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Introduction
°

Transversity of the nucleon using hard processes

What is transversity?
@ Transverse spin content of the proton:

) ~ =)+ o)
| ) @) ~ o= =)
spin along x helicity states

@ Observables which are sensitive to helicity flip thus give access to
transversity Arg(x). Poorly known.

@ Transversity GPDs are completely unknown experimentally.

@ For massless (anti)particles, chirality = (-)helicity
@ Transversity is thus a chiral-odd quantity

@ Since (in the massless limit) QCD and QED are chiral-even (7*, 7/~°),
the chiral-odd quantities (1, 7°, [y*,~7"]) which one wants to measure

should appear in pairs
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Introduction
®0

Transversity of the nucleon using hard processes: using a two body final

state process?

How to get access to transversity GPDs?

9 the dominant DA of pr is of twist 2 and chiral-odd ([y",~"] coupling)
@ unfortunately v* NT — pr N’ =0

@ This cancellation is true at any order : such a process would require a
helicity transfer of 2 from a photon.

o lowest order diagrammatic argument:

L -
(l L
(& [N
)

PT

Y Y e = 0

[Diehl, Gousset, Pire], [Collins, Diehl]
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Introduction
oe

Transversity of the nucleon using hard processes: using a two body final

state process?

Can one circumvent this vanishing?

@ This vanishing only occurs at twist 2

@ At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti],
[Goloskokov, Kroll]

@ However processes involving twist 3 DAs may face problems with

factorization (end-point singularities)
can be made safe in the high-energy kr —factorization approach

[Anikin, lvanov, Pire, Szymanowski, S.W.]

@ One can also consider a 3-body final state process [lvanov, Pire,
Szymanowski, Teryaev], [Enberg, Pire, Szymanowski], [El Beiyad, Pire,
Segond, Szymanowski, S. W.]
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Access to GPDs through a 3 body final state
[ Yelolele}

Probing GPDs using p meson + photon production

@ We consider the process YN — v p N’

@ Collinear factorization of the amplitude for y + N — v+ p + N’
at large M2, t’
t/

RN

L)
@' s@ s

x4+ €

- p
N N N’
large angle factorization
3 la Brodsky Lepage v

t (small)
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Access to GPDs through a 3 body final state
o] Jolele}

Probing GPDs using p meson + photon production

Processes with 3 body final states can give access to chiral-even GPDs
t/

N

3D

_|_ —
THe z-¢ pL chiral-even twist 2 DA
—(orp )=

t (small)

chiral-even twist 2 GPD
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Access to GPDs through a 3 body final state
fJe] Yole}

Probing GPDs using p meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs
t/

N

6 b
r+€ l r—£
—(orp )=

t (small)

PT hiral-odd twist 2 DA

chiral-odd twist 2 GPD
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Access to GPDs through a 3 body final state
00000

Probing GPDs using p meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

How did we manage to circumvent the no-go theorem for 2 — 2 processes?

T

Typical non-zero diagram for a transverse p meson

the o matrices (from DA and GPD sides) do not kill it anymore!
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Access to GPDs through a 3 body final state
[eleleYeY }

Master formula based on leading twist 2 factorization

1 1
Aa[ldx/() dz T(x,&,2) X H(x,&,6)P,(2) + - -

@ Both the DA and the GPD can be
either chiral-even or chiral-odd.

@ At twist 2 the longitudinal p DA is
chiral-even and the transverse p DA is
chiral-odd.

