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HYPERON SPECTRUM

 Missing hyperons and quantum numbers

Parity is not  
directly measured,
but assigned by the 
quark model

20 N* and 20 ∆*spin-parity known

– 1–

Ξ RESONANCES

The accompanying table gives our evaluation of the present

status of the Ξ resonances. Not much is known about Ξ reso-

nances. This is because (1) they can only be produced as a part

of a final state, and so the analysis is more complicated than if

direct formation were possible, (2) the production cross sections

are small (typically a few µb), and (3) the final states are

topologically complicated and difficult to study with electronic

techniques. Thus early information about Ξ resonances came

entirely from bubble chamber experiments, where the numbers

of events are small, and only in the 1980’s did electronic exper-

iments make any significant contributions. However, nothing of

significance on Ξ resonances has been added since our 1988

edition.

For a detailed earlier review, see Meadows [1].

Table 1. The status of the Ξ resonances. Only those with an overall
status of ∗∗∗ or ∗∗∗∗ are included in the Baryon Summary Table.

Status as seen in —

Particle JP
Overall
status Ξπ ΛK ΣK Ξ(1530)π Other channels

Ξ(1318) 1/2+ ∗∗∗∗ Decays weakly
Ξ(1530) 3/2+ ∗∗∗∗ ∗∗∗∗

Ξ(1620) ∗ ∗

Ξ(1690) ∗∗∗ ∗∗∗ ∗∗

Ξ(1820) 3/2− ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗

Ξ(1950) ∗∗∗ ∗∗ ∗∗ ∗

Ξ(2030) ∗∗∗ ∗∗ ∗∗∗

Ξ(2120) ∗ ∗

Ξ(2250) ∗∗ 3-body decays
Ξ(2370) ∗∗ 3-body decays
Ξ(2500) ∗ ∗ ∗ 3-body decays

∗∗∗∗ Existence is certain, and properties are at least fairly well explored.
∗∗∗ Existence ranges from very likely to certain, but further confir-

mation is desirable and/or quantum numbers, branching fractions,
etc. are not well determined.

∗∗ Evidence of existence is only fair.
∗ Evidence of existence is poor.

Reference

1. B.T. Meadows, in Proceedings of the IV th International
Conference on Baryon Resonances (Toronto, 1980),
ed. N. Isgur, p. 283.

CITATION: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)

June 18, 2012 15:24



HYPERON SPECTRUM

 Model-dependence of hyperon spectrum
EPJ Web of Conferences

Table 1. Low-lying ⌅ and ⌦ baryon spectrum of spin 1/2 and 3/2 predicted by the non-relativistic quark model
of Chao et al. (CIK), relativized quark model of Capstick and Isgur (CI), Glozman-Riska model (GR), large Nc
analysis, algebraic model (BIL), and QCD sum rules (SR). The recent quark model prediction (QM) and the
Skyrme model results (SK) are given as well. The mass is given in the unit of MeV.

State CIK [4] CI [5] GR [6] Large-Nc [7–11] BIL [12] SR [13,14] QM [15] SK [1]
⌅( 1

2
+) 1325 1305 1320 1334 1320 (1320) 1325 1318

1695 1840 1798 1825 1727 1891 1932
1950 2040 1947 1839 1932 2014

⌅( 3
2
+) 1530 1505 1516 1524 1520 1539

1930 2045 1886 1854 1878 1934 2120
1965 2065 1947 1859 1979 2020

⌅( 1
2
�) 1785 1755 1758 1780 1869 1550 (1630) 1725 1614

1890 1810 1849 1922 1932 1811 1660
1925 1835 1889 1927 2076

⌅( 3
2
�) 1800 1785 1758 1815 1828 1840 1759 1820

1910 1880 1849 1973 1869 1826
1970 1895 1889 1980 1932

⌦( 1
2
+) 2190 2220 2068 2408 2085 2175 2140

2210 2255 2166 2219 2191
⌦( 3

2
+) 1675 1635 1651 1670 1656 1694

2065 2165 2020 1922 1998 2170 2282
2215 2280 2068 2120 2219 2182

⌦( 1
2
�) 2020 1950 1991 2061 1989 1923 1837

⌦( 3
2
�) 2020 2000 1991 2100 1989 1953 1978

These observations show that the investigation of multi-strangeness baryons gives another window
to understand the baryon structure. In addition, the studies on the production mechanisms of ⌅ baryons
give a tool to constrain the properties of S = �1 hyperon resonances. The investigation to understand
the production mechanisms of the ⌅ baryons was recently initiated by the CLAS Collboration at JLab
using the reaction of �p ! K+K+⌅� [16]. Theoretical investigation also started only recently [17–
19]. In the analysis on the possible production mechanisms, it was shown that the most important
contribution comes from the intermediate S = �1 hyperon resonances of jP = 1/2�, 3/2+, 5/2�, and
7/2+ [17,20]. Furthermore, through the list of PDG on the S = �1 hyperons, it can be found that many
hyperon resonances in the mass of around 2 GeV have high spins. Therefore, it is necessary to develop
a formalism to include high spin resonances for understanding the production process.

Based on the conventional Rarita-Schwinger formalism, neglecting the ambiguities arising from
the o↵-shell nature of the intermediate hyperon resonances, one can construct a general formalism
for high spin resonances [21]. Based on this formalism, the study on the role of high spin hyperon
resonances in ⌅ photoproduction was performed and the results for the invariant mass distribution
of the K+⌅� pair and the K+K+ pair in the reaction of �p ! K+K+⌅� are shown in Fig. 1. Here,
the dot-dashed lines are the results of Ref. [17] which considers the ⇤(1800) of jP = 1/2� and the
⇤(1890) of jP = 3/2+. The result of this model for the K+⌅� invariant mass distribution evidently
shows that the contribution from a resonance at a mass of around 2 GeV is missing. Among the
hyperon resonances listed in the PDG, the ⌃(2030) of jP = 7/2+ is the most probable state that can
represent such resonances. The contribution from the ⌃(2030) is shown by the dashed lines in Fig. 1,
which shows that this can explain the gap between the results of Ref. [17] and the experimental data as
shown by the solid lines. This investigation shows that the properties of high spin hyperon resonances
can be studied through the analyses of the production processes of the ⌅ baryons.

In summary, we have shown that the investigation of ⌅ baryons and their production processes
can open a way to learn about the baryon structure and the properties of S = �1 hyperon resonances
of high spins. Studies on the ⌅ spectrum can reveal the dynamics of the constituents that cannot be
seen in non-strangeness baryons. Although more sophisticated models for the production mechanisms
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1/2- ?

Ground state baryons  
are not enough. 
We need more data!



K̄N ! K⌅

• Difficulties 

• Mostly, the decay distributions are used 

• Ground state: no strong decay 

• Remove model-dependence 

• We need a model-independent method (based on symmetries 
only) 

• use the anti-kaon beam: larger cross sections 

• define 

• choose

n̂1 ⌘ (q⇥ q0)⇥ q/|(q⇥ q0)⇥ q|
n̂2 ⌘ (q⇥ q0)/|q⇥ q0|

q̂ = ẑ, n̂1 = x̂, n̂2 = ŷ

K̄(q)N(p) ! K(q0)⌅(p0)

ˆq and

ˆn1 form the reaction plane



The general spin-structure of the reaction amplitude

ˆM+
= M0 +M2� · ˆn2, for positive parity ⌅

ˆM�
= M1� · ˆn1 +M3� · ˆn3, for negative parity ⌅

) ˆM =

3X

m=0

Mm�m

where M1 = M3 = 0 for positive parity ⌅

and M0 = M2 = 0 for negative parity ⌅

The cross section

d�

d⌦
=

1

2
Tr

⇣
M̂M̂†

⌘
=

3X

m=0

|Mm|2

K̄N ! K⌅



(Diagonal) spin-transfer coefficient

Therefore, when i=y, 

Double polarization observable

The Ξ is self-analyzing, so we need polarized nucleon target only

should be possible to measure at J-PARC

Generalization to Ξ* resonances and to Ξ photoproduction is also 
possible

d�

d⌦
Kii =

1

2
Tr

⇣
M̂�iM̂

†�i

⌘
= |M0|2 + |Mi|2 �

X

k 6=i

|Mk|2

Kii =
d�i(++)� d�i(+�)

d�i(++) + d�i(+�)

Kii = ⇡⌅(= ±1)

⇡⌅ =
Kyy

⌃ Nakayama, YO, Haberzettl, PRC 85 (2012) 042201(R)

K̄N ! K⌅



K̄N ! K⌅

Target Nucleon asymmetry

Recoil Cascade asymmetry

d�

d⌦
Ti ⌘

1

2
Tr

�
M�iM

†� = 2Re[M0M
⇤
i ] + 2Im[MjM

⇤
k ]

d�

d⌦
Pi ⌘

1

2
Tr

�
MM†�i

�
= 2Re[M0M

⇤
i ]� 2Im[MjM

⇤
k ]

Positive parity Cascade Negative parity Cascade

d�

d⌦
(Ty + Py) = 4Re[M0M

⇤
2 ]

d�

d⌦
(Ty � Py) = 0

d�

d⌦
(Ty + Py) = 0

d�

d⌦
(Ty � Py) = 4Im[M3M

⇤
1 ]

More details for the kinematics of spin-1/2 and 3/2 Ξ baryon productions  
can be found in Jackson, YO, Haberzettl, Nakayama, PRC 89 (2014) 025206



(MODEL CALCULATION)K̄N ! K⌅

Λ(1116)   Σ(1193)  
Λ(1405)   Σ(1385)  
Λ(1520) 

the model parameters may be fixed from the relevant decay rates(PDG) 
and/or quark models and SU(3) symmetry considerations. 

KN→KΞ : model                                                    
                                                                      [Jackson, Oh, Haberzettl, K.N., PRC91(2015)065208] 

no enough information  to fix the 
parameters of the model.     

KN→KΞ : model                                                    
                                                                      [Jackson, Oh, Haberzettl, K.N., PRC91(2015)065208] 

TP =
X

r

|FriSrhFr| ! Ms

TNP = V NP + V NPG0T
NP ! Mu +Mc

T = V + V G0T = TP + TNP

MT
c++ = MT

c�� =

X

L

aLT

✓
p0

⇤ S

◆L

exp


�↵LT p02

⇤

2
S

�
PL (✓)

MT
c+� = �MT

c�+ =

X

L

bLT

✓
p0

⇤ S

◆L

exp


�↵LT p02

⇤

2
S

�
P 1
L (✓)

ΛS ~ 1 GeV 
(scale parameter) 

Mc 

aLT , bLT , αLT = fit parameters  
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APPENDIX

In this appendix, we give the effective Lagrangians and
phenomenological dressed baryon propagators from which the
s- and u-channel amplitudes, Ms and Mu discussed in Sec. II,
are constructed. We follow Refs. [23,24,72–74] and consider
not only the spin-1/2 ground state " and # but also their
respective excited states with spin up to 7/2. In the following
we use the notations for the isodoublet fields

N =
(

p
n

)
, ! =

(
!0

−!−

)
,

(A1)

K =
(

K+

K0

)
, Kc =

(
K̄0

−K−

)
,

and for the isotriplet fields

! =

⎛

⎝
#+

#0

#−

⎞

⎠. (A2)

We also introduce the auxiliary operators in Dirac space

D
1/2(±)
B ′BM ≡ −$(±)

(
±iλ + 1 − λ

mB ′ ± mB

/∂

)
, (A3a)

D3/2(±)
ν ≡ $(∓)∂ν , (A3b)

D5/2(±)
µν ≡ −i$(±)∂µ∂ν , (A3c)

D7/2(±)
µνρ ≡ −$(∓)∂µ∂ν∂ρ , (A3d)

where $(+) ≡ γ5 and $(−) ≡ 1. Here, mB stands for the mass
of the baryon B. The parameter λ has been introduced to
interpolate between the pseudovector (λ = 0) and the pseu-
doscalar (λ = 1) couplings. Note that in the above equation
the order of the subscript indices in D

1/2(±)
B ′BM is important, i.e.,

D
1/2(±)
B ′BM ̸= D

1/2(±)
BB ′M .

