must be 
independent of the observer’s Lorentz frame:  Front Form 

• Causality: Information within causal horizon:  Front Form 

• Gauge Invariance: Physical predictions of gauge theories 
must be independent of the choice of gauge 

• Scheme-Independence: Physical predictions of 
renormalizable theories must be independent of the 
choice of the renormalization scheme — Principle of 
Maximum Conformality (PMC) 

• Mass-Scale Invariance: Conformal Invariance of the 
Action (DAFF) 



 Stan BrodskyMay 29-31
 2017

The structure of hadrons using light-front 
holography and superconformal algebra

Novel QCD

• Flavor-Dependent Anti-Shadowing

• LF Vacuum and Cosmological Constant: No QCD 
condensates

• Principle of Maximum Conformality (PMC): Eliminate 
renormalization anomaly; scheme independent

• Match Perturbative and Non-Perturbative Domains 

• Hadronization at Amplitude Level

• Intrinsic Heavy Quarks from AdS/QCD: Higgs at high xF

• Ridge from flux tube collisions

• Baryon-to-meson anomaly at high pT
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

No anti-shadowing in deep inelastic neutrino scattering !

Non-Universal -- Quark Specific?
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DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

Elements of the solution: 
(A) Light-Front Quantization: causal, frame-independent vacuum 

(B) New understanding of QCD “Condensates” 
(C) Higgs Light-Front Zero Mode 

Extraordinary conflict between the conventional definition of the vacuum in 
quantum field theory and cosmology
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Light-Front vacuum can simulate empty universe

• Independent of observer frame 

• Causal 

• Lowest invariant mass state M= 0. 

• Trivial up to k+=0 zero modes-- already normal-ordering 

• Higgs theory consistent with trivial LF vacuum (Srivastava, 
sjb) 

• QCD and AdS/QCD: “In-hadron”condensates (Maris, Tandy 
Roberts)  -- GMOR satisfied. 

• QED vacuum; no loops 

• Zero cosmological constant from QED, QCD, EW

Shrock, Tandy, Roberts, sjb



Goals
• Test QCD to maximum precision at the 

LHC 

• Maximize sensitivity to new physics 

• High precision determination of 
fundamental parameters 

• Determine renormalizations scales 
without ambiguity 

• Eliminate scheme dependence

Predictions for physical observables cannot depend on theoretical 
conventions such as the renormalization scheme



QCD Principles

• Extended Conformal Invariance:  AdS/QCD 

• Chiral QCD only predicts mass ratios  

• Supersymmetric Features of QCD: Superconformal algebra 

• Unique Confinement Potential, Nonperturbative Running Coupling 

• Physics Independent of Observer Frame:  LF! 

• Physics Independent of Conventions such as MSbar: PMC 

• Zero Cosmological Constant for Causal Frame-Independent LF 
Vacuum  

•  Leading Twist Factorization-Breaking Corrections from ISI, FSI 

• Nuclear Shadowing and Antishadowing not in nuclear LFWF 

• Nuclear PDFS do not obey sum rules

 ! C
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9th Summer School in Theoretical Physics, Chongqing, Matin Mojaza

The Running Coupling in QED 

- Vertex- and wavefunction renormalization cancel exactly in QED due to the 
Ward-Takahashi identity - the running coupling is physical!

- Independent of the initial renormalization scale

- Obeys renormalization group properties;
renormalization scheme- and scale-invariance, transitivity, etc...

- The argument of the running coupling is the ‘final scale’ that resums all non-
conformal terms; a function of scheme and renormalization scale

{ci}

a(τ, {ci})

τ

A

B

C

D

E F

- Resummed perturbative QED = dressed 
skeleton expansion; 

- the perturbative coefficients are those of the 
would-be conformal theory

- Let’s give this lesson a name so we don’t forget:
The Principal of Maximum Conformality

S.J. Brodsky, X.-G. Wu; Phys.Rev. D86 (2012) 054018, [arxiv:1208.0700]
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On the elimination of scale ambiguities in perturbative quantum chromodynamics

Stanley J. Brodsky
Institute for Advanced Study, Princeton, New Jersey 08540

and Stanford Linear Accelerator Center, Stanford Unioersity, Stanford, California 94305*