@ Hence we will need both chiral-even
and chiral-odd non-perturbative
building blocks and hard parts.
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Access to GPDs through a 3 body final state
°

Kinematics

Kinematics to handle GPD in a 3-body final state process

@ use a Sudakov basis :
light-cone vectors p, n with 2p-n =s
@ assume the following kinematics:
e AL KpL

2 2 2
aM,mp<<MA/p

@ initial state particle momenta:
M2
g =n", pf =1+ " + aran”

9 final state particle momenta:

M? +
I 1— w N
5y — A /)2)? AH
|- an“+7(pt 1/2) P+ — ==,
as 2
b + Ae/2)2 +m? A
Py = apn + T B/2) Lptph — =£,
Qps 2
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Non-perturbative ingredients
°

Non perturbative building blocks

9 Helicity conserving GPDs at twist 2 :

dz~ izPt2— - 1 _ + 1 _
/ A7 € <p2a)‘2|1/]q( 22 ) ! ¢<2'Z )|p17)\1>

_ 1 q + q ianrAa
= ) [ g 0 4 B e B
d 7,1: ta- o
:ﬁ P75 (p2, sl (——z > >|p1,>\1
I S a + AT
— ) [ A 00+ B 60 T

o We will consider the simplest case when A; = 0.

@ In that case and in the forward limit £ — 0 only the HY and H4 terms
survive.

@ Helicity conserving (vector) DA at twist 2 :

(Ola(0) " u(@)lp(p,s)) = fp/o du ™™g (u)

S
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Non-perturbative ingredients

Non perturbative building blocks

@ Helicity flip GPD at twist 2 :

dz~ izPT2— - 1 _\. i 1 _
/Ee P p2, Aoty <—§Z >W+ (52 )|P17>\1>

S ; . 4 ra PTA" — AT P!
= 2Pﬁ_‘_u(pg,)\g) {HT(cc,f,t)w + HT(:c,f,t)TIQV
TTA ATy - At Pt — Pty

+ E;I"(xft) +E§]“(:L7£7t) MN :| u(pl,)\l)

2MN

o We will consider the simplest case when A, = 0.

o In that case and in the forward limit £ — 0 only the H7. term survives.

@ Transverse p DA at twist 2 :

1
0

(0a(0)0" u(x)|o (p, )) = %(eﬁp” e f / du e § ()
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Non-perturbative ingredients
°

Models for DAs

Asymptotical DAs

We take the simplistic asymptotic form of the (normalized) DAs:

oi(2) = 62(1-2),

o1(2) = 62(1—2).
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Non-perturbative ingredients
€000

Model for GPDs: based on the Double Distribution ansatz

Realistic Parametrization of GPDs

@ GPDs can be represented in terms of Double Distributions [Radyushkin]
based on the Schwinger representation of a toy model for GPDs which has the structure

of a triangle diagram in scalar ¢> theory

1-18]
Hi(z,£,t=0) = / dﬁ/ da §(B+Ea—x) f1(B, )

1+|8]
@ ansatz for these Double Distributions [Radyushkin]:

@ chiral-even sector:
(B, a,t = 0)
f4B, .t =0)

@ chiral-odd sector:

f7B et =0) = TI(B,a)q(8)O(B) — II(=B, @) 6¢(—B) O(—B) ,

2 2
o II(B,a) = %% : profile function

@ simplistic factorized ansatz for the ¢-dependence:
H(2,6,8) = H(2,£,t = 0) x Fu(t)

= 2)2 a standard dipole form factor (C = .71 GeV)

(8, @) q(B)O(B) — TI(—B,a) 4(—=B) O(=H) ,
(8, o) Aq(B)O(B) + I1(—B, a) Ag(—p) ©(=5) -

with FH( )
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Non-perturbative ingredients
0®00

Model for GPDs: based on the Double Distribution ansatz

Sets of used PDFs

@ ¢(z) : unpolarized PDF [GRV-98]
and [MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo]

9 Ag(x) polarized PDF [GRSV-2000]

@ dqg(x) : transversity PDF [Anselmino et al.]
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Non-perturbative ingredients
0000

Model for GPDs: based on the Double Distribution ansatz

Typical sets of chiral-even GPDs (C' = —1 sector)

£€=.1+4 Syn =20 GeV?and M2, = 3.5 GeV?