The effective Lagrangians for spin-1/2 hyperons " and #
(or their resonances) are, then, given by

L1/2(±)
"NK ≡ g"NK "̄

(
D

1/2(±)
"NK K̄

)
N + H.c. , (A4a)

L1/2(±)
#NK = g#NK !̄ ·

(
D

1/2(±)
#NK K̄

)
τN + H.c. , (A4b)

L1/2(±)
!"Kc

= g!"Kc
!̄

(
D

1/2(±)
!"K Kc

)
" + H.c. , (A4c)

L1/2(±)
!#Kc

= g!#Kc
!̄ τ

(
D

1/2(±)
!#K Kc

)
· ! + H.c., (A4d)

where the superscripts ± refer to the positive (+) and negative
(−) relative parity of the baryons. Flavor SU(3) symmetry
relates the coupling constants among the members of the octet
JP = 1/2+ ground-state baryons and JP = 0− pseudoscalar

mesons and we have

g"NK = −g8
1 + 2α√

3
, (A5a)

g#NK = g8(1 − 2α) , (A5b)

g!"Kc
= −g8

1 − 4α√
3

, (A5c)

g!#Kc
= −g8 , (A5d)

where the empirical values are g8 = gNNπ = 13.26 and α =
0.365, where α is the F/D mixing parameter defined as α =
F/(D + F ).

For spin-3/2 hyperons, we have

L3/2(±)
"NK = g"NK

mK

"̄ν
(
D3/2(±)

ν K̄
)
N + H.c. , (A6a)

L3/2(±)
#NK = g#NK

mK

!̄
ν ·

(
D3/2(±)

ν K̄
)
τN + H.c. , (A6b)

L3/2(±)
!"Kc

=
g!"Kc

mK

!̄
(
D3/2(±)

ν Kc

)
"ν + H.c. , (A6c)

L3/2(±)
!#Kc

=
g!#Kc

mK

!̄τ
(
D3/2(±)

ν Kc

)
· !ν + H.c. , (A6d)

where mK denotes the kaon mass. For spin-5/2 hyperons
[24,75],

L5/2(±)
"NK = g"NK

m2
K

"̄µν
(
D5/2(±)

µν K̄
)
N + H.c. , (A7a)

L5/2(±)
#NK = g#NK

m2
K

!̄
µν ·

(
D5/2(±)

µν K̄
)
τN + H.c. , (A7b)

L5/2(±)
!"Kc

=
g!"Kc

m2
K

!̄
(
D5/2(±)

µν Kc

)
"µν + H.c. , (A7c)

L5/2(±)
!#Kc

=
g!#Kc

m2
K

!̄τ
(
D5/2(±)

µν Kc

)
· !µν + H.c. (A7d)

And, for spin-7/2 hyperons, we have [24,75]

L7/2(±)
"NK = g"NK

m3
K

"̄µνρ
(
D7/2(±)

µνρ K̄
)
N + H.c. , (A8a)

L7/2(±)
#NK = g#NK

m3
K

!̄
µνρ ·

(
D7/2(±)

µνρ K̄
)
τN + H.c. , (A8b)

L7/2(±)
!"Kc

=
g!"Kc

m3
K

!̄
(
D7/2(±)

µνρ Kc

)
"µνρ + H.c. , (A8c)

L7/2(±)
!#Kc

=
g!#Kc

m3
K

!̄τ
(
D7/2(±)

µνρ Kc

)
· !µνρ + H.c. (A8d)

The coupling constants in the above Lagrangians corre-
sponding to " and # resonances are free parameters adjusted
to reproduce the existing data. For those resonances considered
in the present work, they are given in Table III.

In the present work, all the meson-baryon-baryon vertices
are obtained from the above Lagrangian. In addition, each
vertex is multiplied by an off-shell form factor given by

f
(
p2

r ,mr,"r

)
=

(
n"4

r

n"4
r +

(
p2

r − m2
r

)2

)n

, (A9)

where p2
r and mr are the square of the 4-momentum and mass

of the exchanged hyperon, respectively. The cutoff parameter
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And, for spin-7/2 hyperons, we have [24,75]
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The coupling constants in the above Lagrangians corre-
sponding to " and # resonances are free parameters adjusted
to reproduce the existing data. For those resonances considered
in the present work, they are given in Table III.

In the present work, all the meson-baryon-baryon vertices
are obtained from the above Lagrangian. In addition, each
vertex is multiplied by an off-shell form factor given by
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APPENDIX

In this appendix, we give the effective Lagrangians and
phenomenological dressed baryon propagators from which the
s- and u-channel amplitudes, Ms and Mu discussed in Sec. II,
are constructed. We follow Refs. [23,24,72–74] and consider
not only the spin-1/2 ground state " and # but also their
respective excited states with spin up to 7/2. In the following
we use the notations for the isodoublet fields

N =
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(
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We also introduce the auxiliary operators in Dirac space

D
1/2(±)
B ′BM ≡ −$(±)

(
±iλ + 1 − λ

mB ′ ± mB

/∂
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, (A3a)

D3/2(±)
ν ≡ $(∓)∂ν , (A3b)

D5/2(±)
µν ≡ −i$(±)∂µ∂ν , (A3c)

D7/2(±)
µνρ ≡ −$(∓)∂µ∂ν∂ρ , (A3d)

where $(+) ≡ γ5 and $(−) ≡ 1. Here, mB stands for the mass
of the baryon B. The parameter λ has been introduced to
interpolate between the pseudovector (λ = 0) and the pseu-
doscalar (λ = 1) couplings. Note that in the above equation
the order of the subscript indices in D

1/2(±)
B ′BM is important, i.e.,

D
1/2(±)
B ′BM ̸= D

1/2(±)
BB ′M .

The effective Lagrangians for spin-1/2 hyperons " and #
(or their resonances) are, then, given by
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where the superscripts ± refer to the positive (+) and negative
(−) relative parity of the baryons. Flavor SU(3) symmetry
relates the coupling constants among the members of the octet
JP = 1/2+ ground-state baryons and JP = 0− pseudoscalar

mesons and we have

g"NK = −g8
1 + 2α√

3
, (A5a)
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where the empirical values are g8 = gNNπ = 13.26 and α =
0.365, where α is the F/D mixing parameter defined as α =
F/(D + F ).

For spin-3/2 hyperons, we have
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where mK denotes the kaon mass. For spin-5/2 hyperons
[24,75],
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N + H.c. , (A7a)

L5/2(±)
#NK = g#NK

m2
K

!̄
µν ·

(
D5/2(±)

µν K̄
)
τN + H.c. , (A7b)

L5/2(±)
!"Kc

=
g!"Kc

m2
K

!̄
(
D5/2(±)

µν Kc

)
"µν + H.c. , (A7c)

L5/2(±)
!#Kc

=
g!#Kc

m2
K

!̄τ
(
D5/2(±)

µν Kc

)
· !µν + H.c. (A7d)

And, for spin-7/2 hyperons, we have [24,75]
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The coupling constants in the above Lagrangians corre-
sponding to " and # resonances are free parameters adjusted
to reproduce the existing data. For those resonances considered
in the present work, they are given in Table III.

In the present work, all the meson-baryon-baryon vertices
are obtained from the above Lagrangian. In addition, each
vertex is multiplied by an off-shell form factor given by
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APPENDIX

In this appendix, we give the effective Lagrangians and
phenomenological dressed baryon propagators from which the
s- and u-channel amplitudes, Ms and Mu discussed in Sec. II,
are constructed. We follow Refs. [23,24,72–74] and consider
not only the spin-1/2 ground state " and # but also their
respective excited states with spin up to 7/2. In the following
we use the notations for the isodoublet fields

N =
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(
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)
,

(A1)

K =
(
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(
K̄0
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)
,

and for the isotriplet fields

! =
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⎠. (A2)

We also introduce the auxiliary operators in Dirac space

D
1/2(±)
B ′BM ≡ −$(±)

(
±iλ + 1 − λ

mB ′ ± mB

/∂

)
, (A3a)

D3/2(±)
ν ≡ $(∓)∂ν , (A3b)

D5/2(±)
µν ≡ −i$(±)∂µ∂ν , (A3c)

D7/2(±)
µνρ ≡ −$(∓)∂µ∂ν∂ρ , (A3d)

where $(+) ≡ γ5 and $(−) ≡ 1. Here, mB stands for the mass
of the baryon B. The parameter λ has been introduced to
interpolate between the pseudovector (λ = 0) and the pseu-
doscalar (λ = 1) couplings. Note that in the above equation
the order of the subscript indices in D

1/2(±)
B ′BM is important, i.e.,

D
1/2(±)
B ′BM ̸= D

1/2(±)
BB ′M .

The effective Lagrangians for spin-1/2 hyperons " and #
(or their resonances) are, then, given by

L1/2(±)
"NK ≡ g"NK "̄

(
D

1/2(±)
"NK K̄

)
N + H.c. , (A4a)

L1/2(±)
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(
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#NK K̄

)
τN + H.c. , (A4b)

L1/2(±)
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!̄

(
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!"K Kc

)
" + H.c. , (A4c)

L1/2(±)
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= g!#Kc
!̄ τ

(
D

1/2(±)
!#K Kc

)
· ! + H.c., (A4d)

where the superscripts ± refer to the positive (+) and negative
(−) relative parity of the baryons. Flavor SU(3) symmetry
relates the coupling constants among the members of the octet
JP = 1/2+ ground-state baryons and JP = 0− pseudoscalar

mesons and we have

g"NK = −g8
1 + 2α√

3
, (A5a)

g#NK = g8(1 − 2α) , (A5b)

g!"Kc
= −g8

1 − 4α√
3

, (A5c)

g!#Kc
= −g8 , (A5d)

where the empirical values are g8 = gNNπ = 13.26 and α =
0.365, where α is the F/D mixing parameter defined as α =
F/(D + F ).

For spin-3/2 hyperons, we have
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"̄ν
(
D3/2(±)
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)
N + H.c. , (A6a)
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=
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(
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ν Kc

)
· !ν + H.c. , (A6d)

where mK denotes the kaon mass. For spin-5/2 hyperons
[24,75],
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)
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And, for spin-7/2 hyperons, we have [24,75]
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(
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The coupling constants in the above Lagrangians corre-
sponding to " and # resonances are free parameters adjusted
to reproduce the existing data. For those resonances considered
in the present work, they are given in Table III.

In the present work, all the meson-baryon-baryon vertices
are obtained from the above Lagrangian. In addition, each
vertex is multiplied by an off-shell form factor given by
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In this appendix, we give the effective Lagrangians and
phenomenological dressed baryon propagators from which the
s- and u-channel amplitudes, Ms and Mu discussed in Sec. II,
are constructed. We follow Refs. [23,24,72–74] and consider
not only the spin-1/2 ground state " and # but also their
respective excited states with spin up to 7/2. In the following
we use the notations for the isodoublet fields
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We also introduce the auxiliary operators in Dirac space

D
1/2(±)
B ′BM ≡ −$(±)

(
±iλ + 1 − λ

mB ′ ± mB

/∂

)
, (A3a)

D3/2(±)
ν ≡ $(∓)∂ν , (A3b)

D5/2(±)
µν ≡ −i$(±)∂µ∂ν , (A3c)

D7/2(±)
µνρ ≡ −$(∓)∂µ∂ν∂ρ , (A3d)

where $(+) ≡ γ5 and $(−) ≡ 1. Here, mB stands for the mass
of the baryon B. The parameter λ has been introduced to
interpolate between the pseudovector (λ = 0) and the pseu-
doscalar (λ = 1) couplings. Note that in the above equation
the order of the subscript indices in D

1/2(±)
B ′BM is important, i.e.,

D
1/2(±)
B ′BM ̸= D

1/2(±)
BB ′M .