G. Peter Lepage
Institute for Aduanced Study, Princeton, New Jersey 08540

and Laboratory ofNuclear Studies, Cornell Unioersity, Ithaca, New York I4853*

Paul B.Mackenzie
Fermilab, Batavia, Illinois 6D51D
(Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative
analyses in quantum chromodynamics (QCD) and other gauge theories. For aphelian theories the
method reduces to the standard criterion that only vacuum-polarization insertions contribute to the
effective coupling constant. Given a scheme, our procedure automatically determines the coupling-
constant scale appropriate to a particular process. This leads to a new criterion for the convergence
of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and
find that perturbation theory converges well for all processes other than the gluonic width of the Y.
Our analysis calls into question recent determinations of the QCD coupling constant based upon Y
decay.

I. INTRODUCTION the for orthopositronium is much

Physics Letters B 279 (1992) 352-358 
North-Holland PHYSICS LETTERS B 

On some possible extensions 
of the Brodsky-Lepage-Mackenzie approach 
beyond the next-to-leading order 
G. Grunberg  
Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France 

and 

A.L. Kataev 1 
Randall Laboratory of Physics, University of Michigan. Ann Arbor, M148109-1120, USA 

Received 20 May 1991; revised manuscript received 20 January 1992 

Noting that the choice of  renormalization point advocated by Brodsky, Lepage and Mackenzie ( BLM ) is the flavor independent 
prescription which removes all f-dependence from the next-to-leading order coefficients, we consider the possible generalization 
which requires all higher order coefficients ri to be f-independent constants r,*. We point out that in QCD, setting ri= r,* is always 
possible, but leaves us with an ambiguous prescription. We consider an alternative possibility within the framework of  the BLM 
approach and apply the corresponding prescription to the next-to-next-to-leading approximation of trtot(e+e - ~hadrons)  in QCD. 
The analogous questions and the special features of the BLM and effective charge approaches in QED are also discussed. 
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Commensurate scale relations in quantum chromodynamics

Stanley J. Brodsky
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We use the BLM method to relate perturbatively calculable observables in +CD, including the
annihilation ratio R +, , the heavy quark potential, and radiative corrections to structure function
sum rules. The commensurate scale relations connecting the effective charges for observables A and
B have the forin cry(Qq) = nor(Qg) (1+regis —P + ), where the coefficient rqg~ is independent
of the number of ffavors f contributing to coupling constant renormalization. The ratio of scales
Qz/Qir is unique at leading order and guarantees that the observables A and B pass through new
quark thresholds at the same physical scale. We also show that the commensurate scales satisfy the
renormalization group transitivity rule which ensures that predictions in PQCD are independent of
the choice of an intermediate renormalization scheme C. In particular, scale-Axed predictions can
be made without reference to theoretically constructed renormalization schemes such as MS. +CD
can thus be tested in a new and precise way by checking that the observables track both in their
relative normalization and in their commensurate scale dependence. The generalization of the BLM
procedure to higher order assigns a different renormalization scale for each order in the perturbative
series. The scales are determined by a systematic resummation of running coupling constant effects.
The application of this procedure to relate known physical observables in +CD gives rather simple
results. In particular, we find that up to light-by-light-type corrections all terms involving (s,
and m in the relation between the annihilation ratio R + and the Bjorken sum rule for polarized
electroproduction are automatically absorbed into the renormalization scales. The final series has

Scale setting using the extended renormalization group and the principle of maximum
conformality: The QCD coupling constant at four loops
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A key problem in making precise perturbative QCD predictions is to set the proper renormalization

scale of the running coupling. The extended renormalization group equations, which express the

invariance of the physical observables under both the renormalization scale- and scheme-parameter

transformations, provide a convenient way for estimating the scale- and scheme-dependence of the

physical process. In this paper, we present a solution for the scale equation of the extended renormal-

ization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/

Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all nonconformal f!ig terms in the perturbative

expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are

independent of the renormalization scheme. The PMC/BLM scales can be fixed order-by-order. As a

useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales

up to next-to-next-to-leading order. An explicit application for determining the scale setting of Reþe"ðQÞ
up to four loops is presented. By using the world average "MS

s ðMZÞ ¼ 0:1184& 0:0007, we obtain the

asymptotic scale for the ’t Hooft scheme associated with the MS scheme, !0tH
MS

¼ 245þ9
"10 MeV, and the

asymptotic scale for the conventional MS scheme, !MS ¼ 213þ19
"8 MeV.
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The renormalization scale-setting problem in QCD
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a b s t r a c t