HY(z,€)

1.0 -1.0

HY O (@,6,t) = H(z,&,1) + H(—,6,t)

five Ansdtze for ¢(z): GRV-98, MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo

A" (z,€) A (x,€) 4

-1.0

YO (@,€,6) = H9(,,1) — A (~a,€,1)
“valence” and “standard”: two GRSV Ansitze for Aq(x)
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Non-perturbative ingredients
000e

Model for GPDs: based on the Double Distribution ansatz

Typical sets of chiral-odd GPDs (C = —1 sector)

£=.1¢ Sy,n =20 GeV?and M2, = 3.5 GeV?

Hy O (,€) HY (2, €)

-1.0

-1.0 -05 0.0 0.5 1.0 -08

HE ) (w,6,t) = H3(2,6,1) + HL(—2,£,1)

“valence” and “standard”: two GRSV Ansitze for Ag(z)
= two Ansitze for dg(x)
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Computation
o

Computation of the hard part

20 diagrams to compute

jm
-
.
.
A

The other half can be deduced by ¢ ++ ¢ (anti)symmetry
Red diagrams cancel in the chiral-odd case
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Computation

Final computation

Final computation
1 1
.AO(/ dx/ dz T'(z,€,2) H(z,£,t) Pp(z)
-1 0

@ One performs the z integration analytically
using an asymptotic DA « z(1 — 2)

@ One then plugs our GPD models into the
formula and performs the integral w.r.t. x
numerically.

o Differential cross section:

do _ |M|?
dt du’ dM2, 3282 M2,(2m)3

—t=(=)min

|M|? = averaged amplitude squared

. . a2 2 /
@ Kinematical parameters: SJy, M5, and —u
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Fully differential cross section

Chiral even cross section
at —t = (_t)min

doeven —6 d
—__Teven (. GeV ™) __ @Geven
dM2,d(—u/)d(—t) dM2,d(—u')d(—t)

P

(nb- GeV %)

. 07f
5k :
0.6F"
050\ "
3 0.4}
03k

0.2f

proton neutron

S,n =20 GeV?
M2, =3,4,5,6 GeV?
solid: “valence” model

dotted: “standard” model 20/37



Fully differential cross section

Chiral odd cross section
at —t = (—t)min

dooaa —6 doodd —6
—————— (pb- Ge ———————— (pb- Ge
D d—w)ya—p PP V) D d—wyd—y PPV
3.5f
2.0F
3.0f
2.5¢ 1.5
2.0f
1.5F 1.0
1.0f
0.5
0.5
0.0 . 0.0 ; ; , . . . . ,
1 5 1.0 1.5 2.0 25 3.0 3.5 40 45 5.0
—u'(GeV?)
proton neutron
“valence” and “standard” models, “valence” model only

each of them with +20 [S. Melis]

S,y =20 GeV?
M3, =3,4,5,6 GeV?

21/37



Phase space integration

Evolution of the phase space in (—t, —u’) plane

large angle scattering: M2, ~ —u' ~ —t'

in practice: —u' > 1 GeV? and —t' > 1 GeV? and (—t)min < —t < .5 GeV?

H 2
this ensures large M,

example: S,y = 20 GeV?

—Uu —Uu
—t —t —t
M,, = 2.2 GeV? M2, =25 GeV? M,, =3 GeV?
_u/ _u/
—t —t —t
M,, =5 GeV” M,, =8 GeV” M,, =9 GeV? 22/37



Variation with respect to S, x

Mapping (S~ , M) — (Syn, M)
One can save a lot of CPU time:

@ M(a, &) and GPDs(&, )

@ In the generalized Bjorken limit:

° &= z(sz—z\zg)—Mgp
Given Syn (=20 GeV?), with its grid in M2, choose another Son
One can get the corresponding grid in M., by just keeping the same ¢'s:
~ Sa,r]\r — M?
2 2 9
M, = wam )
From the grid in —u’, the new grid in —@’ is given by just keeping the same a's:
ﬁ, — AI?V
Mz,

(—u).