The effective Lagrangians for spin-1/2 hyperons " and #
(or their resonances) are, then, given by
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where the superscripts ± refer to the positive (+) and negative
(−) relative parity of the baryons. Flavor SU(3) symmetry
relates the coupling constants among the members of the octet
JP = 1/2+ ground-state baryons and JP = 0− pseudoscalar

mesons and we have
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, (A5c)
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where the empirical values are g8 = gNNπ = 13.26 and α =
0.365, where α is the F/D mixing parameter defined as α =
F/(D + F ).

For spin-3/2 hyperons, we have
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where mK denotes the kaon mass. For spin-5/2 hyperons
[24,75],
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And, for spin-7/2 hyperons, we have [24,75]
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The coupling constants in the above Lagrangians corre-
sponding to " and # resonances are free parameters adjusted
to reproduce the existing data. For those resonances considered
in the present work, they are given in Table III.

In the present work, all the meson-baryon-baryon vertices
are obtained from the above Lagrangian. In addition, each
vertex is multiplied by an off-shell form factor given by
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FIG. 4. (Color online) Total cross-section results with individual resonances switched off (a) for K− + p → K+ + !− and (b) for K− +
p → K0 + !0. The blue (gray) lines represent the full result shown in Figs. 2 and 3. The red (gray) dashed lines which almost coincide with
the blue lines represent the result with "(1890) switched off. The green (gray) dash-dotted lines represent the result with #(2030) switched
off and the magenta (dark gray) dash-dash-dotted lines represent the result with #(2250)5/2− switched off.

the "(1890) is hardly seen. Recall that there is no u-channel
" contribution in the neutral !0 production.

The results for differential cross sections in both
K− + p → K+ + !− and K− + p → K0 + !0 are shown
in Figs. 5(a) and 5(b), respectively, in the energy domain up to
W = 2.8 GeV for the former and up to W = 2.5 GeV for the
latter reaction. Overall, the model reproduces the data quite
well. As in the total cross sections, the data for the neutral !0

production are fewer and less accurate than for the charged
!− production. In particular, the !0 production data at W =

2.15 GeV seems incompatible with those at nearby energies,
and the present model is unable to reproduce the observed
shape at backward angles. It is clear from Figs. 5(a) and 5(b)
that the charged channel shows a backward peaked angular
distributions, while the neutral channel shows enhancement
for both backward and forward scattering angles (more
symmetric around cos θ = 0) for all but perhaps the highest
energies. In the charged !− production, both the resonance and
contact amplitude contributions are backward-angle peaked
and, as the energy increases, get smaller at forward angles. In
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FIG. 5. (Color online) Kaon angular distributions in the center-of-mass frame (a) for K− + p → K+ + !− and (b) for K− + p →
K0 + !0. The blue (gray) lines represent the full model results. The red (gray) dashed lines show the combined " hyperon contributions. The
magenta (dark gray) dash-dotted lines show the combined # hyperon contributions. The green (gray) dash-dash-dotted line corresponds to the
contact term. The numbers in the upper right corners correspond to the centroid total energy of the system W . Note the different scales used.
The experimental data (black circles) are the digitized version as quoted in Ref. [50] from the original work of Refs. [31–34,36,37] for the
K− + p → K+ + !− reaction and of Ref. [30,36,37,40] for the K− + p → K0 + !0 reaction.
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the "(1890) is hardly seen. Recall that there is no u-channel
" contribution in the neutral !0 production.

The results for differential cross sections in both
K− + p → K+ + !− and K− + p → K0 + !0 are shown
in Figs. 5(a) and 5(b), respectively, in the energy domain up to
W = 2.8 GeV for the former and up to W = 2.5 GeV for the
latter reaction. Overall, the model reproduces the data quite
well. As in the total cross sections, the data for the neutral !0

production are fewer and less accurate than for the charged
!− production. In particular, the !0 production data at W =

2.15 GeV seems incompatible with those at nearby energies,
and the present model is unable to reproduce the observed
shape at backward angles. It is clear from Figs. 5(a) and 5(b)
that the charged channel shows a backward peaked angular
distributions, while the neutral channel shows enhancement
for both backward and forward scattering angles (more
symmetric around cos θ = 0) for all but perhaps the highest
energies. In the charged !− production, both the resonance and
contact amplitude contributions are backward-angle peaked
and, as the energy increases, get smaller at forward angles. In
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In Fig. 10, we show the present model predictions for the
target-beam asymmetries, Kxx and Kxz, multiplied by the
unpolarized cross section, i.e., dσ

d"
Kxx and dσ

d"
Kxz for both

the charged #− and neutral #0 production processes. These
observables are related to the spin-rotation parameter β [69] by
tan β = −Kxz/Kxx . Note that these target-recoil asymmetries,
together with Kyy , are the only three independent double-
spin observables in the reaction of Eq. (1) as discussed in
Ref. [57]. Indeed, the only two other nonvanishing target-recoil
asymmetries are related by Kzz = Kxx and Kzx = −Kxz.8 We
mention that dσ

d"
Kxx is proportional to the difference of the

magnitude squared of the spin-nonflip and spin-flip matrix
elements, while dσ

d"
Kxz is proportional to the real part of the

product of the spin-nonflip matrix element with the complex
conjugate of the spin-flip matrix element. Therefore, unlike
the recoil asymmetry, these spin observables do not vanish
even if the reaction amplitude is pure real or pure imaginary.
This means that they are, like the cross section, much less
sensitive to the complex nature of the phenomenological
contact amplitude.

8Note that the symmetry of the reaction leads to Kyy = π#

independent on the scattering angle θ [56,57]. Here, π# stands for
the parity of the produced # which is taken to be π# = +1 for the
ground state #. Also, Kxx = Kzz|cos θ=±1 = π#. The target asymmetry
is identical to the recoil asymmetry in the present reaction. Therefore,
we exhaust all the independent observables available in the reaction
processes considered here.

To gain some insight into the angular dependence exhibited
by these target-recoil asymmetries in Fig. 10, we express them
in terms of partial waves with L ! 2, which gives
dσ

d"
Kxx =|α02|2 + [|α1|2 + 2 Re(α02α̃

∗
2 )] cos2 θ

+ |α̃2|2 cos4 θ − (|β1|2 + |β̃2|2 cos2 θ ) sin2 θ

+ 2 Re[α02α
∗
1 + α1α̃

∗
2 cos2 θ − β1β̃

∗
2 sin2 θ ] cos θ,

(16a)

dσ

d"
Kxz = 2 Re[α02β

∗
1 + (α1β̃

∗
2 + α̃2β

∗
1 ) cos2 θ

+ (α02β̃
∗
2 + α1β

∗
1 ) cos θ + α̃2β̃

∗
2 cos3 θ ] sin θ .

(16b)

Note that the only difference between dσ
d"

Kxx given above
and differential cross section given by Eq. (15) is the sign
change of the terms involving βL. These terms are, however,
proportional to sin2 θ . Therefore, this spin observable behaves
like the differential cross section at very forward and backward
angles, where sin2 θ ≪ 1. At cos θ = 0, the difference is due to
the term of ±|β1|2, which is a P -wave contribution in the spin-
flip amplitude. Now, if we ignore the P -wave contribution—
which is relatively very small in the neutral #0 production
nearly over the entire energy region considered as seen in
Fig. 8(a)—it is immediately seen that Eq. (16a) involves only
terms that are symmetric about cos θ = 0. We see in Fig. 10(b)
that dσ

d"
Kxx exhibits roughly this symmetry.

For dσ
d"

Kxz, Eq. (16b) reveals a rather complicated angular
dependence in general, and no particular feature is apparent
in the results shown in Fig. 10, especially for the charged
#− production process. Neglecting the P -wave contribution,
Eq. (16b) reduces to dσ

d"
Kxz = Re[(α02 + α̃2 cos2 θ )β̃∗

2 ] sin 2θ ,
which is roughly the angular dependence exhibited in
Fig. 10(b).

The present model predictions for the K− + n → K0 +
#− reaction are shown in Fig. 11. Here, the experimental
data are extremely scarce, and they were not included in the
present fitting procedure. Nevertheless, the current model is
seen to predict those few data quite reasonably. Both the total
and differential cross sections exhibit a very similar feature to
those of the K− + p → K+ + #− reaction with a noticeable
small enhancement in the differential cross sections as seen
in Fig. 11(b) for forward angles near cos θ = 0 in K− + n →
K0 + #−. We see, however, some bigger differences in the
individual amplitude contributions, more clearly seen in the
total cross sections that are given in Fig. 11(a). There, the (
hyperon contribution is larger than the ) contribution over
the entire energy region up to W ∼ 2.3 GeV, in particular,
at low energies near threshold. This is due to the absence of
the strong destructive interference between the ((1385) and
((1192) (not shown), since the latter hyperon contribution
is suppressed to a large extent compared to the case of K− +
p → K+ + #−. Moreover, there is a constructive interference
with the ) hyperon, which makes the sum of the hyperon
contributions relatively large in the low-energy region.

For completeness, we also show in Fig. 12 results for the
KL + p → K+ + #0 reaction. Within the present model, the
cross sections for this process simply differ by a factor of
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c reactions.

Fig. 2. The corresponding spin-independent amplitudes read

AV
f i = g2

0
s

s̄
#

(
1 − αV

R(t)
)( s

sV
0R

)αV
R(t)−1

, (6)

with αV
Rp"

(t) = 0.414 + 0.707 t , sV
0Rp"

= 1.66 GeV2, and

s̄p" = 1 GeV2 for π− + p → K∗0 + ", and αV
Rp"c

(t) =
−1.02 + 0.467 t , sV

0Rp"c
= 4.75 GeV2, and s̄p"c

= 1 GeV2 for
π− + p → D∗− + "+

c . The trajectories of ρ, φ, and J/ψ ,
as well as the energy-scale parameters sV

0R, are determined
following the prescription described in Ref. [15]. The residual
factor g0 is determined in the next section by comparison with
the available experimental data for the π− + p → K∗0 + "
reaction, which leads to g2

0/4π ≃ 0.796.
Because the angular distributions of pseudoscalar mesons

produced through the decays of K∗ → K + π and D∗ →
D + π strongly depend on the spin of the participating
particles, the spin structure of the reaction amplitudes of Eq. (6)
should be specified. This, in fact, is the key component that can
distinguish different production mechanisms. It can be done by
“dressing” the spin-independent amplitude by the spin factor
Sf i that carries the symmetry of the exchanged Reggeon [15],
i.e.,

Af i → Amf ,λV ; mi
= Af i

1
N

Smf ,λV ; mi
, (7)

with the normalization factor

N 2 =
∑

mf ,mi ,λV

∣∣Smf ,λV ;mi

∣∣2
. (8)

The K∗-meson coupling in the spin factor Sf i reads

Smf ,λV ;mi
= ϵµναβqµpV αε∗

β(λV ) × ūmf
(")

×
[

(1 + κK∗p")γν − κK∗p"

(pp + p")ν
Mp + M"

]
umi

(p),

(9)

where q = pV − pπ = pp − p" is the momentum transfer
and κK∗p" = 2.79 is the tensor coupling constant obtained
from the average value of the Nijmegen soft-core poten-
tial [23,24]. The Dirac spinors of the initial baryon and
the final baryon are denoted by umi

and umf
, respectively,

and ε(λV ) is the polarization vector of the produced vector
meson. Generalization to the case of charm production may
be achieved by the substitutions M" → M"c

, MK∗ → MD∗ ,
and so on. Because of the lack of information, we assume
κK∗p" = κD∗p"c

as in Ref. [25]. The normalization factor N
in Eq. (7) is introduced to compensate for the artificial s and t
dependence generated by Sf i .