A key problem in making precise perturbative QCD predictions is to set the proper renor-
malization scale of the running coupling. The conventional scale-setting procedure assigns
an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In
fact, this ad hoc procedure gives results which depend on the choice of the renormaliza-
tion scheme, and it is in conflict with the standard scale-setting procedure used in QED.
Predictions for physical results should be independent of the choice of the scheme or other
theoretical conventions. We review current ideas and points of view on how to deal with
the renormalization scale ambiguity and show how to obtain renormalization scheme-
and scale-independent estimates.We begin by introducing the renormalization group (RG)
equation and an extended version, which expresses the invariance of physical observ-
ables under both the renormalization scheme and scale-parameter transformations. The
RG equation provides a convenient way for estimating the scheme- and scale-dependence
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Systematic All-Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD
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We introduce a generalization of the conventional renormalization schemes used in dimensional

regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative

QCD predictions, exposes the general pattern of nonconformal f!ig terms, and reveals a special

degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the

argument of the running coupling order by order in perturbative QCD in a form which can be readily

automatized. The new method satisfies all of the principles of the renormalization group and eliminates an

unnecessary source of systematic error.
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Principle of Maximum Conformality (PMC)



Features of BLM/PMC

• Predictions are scheme-independent

• Matches conformal series

• Commensurate Scale Relations between 
observables: Generalized Crewther Relation   
(Kataev, Lu, Rathsman, sjb)

• No n! Renormalon growth

• New scale at each order; nF determined at each order

• Multiple Physical Scales Incorporated

• Rigorous: Satisfies all Renormalization Group 
Principles

• Realistic Estimate of Higher-Order Terms

• Eliminates unnecessary theory error
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Electron-Electron Scattering in QED
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• No renormalization scale ambiguity!   

• Two separate physical scales: t, u = photon virtuality   

• Gauge Invariant.  Dressed photon propagator 

• Sums all vacuum polarization, non-zero beta terms into running 
coupling.   This is the purpose of the running coupling! 

• If one chooses a different initial scale, one must sum an infinite number 
of graphs -- but always recover same result!   

• Number of active leptons correctly set  

• Analytic: reproduces correct behavior at lepton mass thresholds 

• No renormalization scale ambiguity!    

Electron-Electron Scattering in QED

t u
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In dim. reg.         poles come in powers of [Bollini & Gambiagi, ‘t Hooft & Veltman, ’72] 1/✏
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subtracted in addition to the standard subtraction
ln 4⇡ � �E of the MS-scheme. The �-subtraction defines
an infinite set of renormalization schemes which we call
�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.

II. THE �-RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions [25–28]. This requires the following transfor-
mation of the integration measure and introduction of an
arbitrary mass scale µ:

Z

d4p ! µ2✏

Z

d4�2✏p . (1)

Divergences are then separated as 1/✏ poles and can be
absorbed into redefinitions of the couplings. The choice
of subtraction procedure is known as the renormalization

scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ✏ one rescales the the couplings
as well with the mass scale µ in the d = 4� 2✏ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 = ↵0/4⇡ = g2/(4⇡)2 as:

a0 = µ2✏ZaSaS , (2)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The mass scale µ is
now understood as the renormalization scale. The bare
coupling must be independent of the arbitrary scale µ,
thus

µ2 da0
dµ2

= 0. (3)

Using this and the expansions

µ2 daS
dµ2

= �✏aS + �(aS) , (4)

�(a) = �a2
1
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1
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it is easily derived that:
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a4 + · · ·

and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2

⇤2
+

1

✏
+ c , (8)

where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.

µ2
�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
exp(�) . (14)

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

In the modified minimal subtraction scheme (MS-bar) one subtracts together 
with the pole a constant [Bardeen, Buras, Duke, Muta (1978) on DIS results]:  
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and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
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where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:
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Note that we have chosen MS as the reference scheme for R0.
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fined to be any other MS-scheme

A finite subtraction from infinity is arbitrary. Let’s make use of this!