= a single set of numerical computations is required (we take Syn = 20 GeV?)
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Single differential cross section

Chiral even cross section

doeven _2 d
—~ (nb- GeV™7) Ocven a2
dM2, o, (nb-GeV™?)
0.30 0.035
0.25 0.030
0.20 0.025
0.020
0.15
0.015
0-10 0.010
0.05 0.005
3 4 5 6 7 8 9 3 4 5 6 7 8 9
M2, (GeV?) M2, (GeV?)
proton neutron

“valence” scenario

Sy N vary in the set &, 10, 12, 14, 16, 18, 20 GeV? (from left to right)
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Single differential cross section

Chiral odd cross section

dooad
dM?

P

(pb- GeV™?)

M2, (GeV?)
SN = 20GeV?

Various ansatze for the PDFs Agq used to build the GPD Hr:
@ dotted curves: “standard” scenario
@ solid curves: “valence” scenario

@ deep-blue and red curves: central values
Q and . results with +20.
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Single differential cross section

Chiral odd cross section

doodd
dM?,

el

(pb- GeV™?)

3 4 5 6 7 8 9
M2, (GeV?)

proton, “valence” scenario

Sy vary in the set 8, 10, 12, 14, 16, 18, 20 GeV? (from left to right)
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Integrated cross-section

Chiral even cross section

Teven (D) Teven (nb)
0.8
0.10
0.6 0.08
0.06
0.4
0.04
0.2
0.02
5 10 15 20 5 10 15 20
Syn (GeV?) Syn (GeV?)
proton neutron

solid red: “valence” scenario
dashed blue: “standard” one
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Integrated cross-section

Chiral odd cross section

Ooad (Pb) Oodd (Pb)
T . T
0.6 "’/,\\n T 0.4 —~—
0.5 / T
0.3 —
0.4 ; / e . S
7 /
0.3 / 0.2 /
j /s
0.2 J -
7 0.1 /
0.1 /] Y
J /
5 10 15 20 5 10 15 20
Syn (GeV?) Syn (GeV?)
proton neutron

solid red: “valence” scenario

dashed blue: “standard” one
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Counting rates for 100 days

example: JLab Hall B

9 untagged incoming v = Weizsicker-Williams distribution
@ With an expected luminosity of £ = 100 nb™*s™*, for 100 days of run:

o Chiral even case : ~ 6.8 10° py, .

@ Chiral odd case : ~ 7.5 103 pr
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Results

Effects of an experimental angular restriction for the produced

Angular distribution of the produced v (chiral-even cross section)

after boosting to the lab frame

1 docven 1 docven
Ocven  dO Ocven  df
0.10 0.15
0.08
0.10
0.06
0.04
0.05
0.02
0.00 0.00
[ 10 20 30 40 5 10 15 20 25 30 35
[4 0
2 2
S’yN =10 GeV S’yN =15 GeV

M3, = 3,4 GeV? M3, =3,4,5 GeV?
JLab Hall B detector equipped between 5° and 35°

= this is safe!

1 docven
Ceven  db

Syn = 20 GeV?

M2, =3,4,5 GeV?
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Results

Effects of an experimental angular restriction for the produced

Angular distribution of the produced ~ (chiral-even cross section)

dTeven —2 doeven —2 dOeven —2
PIvEN (nb-GeV™7) L, (nb-GeV™7) PIVER (nb-GeV™7)
0.25 0.30 0.30
0.20 0.25 0.25
0.15 0.20 0-20
0.10 0.15 0.15
0.10 0.10
0.05 ] 0.05 0.05
0.00 e 0.00 0.00
2.0 2.5 3.0 3.5 4.0 2 7 2 3 4 5 6 7 8 9
M2, (GeV?) M2, (GeV?) M2, (GeV?)
S,n =10 GeV? Syn =15 GeV? S,n =20 GeV?