The differential cross section is then written as
dσ

dt d0f

= dσ

dt
W (0f ), (10)

where
W (0f ) =

∑

mi,mf ,λV ,λ′
V

Mmf ,λV ;mi
M∗

mf ,λ′
V ;mi

×Y1λV
(0f ) Y ∗

1λ′
V
(0f ), (11)

with

Mmf ,λV ;mi
= 1

N
Smf ,λV ;mi

. (12)

For definiteness with the isospin quantum number we consider
K∗0 → K+π− and D∗− → D−π0 decays. As is well known,
since the decay angular distribution of outgoing K+ is
analyzed in the virtual vector meson’s rest frame, there is an
ambiguity in choosing the quantization axis. One may choose
the quantization axis antiparallel to the outgoing hyperon Y
in the center-of-momentum frame of the production process
or the quantization axis may be defined to be parallel to the
incoming pion, i.e., the initial beam direction. Following the
convention of Ref. [26], the former is called the s frame and
the latter the t frame.2

The decay probabilities are expressed in terms of the
spin-density matrix elements ρλλ′ , where λV is abbreviated
as λ, which are determined by the amplitudes of Eq. (12).
Depending on the polarization state of the initial and final
states, we are interested in the following two cases:

(i) the unpolarized case, where the spin-density matrix is
given by

ρ0
λλ′ =

∑

mi=± 1
2 ,mf =± 1

2

Mmf ,λ; mi
M∗

mf ,λ′; mi
, (13)

(ii) the recoil polarization case, when the spin of the
outgoing hyperon (") is determined by their decay
distribution using that it is self-analyzing. Then, de-
pending on the spin state of the hyperon, we have two
kinds of spin-density matrices defined as

ρ±
λλ′ =

∑

mi=± 1
2

Mmf ,λ;mi
M∗

mf ,λ′;mi
. (14)

Here, ρ+ and ρ− correspond to the cases when the spin
or helicity of the produced hyperon is mf = + 1

2 and
− 1

2 , respectively.

Denoting the polar and the azimuthal angles of the outgoing
pseudoscalar K (or D) mesons by 1 and 2, respectively, the
decay angular distributions can be expressed in terms of the
spin-density matrix elements as

W 0(0f ) = 3
4π

[
ρ0

00 cos2 1 + ρ0
11 sin2 1 − ρ0

1−1 sin2 1 cos 22

−
√

2 Re
(
ρ0

10

)
sin 21 cos 2

]
, (15)

2In the case of vector meson photoproduction, the former is called
the helicity frame, while the latter corresponds to the Gottfried-
Jackson frame [27].
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that the vector meson trajectory exchange model needs to be
modified to some extent.

In the present work, we elaborate on the angular distribu-
tions of pseudoscalar mesons originated from the decays of
vector mesons produced in πN collisions. More specifically,
we consider the production of K∗ and D∗ vector mesons, which
decay into Kπ and Dπ , respectively. Therefore, the processes
under consideration in the present work are the two-step
reactions of πN → K∗" → (Kπ )" and πN → D∗"c →
(Dπ )"c, where we specifically work on π−p collisions.
In particular, we focus on the angular distributions of K
and D mesons produced by these reactions, which bear the
information on the production mechanisms of K∗ and D∗

vector mesons.
This paper is organized as follows. In Sec. II we describe

the QGSM, which is used to describe K∗ and D∗ vector
meson productions. All the theoretical tools to investigate the
angular distributions of K and D mesons produced by the
decays of the corresponding vector mesons are detailed as
well. Then, in Sec. III, we show the results on cross sections,
spin-density matrix elements, and decay angular distributions
of vector mesons produced in π−p collisions. We summarize
and conclude in Sec. IV.

II. THE MODEL

The reactions under consideration in the present work
are π− + p → V + Y → (P + π ) + Y , where Y , V , and P
are flavored baryon, vector meson, and pseudoscalar meson,
respectively. In the strangeness sector, Y = "(1116,1/2+),
V = K∗(892,1−), and P = K(494,0−), while, in charm
sector, Y = "c(2286,1/2+), V = D∗(2010,1−), and P =
D(1870,0−) [20].

The corresponding cross section for (two-body → three-
body) reactions reads

dσ =
(

1
16πλi

|Tf i |2dt

)(
kf d%f dMV

16π3

)
, (1)

where Tf i is the invariant amplitude for the production
process and λi ≡ λ(M2

π ,M2
N,s) is the Källén function defined

as λ(x,y,z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx. Here, Mπ

and MN stand for the pion mass and the nucleon mass,
respectively, and we use MV for the vector meson mass. The
Mandelstam variables for the production process are defined as
s = (pπ + pp)2 = (pV + pY )2 and t = (pp − pY )2 = (pπ −
pV )2, where pπ , pp, pV , and pY are the four momenta of the
pion, the proton, the produced (virtual) vector meson, and the
hyperon, respectively. The solid angle and the magnitude of
the three-momentum of the outgoing pseudoscalar meson in
the rest frame of the vector meson are represented by %f and
kf , respectively. The averaging over the initial spin states and
the sum over the final spin states are understood as well.

The invariant amplitude can be expressed as

Tf i = Amf ,λV ; mi

1
p2

V − M2
0 + iM0&tot

DλV
(%f ), (2)

where mi and mf denote the spin projections of incoming
and outgoing baryons, respectively, and λV represents the
spin projection of the produced virtual vector meson. M0

and &tot are the pole mass and the total decay width of the
produced vector meson, respectively. The amplitudes of the
π− + p → V + Y and V → P + π reactions are denoted by
A and D, respectively. The decay process of the vector meson
is considered in its rest frame. In this case, the amplitude of
the vector meson decay into two pseudoscalar mesons has the
simple form of

Dλ = 2c

√
4π

3
Y1λ(%f ), (3)

where the constant c is related to the V → P + π decay width
&f as

c2 =
6πM2

V &f

kf

, (4)

with kf being the magnitude of the three-momentum of the
final-state particles in the rest frame of the vector meson.
Integration of dσ in Eq. (1) over dMV and d%f leads to
the well-known result for the corresponding unpolarized cross
section,

dσ

dt
= Br

16πλi

|Af i |2, (5)

with Br = &f /&tot when &tot ≪ MV .
Recent studies of strangeness and charm production at a

few dozen GeV show that this cross section can be success-
fully evaluated in the framework of the QGSM suggested
by Kaidalov [11,12] and later developed and refined in
a number of theoretical works developed, for example, in
Refs. [13–19]. The QGSM is based on the planar quark
diagram decomposition and unitary conditions [12], and it
allows one to represent the amplitude of the binary a + b →
c + d reaction in terms of an effective Regge amplitude, where
the effective trajectory αR(t) and the energy scale parameter
sab;cd are determined by the well-established parameters of
the elastic a + b → a + b and c + d → c + d reactions using
the so-called planar diagram decomposition. An example of
the planar diagram decomposition is depicted in Fig. 1 for
the reaction of π− + p → D∗− + "+

c , where it is assumed
that the amplitude is dominated by the effective D∗ trajectory
with parameters completely determined by the nonlinear ρ and
J/ψ meson trajectories as found from the meson spectroscopy
studies [12,21,22]. Similarly, one can write the planar diagram
decomposition for the K∗" production with substitution of
the J/ψ trajectory by the φ meson trajectory. The details can
be found in Ref. [15].

Diagrammatic representations of the effective π− + p →
K∗0 + " and π− + p → D∗− + "+

c reactions are shown in

p Λ+
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FIG. 1. Planar diagram decomposition for the reaction of π− +
p → D∗− + "+

c .
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that the vector meson trajectory exchange model needs to be
modified to some extent.

In the present work, we elaborate on the angular distribu-
tions of pseudoscalar mesons originated from the decays of
vector mesons produced in πN collisions. More specifically,
we consider the production of K∗ and D∗ vector mesons, which
decay into Kπ and Dπ , respectively. Therefore, the processes
under consideration in the present work are the two-step
reactions of πN → K∗" → (Kπ )" and πN → D∗"c →
(Dπ )"c, where we specifically work on π−p collisions.
In particular, we focus on the angular distributions of K
and D mesons produced by these reactions, which bear the
information on the production mechanisms of K∗ and D∗

vector mesons.
This paper is organized as follows. In Sec. II we describe

the QGSM, which is used to describe K∗ and D∗ vector
meson productions. All the theoretical tools to investigate the
angular distributions of K and D mesons produced by the
decays of the corresponding vector mesons are detailed as
well. Then, in Sec. III, we show the results on cross sections,
spin-density matrix elements, and decay angular distributions
of vector mesons produced in π−p collisions. We summarize
and conclude in Sec. IV.

II. THE MODEL

The reactions under consideration in the present work
are π− + p → V + Y → (P + π ) + Y , where Y , V , and P
are flavored baryon, vector meson, and pseudoscalar meson,
respectively. In the strangeness sector, Y = "(1116,1/2+),
V = K∗(892,1−), and P = K(494,0−), while, in charm
sector, Y = "c(2286,1/2+), V = D∗(2010,1−), and P =
D(1870,0−) [20].

The corresponding cross section for (two-body → three-
body) reactions reads

dσ =
(

1
16πλi

|Tf i |2dt

)(
kf d%f dMV

16π3

)
, (1)

where Tf i is the invariant amplitude for the production
process and λi ≡ λ(M2

π ,M2
N,s) is the Källén function defined

as λ(x,y,z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx. Here, Mπ

and MN stand for the pion mass and the nucleon mass,
respectively, and we use MV for the vector meson mass. The
Mandelstam variables for the production process are defined as
s = (pπ + pp)2 = (pV + pY )2 and t = (pp − pY )2 = (pπ −
pV )2, where pπ , pp, pV , and pY are the four momenta of the
pion, the proton, the produced (virtual) vector meson, and the
hyperon, respectively. The solid angle and the magnitude of
the three-momentum of the outgoing pseudoscalar meson in
the rest frame of the vector meson are represented by %f and
kf , respectively. The averaging over the initial spin states and
the sum over the final spin states are understood as well.

The invariant amplitude can be expressed as

Tf i = Amf ,λV ; mi

1
p2

V − M2
0 + iM0&tot

DλV
(%f ), (2)

where mi and mf denote the spin projections of incoming
and outgoing baryons, respectively, and λV represents the
spin projection of the produced virtual vector meson. M0

and &tot are the pole mass and the total decay width of the
produced vector meson, respectively. The amplitudes of the
π− + p → V + Y and V → P + π reactions are denoted by
A and D, respectively. The decay process of the vector meson
is considered in its rest frame. In this case, the amplitude of
the vector meson decay into two pseudoscalar mesons has the
simple form of

Dλ = 2c

√
4π

3
Y1λ(%f ), (3)

where the constant c is related to the V → P + π decay width
&f as

c2 =
6πM2

V &f

kf

, (4)

with kf being the magnitude of the three-momentum of the
final-state particles in the rest frame of the vector meson.
Integration of dσ in Eq. (1) over dMV and d%f leads to
the well-known result for the corresponding unpolarized cross
section,

dσ

dt
= Br

16πλi

|Af i |2, (5)

with Br = &f /&tot when &tot ≪ MV .
Recent studies of strangeness and charm production at a

few dozen GeV show that this cross section can be success-
fully evaluated in the framework of the QGSM suggested
by Kaidalov [11,12] and later developed and refined in
a number of theoretical works developed, for example, in
Refs. [13–19]. The QGSM is based on the planar quark
diagram decomposition and unitary conditions [12], and it
allows one to represent the amplitude of the binary a + b →
c + d reaction in terms of an effective Regge amplitude, where
the effective trajectory αR(t) and the energy scale parameter
sab;cd are determined by the well-established parameters of
the elastic a + b → a + b and c + d → c + d reactions using
the so-called planar diagram decomposition. An example of
the planar diagram decomposition is depicted in Fig. 1 for
the reaction of π− + p → D∗− + "+

c , where it is assumed
that the amplitude is dominated by the effective D∗ trajectory
with parameters completely determined by the nonlinear ρ and
J/ψ meson trajectories as found from the meson spectroscopy
studies [12,21,22]. Similarly, one can write the planar diagram
decomposition for the K∗" production with substitution of
the J/ψ trajectory by the φ meson trajectory. The details can
be found in Ref. [15].