This corresponds to a shift in the scale: 
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Subtract an arbitrary constant and keep it in your calculation:      -scheme
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pendent; however, it is easy to demonstrate by a general
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where c is the finite part of the integral. Since anything
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ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
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µ to:
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where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.
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In particular:
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�-Renormalization Scheme ( R� scheme)
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Exposing the Renormalization Scheme Dependence
Observable in the      -scheme:

⇢�(Q
2) =r0 + r1a(µ) + [r2 + �0r1�]a(µ)

2 + [r3 + �1r1� + 2�0r2� + �2
0r1�

2]a(µ)3 + · · ·

R0 = MS , Rln 4⇡��E = MS µ2
= µ2

MS
exp(ln 4⇡ � �E) , µ2

�2 = µ2
�1 exp(�2 � �1)

Note the divergent ‘renormalon series’ n!�n↵n
s

⇢�(Q
2) =r0 + r1a1(µ1) + (r2 + �0r1�1)a2(µ2)

2 + [r3 + �1r1�1 + 2�0r2�2 + �2
0r1�

2
1 ]a3(µ3)

3

The �pka
n
-term indicates the term associated to a diagram with 1/✏n�k

di-

vergence for any p. Grouping the di↵erent �k-terms, one recovers in the Nc ! 0

Abelian limit the dressed skeleton expansion.

R�

Exercise: 
Use the scale displacement relation to derive these expressions

Renormalization Scheme Equation
d⇢

d�
= ��(a)

d⇢

da
!
= 0 �! PMC
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MM: I now show how to set the PMC scales - given Eq.(19)
is correct, this is the exact way to do it, di↵erently from the
approximative way we considered and discussed earlier. The
scales naturally depend on the coupling through the beta func-
tion.

Let’s take a look back at Eq. (19). It is easy to see
that we can resum all ri,1 terms, which come with a lin-
ear factor of �j , to all orders by setting the scales (for
simplicity, we treat the higher order �j terms later):

r
1,0a(Q1

) = r
1,0a(Q)� �(a)r

2,1

r
2,0a(Q2

)2 = r
2,0a(Q)2 � 2a(Q)�(a)r

3,1

r
3,0a(Q2

)3 = r
3,0a(Q)3 � 3a(Q)2�(a)r

4,1

...

rk,0a(Qk)
k = rk,0a(Q)2 � k a(Q)k�1�(a)rk+1,1 (21)

From the scale displacement equation (14) for a it is
straightforward to see that:

a(Qk)
k = a(Q)k + ka(Q)k�1�(a) ln

Q2

k

Q2

+ (22)

+


k

2
�
@�

@a
a(Q)k�1 + k(k � 1)a(Q)k�2�(a)2

�
ln2

Q2

k

Q2

+ · · ·

It follows that to absorb all linear �j terms, the scales

Qk must satisfy:

�rk+1,1

rk,0
= ln

Q2

k

Q2

+


1

2

@�

@a
+ (k � 1)

�

a

�
ln2

Q2

k

Q2

+ · · ·
(23)

This leads to the self-consistency equation for Qk:

ln
Q2

k

Q2

=
�rk+1

/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i
ln

Q2
k

Q2 + · · ·
(24)

To leading order (LO) we have:

ln
Q2

k,LO

Q2

= �rk+1

rk,0
. (25)

This resums all linear �j terms, but introduces higher
order �j terms as well beyond the order ak+1. Say, we
are computing an observable to order an. The scales Qk

must resum all �jrk+1,1 terms without introducing higher
order ones up to order an. This means that Qk must be
computed to Nn�(k+1)LO. Let us explicitly perform the
resummation up to a4, that is, up to NNLO. The general
expression for the NLO scale reads:

ln
Q2

k,NLO

Q2

=
�rk+1

/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i ⇣
� rk+1

rk,0

⌘ . (26)

To find the NNLO scale, we first write the self-
consistency equation:
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Then we expand the NLO scale to first order
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and replace ln Q2
k

Q2 in the denominator with this NLO expansion, while the ln2 Q2
k

Q2 is replaced with the LO expansion.
We the get:
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So far, we kept k general and thus these expressions
for Qk,LO, Qk,NLO and Qk,NNLO hold for a perturbative
expansion to any order. In the particular case, where we
are considering ⇢ to order a4, we have that:
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3

a value for the arbitrary initial scale µ�, or correspond-
ingly fixing the arbitrary scheme, R�. The � dependency
of the coe�cients is not small and since this is an implicit
µ� dependency it is simply wrong to state that the coef-
ficients only depend logarithmically on the scale. This is
intimately connected to the renormalon problem.