Omaz = 35°, 30°, 25°, 20°, 15°, 10°

JLab Hall B detector equipped between 5° and 35°
= this is safe!
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Results

Effects of an experimental angular restriction for the produced ~7

Angular distribution of the produced v (chiral-odd cross section)

after boosting to the lab frame

1 docyen 1 docven 1 doeven
Oeven  df Ocven  dO Ocven  dO

0.35
0.30

0.20

0.15 0.20 £ 0.25
0.10 015 0:20
% 0.15
0.10
0.05 0.10
0.05 2 0.05
0.00 0.00 Eaee 0.00 e
o 10 20 30 40 o 10 20 30 40 o 10 20 30 40
0 0 0
S,y = 10 GeV? S,y =15 GeV? Syn = 20 GeV?
2 _ 2 2 _aorr pr 2 2 _ 4o 2
M2, =3,4 GeV M2, =35,5,6.5 GeV M2, =4,6,8 GeV

JLab Hall B detector equipped between 5° and 35°

= this is safe!
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Results

Effects of an experimental angular restriction for the produced

Angular distribution of the produced ~ (chiral-even cross section)

dooven
dmz,

doeven
dMz,

doeven
amz,

0.30 /\\

(nb - GeV™?) (nb - GeV™?) (nb - GeV™?)

0.12

0.25 0.10

0.20 0.08

0.15 0.06

0.10 2 0.04
0.05 \\3\\ \ 0.02
0.00 = 0.00
2.0 2.5 3.0 3.5 4.0 2
M2, (GeV?) M2, (GeV?) M2, (GeV?)
S,n =10 GeV? Syn =15 GeV? S,n =20 GeV?

Omaz = 35°, 30°, 25°, 20°, 15°, 10°

JLab Hall B detector equipped between 5° and 35°
= this is safe!
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Conclusion

Conclusion (1)

@ High statistics for the chiral-even component: enough to extract H (H?)
and test the universality of GPDs

@ In this chiral-even sector: analogy with Timelike Compton Scattering, the
~p pair playing the role of the ~*.
@ Strong dominance of the chiral-even component w.r.t. the chiral-odd one:

@ In principle the separation pr,/pr can be performed by an angular analysis
of its decay products, but this could be very challenging.
Cuts in 0 might help

o Future: study of polarization observables = sensitive to the interference of
these two amplitudes

@ The Bethe Heitler component (outgoing v emitted from the incoming
lepton) is:
o zero for the chiral-odd case
@ suppressed for the chiral-even case

@ Our result can also be applied to electroproduction (Q* # 0) after adding
Bethe-Heitler contributions and interferences.

@ Possible measurement at JLAB (Hall B, C, D)
9 A similar study could be performed at COMPASS. EIC, LHC in UPC?
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Conclusion

Conclusion (2)

Collaboration with Goran Duplanci¢, Kornelija Passek-Kumericki (IRB, Zagreb),
Hervé Moutarde (SPhN), Bernard Pire (CPhT), Lech Szymanowski (NCBJ)

@ We are now investigating the process YN — O N

@ at Born order

@ at one loop

@ the processes YN — yn®N’ and YN — ~n° N’ are of particular interest:
they give an access to the gluonic GPDs at Born order.
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Results

Chiral-even cross section

Contribution of u versus d

doeven (nb - Ge\/*s) doeven

[ e — [ — . -6
M2, d(—u')d(—1) DI d—wyd—y PGV

1.0 1.5 2.0 2.5

—u/(GeV?)
proton neutron

M?2, = 4 GeV?>. Both vector and axial GPDs are included.

u + d quarks u quark  d quark
Solid: “valence” model
dotted: “standard” model

9 u-quark contribution dominates due to the charge effect
9 the interference between u and d contributions is important and negative. ., .,



Results

Chiral-even cross section

Contribution of vector versus axial amplitudes

doeven -6 do,
[ — b . G V even
M2, d(—u)d(—T) (nb- GeV™)

—_— . —6
D d(—u) (D) (nb-GeV™?)

proton neutron

M?,p =4 GeV2. Both u and d quark contributions are included.

vector + axial amplitudes /  vector amplitude / axial amplitude

solid: “valence” model
dotted: “standard” model
@ dominance of the vector GPD contributions

@ no interference between the vector and axial amplitudes
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