Diagrammatic representations of the effective π− + p →
K∗0 + " and π− + p → D∗− + "+

c reactions are shown in
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FIG. 1. Planar diagram decomposition for the reaction of π− +
p → D∗− + "+

c .
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that the vector meson trajectory exchange model needs to be
modified to some extent.

In the present work, we elaborate on the angular distribu-
tions of pseudoscalar mesons originated from the decays of
vector mesons produced in πN collisions. More specifically,
we consider the production of K∗ and D∗ vector mesons, which
decay into Kπ and Dπ , respectively. Therefore, the processes
under consideration in the present work are the two-step
reactions of πN → K∗" → (Kπ )" and πN → D∗"c →
(Dπ )"c, where we specifically work on π−p collisions.
In particular, we focus on the angular distributions of K
and D mesons produced by these reactions, which bear the
information on the production mechanisms of K∗ and D∗

vector mesons.
This paper is organized as follows. In Sec. II we describe

the QGSM, which is used to describe K∗ and D∗ vector
meson productions. All the theoretical tools to investigate the
angular distributions of K and D mesons produced by the
decays of the corresponding vector mesons are detailed as
well. Then, in Sec. III, we show the results on cross sections,
spin-density matrix elements, and decay angular distributions
of vector mesons produced in π−p collisions. We summarize
and conclude in Sec. IV.

II. THE MODEL
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sector, Y = "c(2286,1/2+), V = D∗(2010,1−), and P =
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hyperon, respectively. The solid angle and the magnitude of
the three-momentum of the outgoing pseudoscalar meson in
the rest frame of the vector meson are represented by %f and
kf , respectively. The averaging over the initial spin states and
the sum over the final spin states are understood as well.

The invariant amplitude can be expressed as
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0 + iM0&tot
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where mi and mf denote the spin projections of incoming
and outgoing baryons, respectively, and λV represents the
spin projection of the produced virtual vector meson. M0

and &tot are the pole mass and the total decay width of the
produced vector meson, respectively. The amplitudes of the
π− + p → V + Y and V → P + π reactions are denoted by
A and D, respectively. The decay process of the vector meson
is considered in its rest frame. In this case, the amplitude of
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simple form of
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where the constant c is related to the V → P + π decay width
&f as
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with kf being the magnitude of the three-momentum of the
final-state particles in the rest frame of the vector meson.
Integration of dσ in Eq. (1) over dMV and d%f leads to
the well-known result for the corresponding unpolarized cross
section,

dσ

dt
= Br

16πλi

|Af i |2, (5)

with Br = &f /&tot when &tot ≪ MV .
Recent studies of strangeness and charm production at a

few dozen GeV show that this cross section can be success-
fully evaluated in the framework of the QGSM suggested
by Kaidalov [11,12] and later developed and refined in
a number of theoretical works developed, for example, in
Refs. [13–19]. The QGSM is based on the planar quark
diagram decomposition and unitary conditions [12], and it
allows one to represent the amplitude of the binary a + b →
c + d reaction in terms of an effective Regge amplitude, where
the effective trajectory αR(t) and the energy scale parameter
sab;cd are determined by the well-established parameters of
the elastic a + b → a + b and c + d → c + d reactions using
the so-called planar diagram decomposition. An example of
the planar diagram decomposition is depicted in Fig. 1 for
the reaction of π− + p → D∗− + "+

c , where it is assumed
that the amplitude is dominated by the effective D∗ trajectory
with parameters completely determined by the nonlinear ρ and
J/ψ meson trajectories as found from the meson spectroscopy
studies [12,21,22]. Similarly, one can write the planar diagram
decomposition for the K∗" production with substitution of
the J/ψ trajectory by the φ meson trajectory. The details can
be found in Ref. [15].

Diagrammatic representations of the effective π− + p →
K∗0 + " and π− + p → D∗− + "+

c reactions are shown in
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ū π−

D∗

2

×

D∗−

Λ+
c

d
c̄

c
u
d

c
u

d
c̄

d

D∗−

Λ+
c

ρ J/Ψ

FIG. 1. Planar diagram decomposition for the reaction of π− +
p → D∗− + "+

c .

055206-2

DECAY ANGULAR DISTRIBUTIONS OF K∗ AND . . . PHYSICAL REVIEW C 95, 055206 (2017)

p Λ0

π− K∗0d
ū
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FIG. 2. Diagrammatic representation of the effective π− + p →
K∗0 + " and π− + p → D∗− + "+

c reactions.

Fig. 2. The corresponding spin-independent amplitudes read

AV
f i = g2

0
s

s̄
#

(
1 − αV

R(t)
)( s

sV
0R

)αV
R(t)−1

, (6)

with αV
Rp"

(t) = 0.414 + 0.707 t , sV
0Rp"

= 1.66 GeV2, and

s̄p" = 1 GeV2 for π− + p → K∗0 + ", and αV
Rp"c

(t) =
−1.02 + 0.467 t , sV

0Rp"c
= 4.75 GeV2, and s̄p"c

= 1 GeV2 for
π− + p → D∗− + "+

c . The trajectories of ρ, φ, and J/ψ ,
as well as the energy-scale parameters sV

0R, are determined
following the prescription described in Ref. [15]. The residual
factor g0 is determined in the next section by comparison with
the available experimental data for the π− + p → K∗0 + "
reaction, which leads to g2

0/4π ≃ 0.796.
Because the angular distributions of pseudoscalar mesons

produced through the decays of K∗ → K + π and D∗ →
D + π strongly depend on the spin of the participating
particles, the spin structure of the reaction amplitudes of Eq. (6)
should be specified. This, in fact, is the key component that can
distinguish different production mechanisms. It can be done by
“dressing” the spin-independent amplitude by the spin factor
Sf i that carries the symmetry of the exchanged Reggeon [15],
i.e.,

Af i → Amf ,λV ; mi
= Af i

1
N

Smf ,λV ; mi
, (7)

with the normalization factor

N 2 =
∑

mf ,mi ,λV

∣∣Smf ,λV ;mi

∣∣2
. (8)

The K∗-meson coupling in the spin factor Sf i reads

Smf ,λV ;mi
= ϵµναβqµpV αε∗

β(λV ) × ūmf
(")

×
[

(1 + κK∗p")γν − κK∗p"

(pp + p")ν
Mp + M"

]
umi

(p),

(9)

where q = pV − pπ = pp − p" is the momentum transfer
and κK∗p" = 2.79 is the tensor coupling constant obtained
from the average value of the Nijmegen soft-core poten-
tial [23,24]. The Dirac spinors of the initial baryon and
the final baryon are denoted by umi

and umf
, respectively,

and ε(λV ) is the polarization vector of the produced vector
meson. Generalization to the case of charm production may
be achieved by the substitutions M" → M"c

, MK∗ → MD∗ ,
and so on. Because of the lack of information, we assume
κK∗p" = κD∗p"c

as in Ref. [25]. The normalization factor N
in Eq. (7) is introduced to compensate for the artificial s and t
dependence generated by Sf i .

The differential cross section is then written as
dσ

dt d0f

= dσ

dt
W (0f ), (10)

where
W (0f ) =

∑

mi,mf ,λV ,λ′
V

Mmf ,λV ;mi
M∗

mf ,λ′
V ;mi

×Y1λV
(0f ) Y ∗

1λ′
V
(0f ), (11)

with

Mmf ,λV ;mi
= 1

N
Smf ,λV ;mi

. (12)

For definiteness with the isospin quantum number we consider
K∗0 → K+π− and D∗− → D−π0 decays. As is well known,
since the decay angular distribution of outgoing K+ is
analyzed in the virtual vector meson’s rest frame, there is an
ambiguity in choosing the quantization axis. One may choose
the quantization axis antiparallel to the outgoing hyperon Y
in the center-of-momentum frame of the production process
or the quantization axis may be defined to be parallel to the
incoming pion, i.e., the initial beam direction. Following the
convention of Ref. [26], the former is called the s frame and
the latter the t frame.2

The decay probabilities are expressed in terms of the
spin-density matrix elements ρλλ′ , where λV is abbreviated
as λ, which are determined by the amplitudes of Eq. (12).
Depending on the polarization state of the initial and final
states, we are interested in the following two cases:

(i) the unpolarized case, where the spin-density matrix is
given by

ρ0
λλ′ =

∑

mi=± 1
2 ,mf =± 1

2

Mmf ,λ; mi
M∗

mf ,λ′; mi
, (13)

(ii) the recoil polarization case, when the spin of the
outgoing hyperon (") is determined by their decay
distribution using that it is self-analyzing. Then, de-
pending on the spin state of the hyperon, we have two
kinds of spin-density matrices defined as

ρ±
λλ′ =

∑

mi=± 1
2

Mmf ,λ;mi
M∗

mf ,λ′;mi
. (14)

Here, ρ+ and ρ− correspond to the cases when the spin
or helicity of the produced hyperon is mf = + 1

2 and
− 1

2 , respectively.

Denoting the polar and the azimuthal angles of the outgoing
pseudoscalar K (or D) mesons by 1 and 2, respectively, the
decay angular distributions can be expressed in terms of the
spin-density matrix elements as

W 0(0f ) = 3
4π

[
ρ0

00 cos2 1 + ρ0
11 sin2 1 − ρ0

1−1 sin2 1 cos 22

−
√

2 Re
(
ρ0

10

)
sin 21 cos 2

]
, (15)

2In the case of vector meson photoproduction, the former is called
the helicity frame, while the latter corresponds to the Gottfried-
Jackson frame [27].
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factor g0 is determined in the next section by comparison with
the available experimental data for the π− + p → K∗0 + "
reaction, which leads to g2
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produced through the decays of K∗ → K + π and D∗ →
D + π strongly depend on the spin of the participating
particles, the spin structure of the reaction amplitudes of Eq. (6)
should be specified. This, in fact, is the key component that can
distinguish different production mechanisms. It can be done by
“dressing” the spin-independent amplitude by the spin factor
Sf i that carries the symmetry of the exchanged Reggeon [15],
i.e.,
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The K∗-meson coupling in the spin factor Sf i reads
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where q = pV − pπ = pp − p" is the momentum transfer
and κK∗p" = 2.79 is the tensor coupling constant obtained
from the average value of the Nijmegen soft-core poten-
tial [23,24]. The Dirac spinors of the initial baryon and
the final baryon are denoted by umi

and umf
, respectively,

and ε(λV ) is the polarization vector of the produced vector
meson. Generalization to the case of charm production may
be achieved by the substitutions M" → M"c

, MK∗ → MD∗ ,
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κK∗p" = κD∗p"c
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since the decay angular distribution of outgoing K+ is
analyzed in the virtual vector meson’s rest frame, there is an
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in the center-of-momentum frame of the production process
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incoming pion, i.e., the initial beam direction. Following the
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the latter the t frame.2

The decay probabilities are expressed in terms of the
spin-density matrix elements ρλλ′ , where λV is abbreviated
as λ, which are determined by the amplitudes of Eq. (12).
Depending on the polarization state of the initial and final
states, we are interested in the following two cases:

(i) the unpolarized case, where the spin-density matrix is
given by
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mi=± 1
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(ii) the recoil polarization case, when the spin of the
outgoing hyperon (") is determined by their decay
distribution using that it is self-analyzing. Then, de-
pending on the spin state of the hyperon, we have two
kinds of spin-density matrices defined as
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Here, ρ+ and ρ− correspond to the cases when the spin
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decay angular distributions can be expressed in terms of the
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for the unpolarized case, and