X-GW: Here, I have cut o↵ unimportant discussions.

MM: Ok.

Now, it is obvious that in a conformal theory, where
{�i} = {0}, the � dependency vanishes in Eq.(15). That
is, the result is the same in anyR�. Therefore, by absorb-
ing all {�i} dependency into a redefinition of the scales
at each order, we obtain a final result independent of the
initial choice of scale and scheme. Using R� we can make
this statement even more rigorous. From the explicit ex-
pression in Eq. (15) it is easy to confirm that

d⇢�(s)

d�
= �(a)

d⇢�
da

. (17)

We see that to obtain a scheme-invariant and confor-
mal result, we must set the scales such that all {�i}-
functions equal to zero, which further leads to

�(a) = 0 . (18)

Notice that this holds at any order in perturbation the-
ory and is a theoretical requirement, di↵erent from the
physical fact that the all-orders expression for ⇢ must be
renormalization scale and scheme invariant. It should be
emphasized that this is not a fixed point expression for
a but is a fully conformal requirement, that is, the beta
function vanishes identically. This proves the principle

of maximal conformality (PMC) at any order.
X-GW: I think the above demonstration is not complete

or misleading. It is right that if the right side of Eq.(17) is
satisfied by a proper PMC procedure, then the left side can be
satisfied naturally.

MM: This is all I had in mind, in other words Eq.(18) is
the ’proof-of-concept’ of the PMC scale setting - as you say, it
demonstrates that if one sets the scale such that all {�i} are
absorbed, the final result is renormalization scheme invariant
and this is the principal of maximal conformality.

X-GW: However if the left side of Eq.(18) is satisfied we
can only obtain �(a) = 0, but we can not obtain the conclusion
that all the terms involving {�i}-functions are equal to zero,
that is we can not eliminate all {�i}-series. It only happens
when all {�i}-terms are combined into functions of �(a) that
is only a lottery.

MM: There are two ways of obtaining �(a) = 0: either
{�i} = 0 or a(µ) = a⇤, where a⇤ is a constant - the fixed point
value, �(a⇤

) = 0. As I emphasize above, the latter is not what
we are considering. Let me elaborate. The fixed point theory
is a conformal field theory (CFT) - the coupling does not run.
In a CFT it does not make sense to set the scale, since the
theory is scale-invariant (a = a⇤ on all scales). Moreover, the
CFT is not asymptotically free, so we cannot even consider
observables computed in perturbation theory - it has no well-
defined perturbative limit. So, to me it does not make sense
to consider nor discuss this case in the context of the scale

setting problem. Therefore, �(a) = 0 can only mean {�i} = 0

in the context we are considering.
In fact, by setting � = 0 directly, we must demonstrate the

{�i}-terms in the coe�cient functions ri are eliminated simul-
taneously. This point has also been discussed in my previous
letters, but it has not been discussed so far.

MM: I do not understand this last comment?

III. SETTING THE PMC SCALES

The expression in Eq. (15) explicitly shows the pattern
of �i terms appearing in the coe�cients at each order.
That is, if we forget about any reference scheme, the
expression for ⇢ in any scheme will take the form:

⇢(Q2) =r
0,0 + r

1,0a(Q) + [r
2,0 + �

0

r
2,1]a(Q)2

+ [r
3,0 + �

1

r
2,1 + 2�

0

r
3,1 + �2

0

r
3,2]a(Q)3

+ [r
4,0 + �

2

r
2,1 + 2�

1

r
3,1 +

5

2
�
1

�
0

r
3,2 + 3�

0

r
4,1

+ 3�2

0

r
4,2 + �3

0

r
4,3]a(Q)4 +O(a5) (19)

where ri,0 are the conformal part of the coe�cients.
MM: Note that I in this expression have assumed/inferred

some relations between the coe�cients e.g. the �0a(Q)

2 co-
e�cient and the �1a(Q)

3 are equal etc... It follows from Eq.
(15) and I have checked that it is indeed correct for Re+e�!h.
I think this holds for any observable?
We have as before for simplicity of the expression set

µ = Q, but this is not the final expression. We must
set the scale at each order in such a way to absorb all �i

dependencies into the running coupling. The problem is
now to understand which terms should be absorbed into
which scales. We can use R� to provide the solution. In
deriving Eq. (15) we made an equal scale displacement
of each running coupling. To see from where each � ap-
peared, we put a dummy index on the displacement of
each coupling to track its origin. The result is:
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1

a
1

(Q) + (r
2

� �
0

r
1

�
1

)a
2

(Q)2

+ [r
3

� �
1

r
1

�
1

� 2�
0

r
2

�
2

+ �2

0

r
1

�2
1

]a
3

(Q)3

+ [r
4

� �
2

r
1

�
1

� 2�
1

r
2

�
2

� 3�
0

r
3

�
3

+ 3�2

0

r
2

�2
2

� �3

0

r
1

�3
1

+
5

2
�
1

�
0

r
1

�2
1

]a(Q)4 +O(a5) (20)

This immediately shows us which terms should be ab-
sorbed into which running coupling, e.g. we must resum
all �

1

dependency into a
1

etc.. In the end one can remove
the dummy index on the couplings since they were put
only to display the correct resummation pattern.

MM: I must emphasize here that the BLM procedure is
only and approximation to PMC as can be seen above, i.e.
besides the fact that ri,0 depend explicitly on Nf one can also
now observe that e.g. there is an N2

f term coming from �1�0

at order a4 which must be absorbed into a1 - If I have un-
derstood BLM correctly, at this order you absorb only all N3

f

dependency into a1, right?

General result for an observable in any R� renormalization scheme:

PMC scales thus satisfy

M. Mojaza, Xing-Gang Wu, sjb
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Figure 11. Predictions for the mtt̄ cumulative asymmetry: pure QCD at NLO and NNLO (as
derived in this work), NLO prediction of Ref. [11] including EW corrections, as well as the PMC
scale-setting prediction of Ref. [11].

range of mtt̄ used for the calculation of the NNLO result, fixed and dynamic scales would lead

to consistent predictions within scale errors (see also recent discussion for the LHC [92]).

We conclude that the two scale-setting approaches produce very di↵erent predictions for

the mtt̄ cumulative ÂFB and it should be easy to distinguish between the two with data,

especially in the region around mtt̄ ⇠ 500GeV. We would also like to point out that the

NNLO prediction based on conventional scale-setting with µR = mt exhibits the “increasing-

decreasing” behaviour pointed out in Ref. [11], albeit much less pronounced than in the PMC

scale-setting approach.

5 Comparisons between di↵erent pdf sets

An alternative way of assessing the pdf dependence in theory predictions is to compare calcu-

lations with di↵erent pdf sets. In this section we compare NNLO QCD predictions based on

four state-of-the-art pdf sets: CT10, HERA 1.5, MSTW2008 and NNPDF 2.3. We compare

the central pdf members for central scale choice µF = µR = mt.
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Top quark forward-backward asymmetry predicted by pQCD NNLO 
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Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

No renormalization scale ambiguity! 

Result is independent of  
Renormalization scheme  

and initial scale! 

QED Scale Setting at NC=0 

Eliminates unnecessary  
systematic uncertainty
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Set multiple renormalization scales -- 
Lensing, DGLAP, ERBL Evolution ...

δ-Scheme automatically             
identifies β-terms!

Scale fixed at each order

Principle of Maximum Conformality

Identify βi via δ-dependence
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Comparison of the PMC predictions for the fiducial cross section �fid(pp!
H ! ��) with the ATLAS measurements at various collision energies. The
LHC-XS predictions are presented as a comparison.

9

draw definite conclusion on the SM predictions. For the
ATLAS data at 8TeV, which is relatively of less experi-
mental uncertainty, it is found that the PMC prediction
show a much better agreement with the data.

F. An estimation of the fiducial cross section
σfid(pp → H → γγ)

With the integrated luminosity 4.5fb−1 for
√
S = 7

TeV, 20.3fb−1 for
√
S = 8 TeV, and 3.2fb−1 for

√
S =

13 TeV, the ATLAS group gives their prediction for the
fiducial cross sections (σfid) for the process pp → H →
γγ at different collision energies [48]. The fiducial cross-
section σfid can be written as