W±(!f ) = 3
4π

[
ρ±

00 cos2 $ + 1
2

(ρ±
11 + ρ±

−1−1) sin2 $

− ρ±
1−1 sin2 $ cos 2%

− 1√
2

Re(ρ±
10 − ρ±

−10) sin 2$ cos %

]
, (16)

for the case of recoil polarization. Here, we made use of the
following Hermitian conditions: ρ−11 = ρ1−1, ρ01 = ρ10, and
ρ0−1 = ρ−10. In addition, for unpolarized reactions, we also
have the sum rule ρ0

00 + ρ0
11 + ρ0

−1−1 = 1 and the symmetry
conditions ρ0

11 = ρ0
−1−1 and ρ0

01 = −ρ0
0−1. In the case of recoil

polarization, however, these additional relations do not hold.
As was mentioned earlier, the purpose of the present work is

to test the validity of the dominance of vector meson trajectory
exchange. This assumption is based on the observation that
the intercept of the K∗ (D∗) vector meson, for instance, is
larger than that of the corresponding pseudoscalar K (D)
meson trajectory [21]. However, other mechanisms cannot
be excluded, and the contribution from such mechanisms
should be verified by physical quantities related to the spin
structure of the production mechanisms. In fact, as we see
later, the available data for density matrix elements suggest
that there exist contributions from mechanisms other than
vector trajectory exchange. Therefore, in addition to vector
trajectory exchanges, we consider the exchanges of effective
pseudoscalar K and D trajectories. In this case, the spin-
independent amplitude reads

APS
f i ≃ g2

0 &
(

− αPS
R (t)

)( s

sPS
0R

)αPS
R (t)

, (17)

with αPS
Rp(

(t) = −0.151 + 0.617 t and αPS
Rp(c

(t) = −1.611 +
0.439 t [22]. The energy scale parameters determined by the
flavor content of the vertices are assumed to be the same as
those in the vector meson exchange case so that sPS

0Rp(
= sV

0Rp(

and sPS
0Rp(c

= sV
0Rp(c

. The spin factor Sf i now reads

SPS
mf ,λV ;mi

= ε∗
µ(λV ) qµūmf

(()γ5umi
(p). (18)

III. RESULTS AND DISCUSSION

In this section, we present numerical results on differen-
tial cross sections, spin-density matrix elements, and decay
angular distributions of K and D mesons in πN scattering.

A. Unpolarized cross sections

By collecting all information, the unpolarized differential
cross sections of the π− + p → K∗0 + ( and π− + p →
D∗− + (c reactions for the vector (V) and pseudoscalar (PS)
effective Reggeon exchanges are written as

dσ (V )

dt
= π

λi

( s

s̄

)2
[(

gV
0

)2

4π

]2

[&(1 − αV (t))]2

×
(

s

s0RV

)2(αV (t)−1)

,

dσ (PS)

dt
= π

λi

[(
gPS

0

)2

4π

]2

[&( − αPS(t))]2
(

s

s0RPS

)2αPS(t)

.

(19)

The residual factor g2
0 is, in general, a function of t and

should be determined by the comparison with experimental
data. We use (gV

0 )2/4π = 0.796 for the vector meson trajectory
exchange, which is found from comparison with the available
experimental data for K∗0 production. We use this value for
both the strangeness and charm production processes as we do
not have any data for charm vector meson production. Since we
are interested in identifying the major production mechanisms,
we need to be able to distinguish between the pseudoscalar
meson trajectory exchange and the vector meson trajectory
exchange through measurable physical quantities. Because the
pseudoscalar exchange mechanism is expected to be small,
we consider two extreme cases, namely, vector-exchange
dominance and pseudoscalar-exchange dominance. For this
purpose, we adjust the value of gPS

0 to achieve the condition
that dσ (PS)/dt = dσ (V)/dt at zero vector meson production
angle, i.e., at t = tmax. This leads to (gPS

0 )2/4π = 1.1 and 13.5
for the production of K∗ and D∗ mesons, respectively. Of
course, the realistic case is between these two extreme cases,
and the relative strength of the two mechanisms should be
determined by experimental data.

The obtained differential cross sections for K∗ and D∗

production are exhibited in Figs. 3(a) and 3(b), respectively.
Throughout the present study, the initial pion momentum in the
laboratory frame is chosen to be pπ = 6 GeV/c for strangeness
production and 15 GeV/c for charm production. The V and
PS Reggeon exchanges are shown by the solid and dashed
curves, respectively, together with available experimental data
of Ref. [26] for K∗ production. Although the energy scale is
different, it turns out that the cross section of charm production
is suppressed compared with that of strangeness production,
which is consistent with the observation made in Ref. [18].
One can see that both the vector-type Reggeon exchange and
the pseudoscalar-type Reggeon exchange exhibit a similar t
dependence in differential cross sections. This resemblance
is clearly seen in the case of charm production, although the
available data seem to prefer the vector-type exchange in the
case of strangeness production. Therefore, the t dependence of
cross sections cannot clearly distinguish the two exchanges. As
we see in the next subsections, however, the situation changes
for spin-density matrix elements and the angular distributions
of K∗ → Kπ and D∗ → Dπ decay, where the difference
between the two types of exchanges is revealed even at the
qualitative level.

B. Spin-density matrix elements

The results for the spin-density matrix elements ρ0
λλ′ defined

in Eq. (13) are presented in Fig. 4 for K∗0 and D∗− production
as functions of (tmax − t). We also limit our consideration to
relatively small values of |t | such that |tmax − t | ! 2GeV2,
where the applicability of the QGSM can be justified. Shown
in Fig. 4 are the results for the vector-type Reggeon exchange
model and for the pseudoscalar-type Reggeon exchange
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−10) sin 2$ cos %

]
, (16)

for the case of recoil polarization. Here, we made use of the
following Hermitian conditions: ρ−11 = ρ1−1, ρ01 = ρ10, and
ρ0−1 = ρ−10. In addition, for unpolarized reactions, we also
have the sum rule ρ0

00 + ρ0
11 + ρ0

−1−1 = 1 and the symmetry
conditions ρ0

11 = ρ0
−1−1 and ρ0

01 = −ρ0
0−1. In the case of recoil

polarization, however, these additional relations do not hold.
As was mentioned earlier, the purpose of the present work is

to test the validity of the dominance of vector meson trajectory
exchange. This assumption is based on the observation that
the intercept of the K∗ (D∗) vector meson, for instance, is
larger than that of the corresponding pseudoscalar K (D)
meson trajectory [21]. However, other mechanisms cannot
be excluded, and the contribution from such mechanisms
should be verified by physical quantities related to the spin
structure of the production mechanisms. In fact, as we see
later, the available data for density matrix elements suggest
that there exist contributions from mechanisms other than
vector trajectory exchange. Therefore, in addition to vector
trajectory exchanges, we consider the exchanges of effective
pseudoscalar K and D trajectories. In this case, the spin-
independent amplitude reads

APS
f i ≃ g2

0 &
(

− αPS
R (t)

)( s

sPS
0R

)αPS
R (t)

, (17)

with αPS
Rp(

(t) = −0.151 + 0.617 t and αPS
Rp(c

(t) = −1.611 +
0.439 t [22]. The energy scale parameters determined by the
flavor content of the vertices are assumed to be the same as
those in the vector meson exchange case so that sPS

0Rp(
= sV

0Rp(

and sPS
0Rp(c

= sV
0Rp(c

. The spin factor Sf i now reads

SPS
mf ,λV ;mi

= ε∗
µ(λV ) qµūmf

(()γ5umi
(p). (18)

III. RESULTS AND DISCUSSION

In this section, we present numerical results on differen-
tial cross sections, spin-density matrix elements, and decay
angular distributions of K and D mesons in πN scattering.

A. Unpolarized cross sections

By collecting all information, the unpolarized differential
cross sections of the π− + p → K∗0 + ( and π− + p →
D∗− + (c reactions for the vector (V) and pseudoscalar (PS)
effective Reggeon exchanges are written as

dσ (V )

dt
= π

λi

( s

s̄

)2
[(

gV
0

)2

4π

]2

[&(1 − αV (t))]2

×
(

s

s0RV

)2(αV (t)−1)

,

dσ (PS)

dt
= π

λi

[(
gPS

0

)2

4π

]2

[&( − αPS(t))]2
(

s

s0RPS

)2αPS(t)

.

(19)

The residual factor g2
0 is, in general, a function of t and

should be determined by the comparison with experimental
data. We use (gV

0 )2/4π = 0.796 for the vector meson trajectory
exchange, which is found from comparison with the available
experimental data for K∗0 production. We use this value for
both the strangeness and charm production processes as we do
not have any data for charm vector meson production. Since we
are interested in identifying the major production mechanisms,
we need to be able to distinguish between the pseudoscalar
meson trajectory exchange and the vector meson trajectory
exchange through measurable physical quantities. Because the
pseudoscalar exchange mechanism is expected to be small,
we consider two extreme cases, namely, vector-exchange
dominance and pseudoscalar-exchange dominance. For this
purpose, we adjust the value of gPS

0 to achieve the condition
that dσ (PS)/dt = dσ (V)/dt at zero vector meson production
angle, i.e., at t = tmax. This leads to (gPS

0 )2/4π = 1.1 and 13.5
for the production of K∗ and D∗ mesons, respectively. Of
course, the realistic case is between these two extreme cases,
and the relative strength of the two mechanisms should be
determined by experimental data.

The obtained differential cross sections for K∗ and D∗

production are exhibited in Figs. 3(a) and 3(b), respectively.
Throughout the present study, the initial pion momentum in the
laboratory frame is chosen to be pπ = 6 GeV/c for strangeness
production and 15 GeV/c for charm production. The V and
PS Reggeon exchanges are shown by the solid and dashed
curves, respectively, together with available experimental data
of Ref. [26] for K∗ production. Although the energy scale is
different, it turns out that the cross section of charm production
is suppressed compared with that of strangeness production,
which is consistent with the observation made in Ref. [18].
One can see that both the vector-type Reggeon exchange and
the pseudoscalar-type Reggeon exchange exhibit a similar t
dependence in differential cross sections. This resemblance
is clearly seen in the case of charm production, although the
available data seem to prefer the vector-type exchange in the
case of strangeness production. Therefore, the t dependence of
cross sections cannot clearly distinguish the two exchanges. As
we see in the next subsections, however, the situation changes
for spin-density matrix elements and the angular distributions
of K∗ → Kπ and D∗ → Dπ decay, where the difference
between the two types of exchanges is revealed even at the
qualitative level.

B. Spin-density matrix elements

The results for the spin-density matrix elements ρ0
λλ′ defined

in Eq. (13) are presented in Fig. 4 for K∗0 and D∗− production
as functions of (tmax − t). We also limit our consideration to
relatively small values of |t | such that |tmax − t | ! 2GeV2,
where the applicability of the QGSM can be justified. Shown
in Fig. 4 are the results for the vector-type Reggeon exchange
model and for the pseudoscalar-type Reggeon exchange
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that the vector meson trajectory exchange model needs to be
modified to some extent.

In the present work, we elaborate on the angular distribu-
tions of pseudoscalar mesons originated from the decays of
vector mesons produced in πN collisions. More specifically,
we consider the production of K∗ and D∗ vector mesons, which
decay into Kπ and Dπ , respectively. Therefore, the processes
under consideration in the present work are the two-step
reactions of πN → K∗" → (Kπ )" and πN → D∗"c →
(Dπ )"c, where we specifically work on π−p collisions.
In particular, we focus on the angular distributions of K
and D mesons produced by these reactions, which bear the
information on the production mechanisms of K∗ and D∗

vector mesons.
This paper is organized as follows. In Sec. II we describe

the QGSM, which is used to describe K∗ and D∗ vector
meson productions. All the theoretical tools to investigate the
angular distributions of K and D mesons produced by the
decays of the corresponding vector mesons are detailed as
well. Then, in Sec. III, we show the results on cross sections,
spin-density matrix elements, and decay angular distributions
of vector mesons produced in π−p collisions. We summarize
and conclude in Sec. IV.

II. THE MODEL

The reactions under consideration in the present work
are π− + p → V + Y → (P + π ) + Y , where Y , V , and P
are flavored baryon, vector meson, and pseudoscalar meson,
respectively. In the strangeness sector, Y = "(1116,1/2+),
V = K∗(892,1−), and P = K(494,0−), while, in charm
sector, Y = "c(2286,1/2+), V = D∗(2010,1−), and P =
D(1870,0−) [20].

The corresponding cross section for (two-body → three-
body) reactions reads

dσ =
(

1
16πλi

|Tf i |2dt

)(
kf d%f dMV

16π3

)
, (1)

where Tf i is the invariant amplitude for the production
process and λi ≡ λ(M2

π ,M2
N,s) is the Källén function defined

as λ(x,y,z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx. Here, Mπ

and MN stand for the pion mass and the nucleon mass,
respectively, and we use MV for the vector meson mass. The
Mandelstam variables for the production process are defined as
s = (pπ + pp)2 = (pV + pY )2 and t = (pp − pY )2 = (pπ −
pV )2, where pπ , pp, pV , and pY are the four momenta of the
pion, the proton, the produced (virtual) vector meson, and the
hyperon, respectively. The solid angle and the magnitude of
the three-momentum of the outgoing pseudoscalar meson in
the rest frame of the vector meson are represented by %f and
kf , respectively. The averaging over the initial spin states and
the sum over the final spin states are understood as well.

The invariant amplitude can be expressed as

Tf i = Amf ,λV ; mi

1
p2

V − M2
0 + iM0&tot

DλV
(%f ), (2)

where mi and mf denote the spin projections of incoming
and outgoing baryons, respectively, and λV represents the
spin projection of the produced virtual vector meson. M0

and &tot are the pole mass and the total decay width of the
produced vector meson, respectively. The amplitudes of the
π− + p → V + Y and V → P + π reactions are denoted by
A and D, respectively. The decay process of the vector meson
is considered in its rest frame. In this case, the amplitude of
the vector meson decay into two pseudoscalar mesons has the
simple form of

Dλ = 2c

√
4π

3
Y1λ(%f ), (3)

where the constant c is related to the V → P + π decay width
&f as

c2 =
6πM2

V &f

kf

, (4)

with kf being the magnitude of the three-momentum of the
final-state particles in the rest frame of the vector meson.
Integration of dσ in Eq. (1) over dMV and d%f leads to
the well-known result for the corresponding unpolarized cross
section,

dσ

dt
= Br

16πλi

|Af i |2, (5)

with Br = &f /&tot when &tot ≪ MV .
Recent studies of strangeness and charm production at a

few dozen GeV show that this cross section can be success-
fully evaluated in the framework of the QGSM suggested
by Kaidalov [11,12] and later developed and refined in
a number of theoretical works developed, for example, in
Refs. [13–19]. The QGSM is based on the planar quark
diagram decomposition and unitary conditions [12], and it
allows one to represent the amplitude of the binary a + b →
c + d reaction in terms of an effective Regge amplitude, where
the effective trajectory αR(t) and the energy scale parameter
sab;cd are determined by the well-established parameters of
the elastic a + b → a + b and c + d → c + d reactions using
the so-called planar diagram decomposition. An example of
the planar diagram decomposition is depicted in Fig. 1 for
the reaction of π− + p → D∗− + "+

c , where it is assumed
that the amplitude is dominated by the effective D∗ trajectory
with parameters completely determined by the nonlinear ρ and
J/ψ meson trajectories as found from the meson spectroscopy
studies [12,21,22]. Similarly, one can write the planar diagram
decomposition for the K∗" production with substitution of
the J/ψ trajectory by the φ meson trajectory. The details can
be found in Ref. [15].

Diagrammatic representations of the effective π− + p →
K∗0 + " and π− + p → D∗− + "+

c reactions are shown in

p Λ+
c

π− D∗−d
ū

u
u
d

d
c̄

c
u
d

π−d
ū

u
u
d

p
u
u
d

p

d
ū π−

D∗

2

×

D∗−

Λ+
c

d
c̄

c
u
d

c
u

d
c̄

d

D∗−

Λ+
c

ρ J/Ψ

FIG. 1. Planar diagram decomposition for the reaction of π− +
p → D∗− + "+

c .
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model, which are calculated in the s and t frames. Our results
numerically confirm the symmetry properties, ρ0

11 = ρ0
−1−1,

ρ0
±10 = ρ0

0±1, ρ0
±10 = −ρ0

0∓1, and ρ0
1−1 = ρ0

−11.
In the case of vector-type Reggeon exchange, the matrix

elements ρ0
λλ′ with |λ| = |λ′| = 1 are enhanced. This ascribes

to the spin structure ϵµναβqµpV αε∗
β(λV ) of the amplitude

in Eq. (9). In the vector meson rest frame, where pV =
(MV ,0,0,0) and q = − pπ , this factor is proportional to the
vector product of ε∗(λV ) × pπ . In the s frame and small-
momentum transfers, pπ has a large z component and a small
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FIG. 4. The spin-density matrix elements ρ0
λλ′ defined in Eq. (13) as functions of (tmax − t) for K∗− production at pπ = 6 GeV/c [panels

(a)–(d)] and for D∗− production at pπ = 15 GeV/c panels (e)–(h). The results for vector meson (V) and pseudoscalar (PS) Reggeon exchanges
are in panels (a), (b), (e), and (f) and panels (c), (d), (g), and (h), respectively. The results in panels (a), (c), (e), and (g) were obtained in the s

frame, while those in panels (b), (d), (f), and (h) were obtained in the t frame.
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β(λV ) of the amplitude

in Eq. (9). In the vector meson rest frame, where pV =
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x component, which leads to ε∗(λV ) × pπ ≃ iλV ε∗(λV )| pπ |
and thus causes the large enhancement of ρ0

|λ|=1, |λ′|=1. In the
t frame, pπ is parallel to the quantization axis, and this leads

to ρ0
λλ′ with either λ = 0 or λ′ = 0 vanishing. We also note

that ρ0
1−1 = 0 at t = tmax. This is because of the relation

ρ0
1−1 ∝ sin2 θ , where θ is the scattering angle of the vector
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FIG. 6. Spin-density matrix elements for K∗0 production in the s frame. Panels (a), (b), and (c) correspond to ρ0
00, Reρ0

10, and ρ0
1−1 matrix

elements, respectively. The vector and pseudoscalar Reggeon exchange models are depicted by the solid and dashed curves, respectively. The
experimental data are from Ref. [26].
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FIG. 7. The same as in Fig. 6 but in the t frame.

meson in the center-of-mass frame for the scattering process.
All these observations hold also for the matrix element ρ+

1−1
as seen in Fig. 5.

In the case of pseudoscalar-type Reggeon exchange,
however, the situation is quite different. The production
amplitude of this mechanism is proportional to the scalar

product, ε∗(λV ) · pπ , which leads to a strong enhancement
of ρ0

00 in the t frame, so that ρ0
00 = 1 and all the other ρ0

λλ′

vanish.
Shown in Fig. 5 are the results for ρ+
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FIG. 8. Angular distributions 2
3 W ($) of Eq. (20) for K∗ and D∗ excitations are shown in the upper and lower panels, respectively. Panels

(a), (b), (e), and (f) are for 2
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AV
f i = g2

0
s

s̄
#

(
1 − αV

R(t)
)( s

sV
0R

)αV
R(t)−1

, (6)

with αV
Rp"

(t) = 0.414 + 0.707 t , sV
0Rp"

= 1.66 GeV2, and

s̄p" = 1 GeV2 for π− + p → K∗0 + ", and αV
Rp"c

(t) =
−1.02 + 0.467 t , sV

0Rp"c
= 4.75 GeV2, and s̄p"c

= 1 GeV2 for
π− + p → D∗− + "+

c . The trajectories of ρ, φ, and J/ψ ,
as well as the energy-scale parameters sV

0R, are determined
following the prescription described in Ref. [15]. The residual
factor g0 is determined in the next section by comparison with
the available experimental data for the π− + p → K∗0 + "
reaction, which leads to g2

0/4π ≃ 0.796.
Because the angular distributions of pseudoscalar mesons

produced through the decays of K∗ → K + π and D∗ →
D + π strongly depend on the spin of the participating
particles, the spin structure of the reaction amplitudes of Eq. (6)
should be specified. This, in fact, is the key component that can
distinguish different production mechanisms. It can be done by
“dressing” the spin-independent amplitude by the spin factor
Sf i that carries the symmetry of the exchanged Reggeon [15],
i.e.,

Af i → Amf ,λV ; mi
= Af i

1
N

Smf ,λV ; mi
, (7)

with the normalization factor

N 2 =
∑

mf ,mi ,λV

∣∣Smf ,λV ;mi

∣∣2
. (8)

The K∗-meson coupling in the spin factor Sf i reads

Smf ,λV ;mi
= ϵµναβqµpV αε∗

β(λV ) × ūmf
(")

×
[

(1 + κK∗p")γν − κK∗p"

(pp + p")ν
Mp + M"

]
umi

(p),

(9)

where q = pV − pπ = pp − p" is the momentum transfer
and κK∗p" = 2.79 is the tensor coupling constant obtained
from the average value of the Nijmegen soft-core poten-
tial [23,24]. The Dirac spinors of the initial baryon and
the final baryon are denoted by umi

and umf
, respectively,

and ε(λV ) is the polarization vector of the produced vector
meson. Generalization to the case of charm production may
be achieved by the substitutions M" → M"c

, MK∗ → MD∗ ,
and so on. Because of the lack of information, we assume
κK∗p" = κD∗p"c

as in Ref. [25]. The normalization factor N
in Eq. (7) is introduced to compensate for the artificial s and t
dependence generated by Sf i .

The differential cross section is then written as
dσ

dt d0f

= dσ

dt
W (0f ), (10)

where
W (0f ) =

∑

mi,mf ,λV ,λ′
V

Mmf ,λV ;mi
M∗

mf ,λ′
V ;mi

×Y1λV
(0f ) Y ∗

1λ′
V
(0f ), (11)

with

Mmf ,λV ;mi
= 1

N
Smf ,λV ;mi

. (12)

For definiteness with the isospin quantum number we consider
K∗0 → K+π− and D∗− → D−π0 decays. As is well known,
since the decay angular distribution of outgoing K+ is
analyzed in the virtual vector meson’s rest frame, there is an
ambiguity in choosing the quantization axis. One may choose
the quantization axis antiparallel to the outgoing hyperon Y
in the center-of-momentum frame of the production process
or the quantization axis may be defined to be parallel to the
incoming pion, i.e., the initial beam direction. Following the
convention of Ref. [26], the former is called the s frame and
the latter the t frame.2

The decay probabilities are expressed in terms of the
spin-density matrix elements ρλλ′ , where λV is abbreviated
as λ, which are determined by the amplitudes of Eq. (12).
Depending on the polarization state of the initial and final
states, we are interested in the following two cases:

(i) the unpolarized case, where the spin-density matrix is
given by

ρ0
λλ′ =

∑

mi=± 1
2 ,mf =± 1

2

Mmf ,λ; mi
M∗

mf ,λ′; mi
, (13)

(ii) the recoil polarization case, when the spin of the
outgoing hyperon (") is determined by their decay
distribution using that it is self-analyzing. Then, de-
pending on the spin state of the hyperon, we have two
kinds of spin-density matrices defined as

ρ±
λλ′ =

∑

mi=± 1
2

Mmf ,λ;mi
M∗

mf ,λ′;mi
. (14)

Here, ρ+ and ρ− correspond to the cases when the spin
or helicity of the produced hyperon is mf = + 1

2 and
− 1

2 , respectively.