σfid(pp → H → γγ) = σInclBH→γγA, (20)

where A is the acceptance factor, whose values for dif-
ferent collision energies are [48], A|7TeV = 0.620± 0.007,
A|8TeV = 0.611±0.012 and A|13TeV = 0.570±0.006. The
BH→γγ is the branching ratio of H → γγ. By using the
Γ(H → γγ) under conventional scale-setting, the LHC-
XS group predicts BH→γγ = 0.00228 ± 0.00011 [3]. A
detailed PMC analysis for Γ(H → γγ) up to three-loop
levels have been given in Ref.[49]. Using the formulas
given there, we obtain Γ(H → γγ)|PMC = 9.34 × 10−3

MeV for MH = 125 GeV. Using this value together with
Higgs total decay width ΓTotal = (4.07 ± 0.16) × 10−3

GeV [3], we get BH→γγ |PMC = 0.00229± 0.00009. Thus
the main differences for the fiducial cross-section σfid is
from the differences of inclusive cross-section σIncl men-
tioned in the last subsection.

σfid(pp → H → γγ) 7 TeV 8 TeV 13 TeV

ATLAS data [48] 49± 18 42.5+10.3
−10.2 52+40

−37

LHC-XS [3] 24.7± 2.6 31.0± 3.2 66.1+6.8
−6.6

PMC prediction 30.1+2.3
−2.2 38.4+2.9

−2.8 85.8+5.7
−5.3

TABLE V: The fiducial cross section σfid(pp → H → γγ) (in
unit: fb) at the LHC with the collision energies

√
S =7, 8 and

13 TeV, respectively.

We put the PMC predictions for the fiducial cross sec-
tion σfid(pp → H → γγ) at the LHC with the collision
energies

√
S =7 TeV, 8 TeV and 13 TeV in Table V,

where the ATLAS measurements [48] and the LHC-XS
predictions [3] are presented. The PMC fiducial cross-
sections are larger than the LHC-XS ones by ∼ 22%,
∼ 24% and ∼ 30% for

√
S =7 TeV, 8 TeV and 13 TeV,

respectively. Table V shows no significant differences be-
tween the measured fiducial cross sections and the SM
predictions are observed within the current experimental
uncertainties. However, a better agreement of PMC pre-
dictions with the measurements at

√
S = 7 TeV and 8

TeV are observed. This performance can be more clearly
shown by Fig.(6), which presents the comparison of PMC
predictions for σfid(pp → H → γγ) with the ATLAS mea-
surements at various collision energies.
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FIG. 6: Comparison of the PMC predictions for the fiducial
cross section σfid(pp → H → γγ) with the ATLAS measure-
ments at various collision energies [48]. The LHC-XS predic-
tions [3] are presented as a comparison.

IV. SUMMARY

We have studied the Higgs boson hadroproduction
cross-sections by using the PMC scale-setting. The PMC
provides a systematic way to set the renormalization scale
of high-energy process, which has a solid theoretical foun-
dation and satisfies renormalization group invariance.
After applying the PMC scale-setting, the large renor-
malization scale uncertainties for the Higgs total and sep-
arate production cross-sections are eliminated simultane-
ously, and the scheme-and-scale ambiguities under con-
ventional scale-setting are cured. Taking the dominant
gluon-fusion channel as an example, Table II shows un-

der the conventional scale-setting, σ(gg)
Total = 18.76+12.69%

−11.41%

pb for [mH/2, 2mH ] and σ(gg)
Total = 21.14+11.45%

−11.26% pb for
[mH/4,mH ]. While, after applying the PMC, we get the

NNLO prediction σ(gg)
Total

∼= 23.61 pb for µr[mH/4, 2mH ].
Such renormalization scale-independence is reasonable,
since the αs running behavior, or equivalently the renor-
malization scale, at each perturbative order are precisely
fixed by using the RG-equation.

By combining relevant Higgs boson production modes
and the electroweak corrections into consideration, a
more precise predictions for inclusive pp → H produc-
tion cross-sections are obtained by using the PMC. The
inclusive cross-section increases with the increment of
the hadron collision energy. To compare with the LHC-
XS predictions with a guessing scale µr = mH , our
PMC predictions are increased by about 21%, 23% and
29% for

√
S =7 TeV, 8 TeV and 13 TeV, respectively,

which shows a better agreement with the latest LHC
ATLAS measurements, especially for the measurements
at

√
S =7 TeV and 8 TeV. A comparison with fidu-

cial cross sections has been presented in Table V, which
shows no significant differences between the measured

S-Q Wang, X-G Wu, sjb �(pp! HX ! ��X)

PMC
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