Denoting the polar and the azimuthal angles of the outgoing
pseudoscalar K (or D) mesons by 1 and 2, respectively, the
decay angular distributions can be expressed in terms of the
spin-density matrix elements as

W 0(0f ) = 3
4π

[
ρ0

00 cos2 1 + ρ0
11 sin2 1 − ρ0

1−1 sin2 1 cos 22

−
√

2 Re
(
ρ0

10

)
sin 21 cos 2

]
, (15)

2In the case of vector meson photoproduction, the former is called
the helicity frame, while the latter corresponds to the Gottfried-
Jackson frame [27].
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FIG. 9. The same as in Fig. 8 but for the azimuthal angle distributions 4π
3 W (" = π/2,#) of Eq. (21).

those of ρ0 by about a factor of 2 because of the difference
in the numerators in Eqs. (13) and (14). The spin-density
matrix elements ρ−

λλ′ can be obtained from ρ+
λλ′ using the

following symmetry relations [27]: ρ−
11 = ρ+

−1−1, ρ−
00 = ρ+

00,
ρ−

−11 = ρ+
−11, ρ−

10 = −ρ+
0−1, and so on.

In Figs. 6 and 7, we compare our results with the
available experimental data of Ref. [26] for K∗0 production
in the s and t frames, respectively. Although the vector-
exchange mechanism leads to a better agreement with the data
than the pseudoscalar-exchange model, we can see that the
vector-exchange model alone cannot successfully explain the
data.3 New experimental data for K∗ production with higher
precision are, therefore, strongly desired. In D∗ production, the
difference is also large enough to be verified by experiments
and the analyses can be done at current or future experimental
facilities.

C. Angular distributions of vector meson decays

The polar angle distributions of outgoing K and D mesons
are obtained by integrating W (",#) of Eqs. (15) and (16)
over the azimuthal angle #, which gives

2
3 W 0(") = ρ0

00 cos2 " + ρ0
11 sin2 ",

2
3 W±(") = ρ±

00 cos2 " + 1
2 (ρ±

11 + ρ±
−1−1) sin2 ". (20)

3We could confirm this conclusion through the comparison with the
data obtained at pπ = 4.5 GeV/c [26] as well.

These distributions are presented in Fig. 8 for the production
and decays of K∗ and D∗ mesons at |tmax − t | = 0.1 GeV2

with pπ = 6 and 15 GeV/c, respectively.
In all cases, one can observe maxima at " = π

2 for the
vector trajectory exchange while minima are observed at the
same angle for the pseudoscalar trajectory exchange. In other
words, the distribution functions for the vector trajectory
exchange display a cosine function shape, while those of
the pseudoscalar trajectory exchange show a sine function
shape. This is a direct consequence of the spin-density matrix
elements ρ0

00 and ρ0
11 shown in Figs. 4 and 5.

The azimuthal angle distributions at a fixed polar angle "
can also be obtained from Eqs. (15) and (16). At " = π

2 , we
have

4π

3
W 0

(
" = π

2
,#

)
= ρ0

11 − ρ0
1−1 cos 2#,

4π

3
W±

(
" = π

2
,#

)
= 1

2
(ρ±

11 + ρ±
−1−1) − ρ±

1−1 cos 2#.

(21)

The corresponding distributions are shown in Fig. 9 at
|tmax − t | = 0.1 GeV2. In the s frame, the matrix element ρ0

1−1
takes a positive value for vector-type exchange and a negative
value for pseudoscalar-type exchange. This difference means
that W (π

2 ,#) of vector-type exchange and pseudoscalar-type
exchange are out of phase. The amplitudes of the oscillations
in W 0 are found to be larger than those of W±, which reflects
the differences in ρ0

1−1 as shown in Figs. 4 and 5. For the
pseudoscalar-Reggeon exchange in the t frame, ρ0,+

λ,λ′ = 0 for
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FIG. 9. The same as in Fig. 8 but for the azimuthal angle distributions 4π
3 W (" = π/2,#) of Eq. (21).

those of ρ0 by about a factor of 2 because of the difference
in the numerators in Eqs. (13) and (14). The spin-density
matrix elements ρ−

λλ′ can be obtained from ρ+
λλ′ using the

following symmetry relations [27]: ρ−
11 = ρ+

−1−1, ρ−
00 = ρ+

00,
ρ−

−11 = ρ+
−11, ρ−

10 = −ρ+
0−1, and so on.

In Figs. 6 and 7, we compare our results with the
available experimental data of Ref. [26] for K∗0 production
in the s and t frames, respectively. Although the vector-
exchange mechanism leads to a better agreement with the data
than the pseudoscalar-exchange model, we can see that the
vector-exchange model alone cannot successfully explain the
data.3 New experimental data for K∗ production with higher
precision are, therefore, strongly desired. In D∗ production, the
difference is also large enough to be verified by experiments
and the analyses can be done at current or future experimental
facilities.

C. Angular distributions of vector meson decays

The polar angle distributions of outgoing K and D mesons
are obtained by integrating W (",#) of Eqs. (15) and (16)
over the azimuthal angle #, which gives

2
3 W 0(") = ρ0

00 cos2 " + ρ0
11 sin2 ",

2
3 W±(") = ρ±

00 cos2 " + 1
2 (ρ±

11 + ρ±
−1−1) sin2 ". (20)

3We could confirm this conclusion through the comparison with the
data obtained at pπ = 4.5 GeV/c [26] as well.

These distributions are presented in Fig. 8 for the production
and decays of K∗ and D∗ mesons at |tmax − t | = 0.1 GeV2

with pπ = 6 and 15 GeV/c, respectively.
In all cases, one can observe maxima at " = π

2 for the
vector trajectory exchange while minima are observed at the
same angle for the pseudoscalar trajectory exchange. In other
words, the distribution functions for the vector trajectory
exchange display a cosine function shape, while those of
the pseudoscalar trajectory exchange show a sine function
shape. This is a direct consequence of the spin-density matrix
elements ρ0

00 and ρ0
11 shown in Figs. 4 and 5.

The azimuthal angle distributions at a fixed polar angle "
can also be obtained from Eqs. (15) and (16). At " = π

2 , we
have

4π

3
W 0

(
" = π

2
,#

)
= ρ0

11 − ρ0
1−1 cos 2#,

4π

3
W±

(
" = π

2
,#

)
= 1

2
(ρ±

11 + ρ±
−1−1) − ρ±

1−1 cos 2#.

(21)

The corresponding distributions are shown in Fig. 9 at
|tmax − t | = 0.1 GeV2. In the s frame, the matrix element ρ0

1−1
takes a positive value for vector-type exchange and a negative
value for pseudoscalar-type exchange. This difference means
that W (π

2 ,#) of vector-type exchange and pseudoscalar-type
exchange are out of phase. The amplitudes of the oscillations
in W 0 are found to be larger than those of W±, which reflects
the differences in ρ0

1−1 as shown in Figs. 4 and 5. For the
pseudoscalar-Reggeon exchange in the t frame, ρ0,+

λ,λ′ = 0 for
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Integration over the azimuthal angle gives

At fixed angles,
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FIG. 7. The same as in Fig. 6 but in the t frame.

meson in the center-of-mass frame for the scattering process.
All these observations hold also for the matrix element ρ+

1−1
as seen in Fig. 5.

In the case of pseudoscalar-type Reggeon exchange,
however, the situation is quite different. The production
amplitude of this mechanism is proportional to the scalar

product, ε∗(λV ) · pπ , which leads to a strong enhancement
of ρ0

00 in the t frame, so that ρ0
00 = 1 and all the other ρ0

λλ′

vanish.
Shown in Fig. 5 are the results for ρ+

λλ′ defined in Eq. (14).
In this case, the spin alignment of the outgoing hyperon is fixed
to be mf = + 1

2 . The absolute values of ρ± are smaller than
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FIG. 8. Angular distributions 2
3 W ($) of Eq. (20) for K∗ and D∗ excitations are shown in the upper and lower panels, respectively. Panels

(a), (b), (e), and (f) are for 2
3 W 0($) and panels (c), (d), (g), and (h) are for 2

3 W+($). The results are given in both the s and t frames.
The vector and pseudoscalar Reggeon exchange cases are depicted by the solid and dashed curves, respectively. Calculation is done for
|tmax − t | = 0.1 GeV2 at pπ = 6 GeV/c for K∗ production and p = 15 GeV/c for D∗ production.
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FIG. 9. The same as in Fig. 8 but for the azimuthal angle distributions 4π
3 W (" = π/2,#) of Eq. (21).

those of ρ0 by about a factor of 2 because of the difference
in the numerators in Eqs. (13) and (14). The spin-density
matrix elements ρ−

λλ′ can be obtained from ρ+
λλ′ using the

following symmetry relations [27]: ρ−
11 = ρ+

−1−1, ρ−
00 = ρ+

00,
ρ−

−11 = ρ+
−11, ρ−

10 = −ρ+
0−1, and so on.

In Figs. 6 and 7, we compare our results with the
available experimental data of Ref. [26] for K∗0 production
in the s and t frames, respectively. Although the vector-
exchange mechanism leads to a better agreement with the data
than the pseudoscalar-exchange model, we can see that the
vector-exchange model alone cannot successfully explain the
data.3 New experimental data for K∗ production with higher
precision are, therefore, strongly desired. In D∗ production, the
difference is also large enough to be verified by experiments
and the analyses can be done at current or future experimental
facilities.

C. Angular distributions of vector meson decays

The polar angle distributions of outgoing K and D mesons
are obtained by integrating W (",#) of Eqs. (15) and (16)
over the azimuthal angle #, which gives

2
3 W 0(") = ρ0

00 cos2 " + ρ0
11 sin2 ",

2
3 W±(") = ρ±

00 cos2 " + 1
2 (ρ±

11 + ρ±
−1−1) sin2 ". (20)

3We could confirm this conclusion through the comparison with the
data obtained at pπ = 4.5 GeV/c [26] as well.

These distributions are presented in Fig. 8 for the production
and decays of K∗ and D∗ mesons at |tmax − t | = 0.1 GeV2

with pπ = 6 and 15 GeV/c, respectively.
In all cases, one can observe maxima at " = π

2 for the
vector trajectory exchange while minima are observed at the
same angle for the pseudoscalar trajectory exchange. In other
words, the distribution functions for the vector trajectory
exchange display a cosine function shape, while those of
the pseudoscalar trajectory exchange show a sine function
shape. This is a direct consequence of the spin-density matrix
elements ρ0

00 and ρ0
11 shown in Figs. 4 and 5.

The azimuthal angle distributions at a fixed polar angle "
can also be obtained from Eqs. (15) and (16). At " = π

2 , we
have

4π

3
W 0

(
" = π

2
,#

)
= ρ0

11 − ρ0
1−1 cos 2#,

4π

3
W±

(
" = π

2
,#

)
= 1

2
(ρ±

11 + ρ±
−1−1) − ρ±

1−1 cos 2#.

(21)

The corresponding distributions are shown in Fig. 9 at
|tmax − t | = 0.1 GeV2. In the s frame, the matrix element ρ0

1−1
takes a positive value for vector-type exchange and a negative
value for pseudoscalar-type exchange. This difference means
that W (π

2 ,#) of vector-type exchange and pseudoscalar-type
exchange are out of phase. The amplitudes of the oscillations
in W 0 are found to be larger than those of W±, which reflects
the differences in ρ0

1−1 as shown in Figs. 4 and 5. For the
pseudoscalar-Reggeon exchange in the t frame, ρ0,+

λ,λ′ = 0 for
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SUMMARY

* Spectrum of excited hyperons 
* very model-dependent 
* a new window for studying hadron structure 

* Ξ production in Kbar-N scattering 
* intermediate 𝛬 and 𝛴 hyperons 
* more precise and accurate data are needed 
* complimentary to photoproduction processes 

* K*(D*) production and decay in pi-N scattering 
* vector exchange vs pseudoscalar exchange 
* decay angular distribution will be useful to pin down the spin structure of the  

production amplitudes 
* All these studies may be tested at current facilities.

Thank You


